
DETERMINANTS

1. Introduction

In these notes we discuss a simple tool for testing the non singularity of an n×n matrix that will
be useful in our discussion of eigenvalues. Tis tool is the determinant. At the end of these notes,
we will also discuss how the determinant can be used to solve equations (Cramer’s Rule), and how
it can be used to give a theoretically useful representation the inverse of a matrix (via the classical
adjoint).

The Leibniz formula for the determinant of an n× n matrix A is

(1) det(A) =
∑
σ∈Sn

sgn (σ)
n∏
i=1

Aiσ(i),

where Sn is the set of all permutations of the integers {1, 2, ..., n}. These permutations are functions
that reorder this set of integers. The element in position i after the reordering σ is denoted σ(i).
For example, for n = 3, the original sequence [1, 2, 3] might be reordered to [2, 3, 1], with σ(1) =
2, σ(2) = 3, σ(3) = 1. The set of all such permutations (also known as the symmetric group on n
elements) is denoted Sn. For each permutation σ, sgn (σ) denotes the signature of σ; it is +1 for
even σ and −1 for odd σ. Evenness or oddness can be defined as follows: the permutation is even
(odd) if the new sequence can be obtained by an even number (odd, respectively) of switches of
numbers. For example, starting from [1, 2, 3] and switching the positions of 2 and 3 yields [1, 3, 2],
switching once more yields [3, 1, 2], and finally, after a total of three (an odd number) switches,
[3, 2, 1] results. Therefore [3, 2, 1] is an odd permutation. Similarly, the permutation [2, 3, 1] is even
since

[1, 2, 3]→ [2, 1, 3]→ [2, 3, 1],

an even number of switches.
The identity permutation is the unique element ι ∈ Sn for which ι(i) = i for all i = 1, 2, . . . , n.

Note that there are zero switches. We say that ι is even so that its signature is 1, sgn (ι) = 1.
Observe that if I is the identity matrix, then

det(I) =
∑
σ∈Sn

sgn (σ)
n∏
i=1

Ii σi = sgn (ι) = 1.

Given σ1, σ2 ∈ Sn, we can use composition σ = σ1 ◦ σ1 to obtain another element of Sn. The
discussion above on the signature of a permutation tells us that sgn (σ1 ◦ σ) = sgn (σ1) sgn (σ2).
Therefore, if Ã is the matrix obtained from A by permuting its columns using the permutation

1



2 DETERMINANTS

π ∈ Sn, then Leibniz’s formula (1) tells us that

det(Ã) =
∑
σ∈Sn

sgn (σ)
n∏
i=1

Aiσ(π(i))

=
∑
σ∈Sn

sgn (σ) [sgn (π)]2
n∏
i=1

Aiσ(π(i))

= sgn (π)
∑
σ∈Sn

sgn (σ) sgn (π)
n∏
i=1

Aiσ(π(i))

= sgn (π)
∑
σ∈Sn

sgn (σ ◦ π)
n∏
i=1

Ai(σ◦π)(i)

= sgn (π)
∑
σ∈Sn

sgn (σ)
n∏
i=1

Aiσ(i)

= sgn (π) det(A).

Since we can also write Ã = APπ, where Pπ ∈ Rn×n is the permutation matrix corresponding to π,
this gives us the formula

det(APπ) = sgn (π) det(A).

Taking A = I and using the fact that det(I) = 1, we obtain

(2) det(Pπ) = sgn (π) det(I) = sgn (π) ∀π ∈ Sn.

Therefore, for every permutation matrix P ∈ Rn×n and matrix A ∈ Rn×n, we have

(3) det(AP ) = det(P ) det(A).

If n = 2, then S2 only has 2 elements:

[1, 2]
ι→ [1, 2] and [1, 2]

σ→ [2, 1],

where sgn (ι) = 1 and sgn (σ) = −1. Therefore, given a 2× 2 matrix

[
a b
c d

]
its determinent is

det

([
a b
c d

])
= ad− bc .

2. Laplace’s Formula for the Determinant

Lieibniz’s formula fro the determinant, although extremely powerful, is very difficult to use in
practical computations. For this reason, we discuss and alternative formula for its computation.

Theorem 1 (Laplace’s Formula for the Determinant). Suppose A ∈ IRn×n. For every pair i, j ∈
{1, 2, . . . , n}, define the matrix A[i, j] to be the (n− 1)× (n− 1) submatrix of A obtain by deleting
the ith row and the jth column. The for each i0, j0 ∈ {1, 2, . . . , n},

det(A) =
n∑
i=1

aij0(−1)(i+j0) det(A[i, j0]) =
n∑
j=1

ai0j(−1)(i0+j) det(A[i0, j]) .
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The terms Cij = (−1)(i+j) det(A[i, j]) are called the cofactors of the matrix A and the transpose of
the matrix whose ijth component is Cij is called the classical adjoint of A denoted adj (A) = [Cij]

T .
The determinant satisfies the following properties.

Theorem 2 (Properties of the Determinant). Let A,B ∈ Rn×n.

(1) det(A) = det(AT ).
(2) The determinant is a multi-linear function of its columns (rows). That is, if A = [A·1, A·2, . . . , A·n],

where A·j is the jth column of A (j = 1, . . . , n), then for any vector b ∈ IRn and scalar λ ∈ R

det ([A·1, . . . , A·j + λb, . . . , A·n]) = det ([A·1, . . . , A·j, . . . , A·n]) + λ det ([A·1, . . . , b, . . . , A·n]) .

(3) If any two columns (rows) of A coincide, then det(A) = 0.
(4) For every j1, j2 ∈ {1, . . . , n} with j1 6= j2 and λ ∈ R,

det(A) = det ([A·1, . . . , A·j1 + λA·j2 , . . . , A·n]) .

(5) If A is singular, then det(A) = 0.

Proof. (1) This follows immediately from Laplace’s formula for the determinant in Theorem 1.
(2) This follows immediately from Laplace’s formula:

det ([A·1, . . . , A·j + λb, . . . , A·n]) =
n∑
i=1

(aij + λbi)(−1)(i+j) det(A[i, j])

=
n∑
i=1

aij(−1)(i+j0) det(A[i, j]) + λ
n∑
i=1

bi(−1)(i+j0) det(A[i, j])

= det ([A·1, . . . , A·j, . . . , A·n]) + λ det ([A·1, . . . , b, . . . , A·n]) .

(3) The permutation πij ∈ Sn that interchanges i and j (πij(i) = j, πij(j) = i, πij(k) = k ∀ k 6= i, j)
is odd since sgn (πij) = 2 |i− j| − 1 as long as i 6= j. Therefore, by (2), the permutation matrix Pij
which interchanges the columns i 6= j has det(Pij) = −1. Now suppose that column i equals column
j 6= i in the matrix A ∈ Rn×n, then, by (3), det(A) = det(APij) = det(A) det(Pij) = − det(A).
Hence det(A) = 0.
(4) This follows immediately from Parts (2) and (3).
(5) If A is singular, then its columns are linearly dependent. That is, there is a non-trivial linear
combination of its columns that give zero, or equivalently, there is some column j0 that is a linear
combination of the remaining columns, A·j0 =

∑
j 6=j0 λjA·j. Therefore, by Parts (2) and (3),

det(A) = det

(
[A·1, . . . , A·(j0−1),

∑
j 6=j0

λjA·j, A·(j0+1), . . . , A·n]

)
=

∑
j 6=j0

λj det
(
[A·1, . . . , A·(j0−1), A·j, A·(j0+1), , . . . , A·n]

)
= 0 .

�

We will also need two further properties for the determinant. These appear in the next theorem
whose proof is omitted.



4 DETERMINANTS

Theorem 3. Let A,B ∈ Rn×n, C ∈ Rm×n, and D ∈ Rm×m. Then the following two formulas hold:

det(AB) = det(A) det(B)(4)

det

([
A 0
C D

])
= det(A) det(D) .(5)

Note that (3) is a special case of (4). As an application of (4) we compute the determinant of
A−1 when it exists:

1 = det(I) = det(AA−1) = det(A) det(A−1),

whenever A is nonsingular. That is, det(A−1) = det(A)−1.

3. Cramer’s Rule

We now consider the system Ax = b and Cramer’s Rule. Cramer’s Rule states that if A is
nonsingular, then the unique solution to the system Ax = b is given componentwise by

xj =
det(Aj(b))

det(A)
, j = 1, 2, . . . , n,

where the matrix Aj(b) is obtained from A by replacing the jth column of A by the vector b. The
proof of Cramer’s Rule follows easily from the properties of the determinant. Indeed, if x̄ is the
unique solution to the system Ax = b, then b = Ax̄ =

∑n
j=1 x̄jA·j. Therefore, by Parts (2) and (3)

of Theorem 2,

det(Aj(b)) = det
(
[A·1, . . . , A·(j−1), b, A·(j+1), . . . , A·n]

)
= det

(
[A·1, . . . , A·(j−1),

n∑
i=1

x̄iA·i, A·(j+1), . . . , A·n]

)

=
n∑
i=1

x̄i det
(
[A·1, . . . , A·(j−1), A·i, A·(j+1), . . . , A·n]

)
= x̄i det

(
[A·1, . . . , A·(i−1), A·i, A·(i+1), . . . , A·n]

)
= x̄i det(A)

giving Cramer’s Rule.
Let us examine the expressions det(Aj(b)) using Laplace’s formula for the determinant:

det(Aj(b)) =
n∑
i=1

biCij = CT
·j b,

where C·j is the jth row of the classical adjoint adj (A). That is,

x̄ =
1

det(A)
adj (A) b.

Since this expression is valid for all choices of b ∈ IRn, we must have

A−1 =
1

det(A)
adj (A) .

We call this the adjoint representaton of the inverse.


