Math 407: Linear Optimization

General Duality Theory

(1) General Duality Theory
(2) General Weak Duality theorem
(3) Theorems of the Alternative

General Duality Theory

It is useful to have a more general duality theory than the one we have presented thus far.

General Duality Theory

It is useful to have a more general duality theory than the one we have presented thus far.

By more general, I mean a theory that allows one to compute a dual LP without first having to transform the problem into standard form.

General Duality Theory

It is useful to have a more general duality theory than the one we have presented thus far.

By more general, I mean a theory that allows one to compute a dual LP without first having to transform the problem into standard form.

The great advantage of doing this is that it allows the modeler to understand the nature of the dual variables in terms of the original problem statement and the original decision variables.

General Duality Theory

It is useful to have a more general duality theory than the one we have presented thus far.

By more general, I mean a theory that allows one to compute a dual LP without first having to transform the problem into standard form.

The great advantage of doing this is that it allows the modeler to understand the nature of the dual variables in terms of the original problem statement and the original decision variables.

In our discussion we still need to make use of a standard form but it will be much more general and flexible than the standard form used so far.

Expanded Standard Form for General Duality Theory

$$
\begin{array}{rll}
\mathcal{P}_{G} \quad \text { maximize } & \sum_{j=1}^{n} c_{j} x_{j} & \\
\text { subject to } & \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \quad i \in I \\
& \sum_{j=1}^{n} a_{i j} x_{j}=b_{i} \quad i \in E \\
& 0 \leq x_{j} & j \in R
\end{array}
$$

Here the index sets I, E, and R are such that

$$
I \cap E=\emptyset, I \cup E=\{1,2, \ldots, m\}, \text { and } R \subset\{1,2, \ldots, n\}
$$

Primal-Dual Correspondences

In the Primal	In the Dual
Maximization	

Primal-Dual Correspondences

In the Primal	In the Dual
Maximization	Minimization

Primal-Dual Correspondences

In the Primal	In the Dual
Maximization	Minimization
Inequality Constraints	

Primal-Dual Correspondences

In the Primal	In the Dual
Maximization	Minimization
Inequality Constraints	Restricted Variables

Primal-Dual Correspondences

In the Primal	In the Dual
Maximization	Minimization
Inequality Constraints	Restricted Variables
Equality Constraints	

Primal-Dual Correspondences

In the Primal	In the Dual
Maximization	Minimization
Inequality Constraints	Restricted Variables
Equality Constraints	Free Variables

Primal-Dual Correspondences

In the Primal	In the Dual
Maximization	Minimization
Inequality Constraints	Restricted Variables
Equality Constraints	Free Variables
Restricted Variables	

Primal-Dual Correspondences

In the Primal	In the Dual
Maximization	Minimization
Inequality Constraints	Restricted Variables
Equality Constraints	Free Variables
Restricted Variables	Inequality Constraints

Primal-Dual Correspondences

In the Primal	In the Dual
Maximization	Minimization
Inequality Constraints	Restricted Variables
Equality Constraints	Free Variables
Restricted Variables	Inequality Constraints
Free Variables	

Primal-Dual Correspondences

In the Primal	In the Dual
Maximization	Minimization
Inequality Constraints	Restricted Variables
Equality Constraints	Free Variables
Restricted Variables	Inequality Constraints
Free Variables	Equality Constraints

Primal-Dual Correspondences

$\begin{array}{cll}\mathcal{P}_{G} \quad \begin{array}{lll}\text { maximize }\end{array} & \sum_{j=1}^{n} c_{j} x_{j} & \\ & \text { subject to } & \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \\ & \sum_{j=1}^{n} a_{i j} x_{j}=b_{i} & i \in E \\ & 0 \leq x_{j} & j \in R\end{array}$

Primal-Dual Correspondences

$$
\begin{array}{clll}
\mathcal{P}_{G} & \begin{array}{ll}
\text { maximize } & \sum_{j=1}^{n} c_{j} x_{j} \\
\text { subject to } & \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \\
& \sum_{j=1}^{n} a_{i j} x_{j}=b_{i}
\end{array} \quad i \in I \\
& 0 \leq x_{j} & j \in R
\end{array}
$$

$$
F=\{1,2, \ldots, n\} \backslash R=\text { the free variables. }
$$

Primal-Dual Correspondences

$$
F=\{1,2, \ldots, n\} \backslash R=\text { the free variables. }
$$

$\mathcal{D}_{G} \quad$ minimize $\quad \sum_{i=1}^{m} b_{i} y_{i}$

$$
\begin{aligned}
& \mathcal{P}_{G} \quad \text { maximize } \quad \sum_{j=1}^{n} c_{j} x_{j} \\
& \text { subject to } \quad \begin{array}{ll}
\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} & i \in I \\
\sum_{n=1}^{n} a_{i j} x_{j}=b_{i} & i \in E
\end{array} \\
& 0 \leq x_{j} \quad j \in R
\end{aligned}
$$

Primal-Dual Correspondences

\mathcal{P}_{G} maximize $\quad \sum_{j=1}^{n} c_{j} x_{j}$

$$
\begin{array}{lll}
\text { subject to } & \sum_{j=1}^{n=1} a_{i j} x_{j} \leq b_{i} & i \in I \\
& \sum_{j=1}^{n} a_{i j} x_{j}=b_{i} & i \in E \\
0 \leq x_{j} & j \in R
\end{array}
$$

```
F={1,2,\ldots,n}\R= the free variables.
```

$\mathcal{D}_{G} \quad$ minimize $\quad \sum_{i=1}^{m} b_{i} y_{i}$

$$
\text { subject to } \quad \sum_{i=1}^{m} a_{i j} y_{i} \geq c_{j} \quad j \in R
$$

$$
\sum_{i=1}^{m} a_{i j} y_{i}=c_{j} \quad j \in F
$$

Primal-Dual Correspondences

\mathcal{P}_{G} maximize $\quad \sum_{j=1}^{n} c_{j} x_{j}$

$$
\begin{array}{lll}
\text { subject to } & \sum_{j=1}^{n=1} a_{i j} x_{j} \leq b_{i} & i \in I \\
& \sum_{j=1}^{n} a_{i j} x_{j}=b_{i} & i \in E \\
0 \leq x_{j} & j \in R
\end{array}
$$

```
F={1,2,\ldots,n}\R= the free variables.
```

$\mathcal{D}_{G} \quad$ minimize $\quad \sum_{i=1}^{m} b_{i} y_{i}$

$$
\text { subject to } \quad \sum_{i=1}^{m} a_{i j} y_{i} \geq c_{j} \quad j \in R
$$

$$
\sum_{i=1}^{m} a_{i j} y_{i}=c_{j} \quad j \in F
$$

$$
0 \leq y_{i} \quad i \in I
$$

Example: General Duality

Compute the dual of the LP

$$
\begin{array}{lll}
\operatorname{maximize} & x_{1}-2 x_{2}+3 x_{3} \\
\text { subject to } & 5 x_{1}+x_{2}-2 x_{3} \leq 8 \\
& -x_{1}+5 x_{2}+8 x_{3}=10 \\
& x_{1} \leq 10,0 \leq x_{3}
\end{array}
$$

Example: General Duality

Compute the dual of the LP

$$
\begin{array}{lll}
\operatorname{maximize} & x_{1}-2 x_{2}+3 x_{3} & \\
\text { subject to } & 5 x_{1}+x_{2}-2 x_{3} \leq 8 & y_{1} \geq 0 \\
& -x_{1}+5 x_{2}+8 x_{3}=10 & \\
& x_{1} \leq 10,0 \leq x_{3} &
\end{array}
$$

Example: General Duality

Compute the dual of the LP

$$
\begin{array}{llll}
\operatorname{maximize} & x_{1}-2 x_{2}+3 x_{3} & & \\
\text { subject to } & 5 x_{1}+x_{2}-2 x_{3} \leq 8 & y_{1} \geq 0 \\
& -x_{1}+5 x_{2}+8 x_{3}=10 & y_{2} \text { free } \\
& x_{1} \leq 10,0 \leq x_{3} & &
\end{array}
$$

Example: General Duality

Compute the dual of the LP

$$
\begin{array}{llll}
\operatorname{maximize} & x_{1}-2 x_{2}+3 x_{3} & & \\
\text { subject to } & 5 x_{1}+x_{2}-2 x_{3} & \leq 8 & y_{1} \geq 0 \\
& -x_{1}+5 x_{2}+8 x_{3} & =10 & y_{2} \text { free } \\
& x_{1} & \leq 10 & \\
& 0 \leq x_{3} & &
\end{array}
$$

Example: General Duality

Compute the dual of the LP

$$
\begin{array}{llll}
\operatorname{maximize} & x_{1}-2 x_{2}+3 x_{3} & & \\
\text { subject to } & 5 x_{1}+x_{2}-2 x_{3} & \leq 8 & y_{1} \geq 0 \\
& -x_{1}+5 x_{2}+8 x_{3} & =10 & y_{2} \text { free } \\
& x_{1} & \leq 10 & y_{3} \geq 0 \\
& 0 \leq x_{3} & &
\end{array}
$$

Example: General Duality

Compute the dual of the LP

$$
\begin{array}{llll}
\operatorname{maximize} & x_{1}-2 x_{2}+3 x_{3} & & \\
\text { subject to } & 5 x_{1}+x_{2}-2 x_{3} & \leq 8 & y_{1} \geq 0 \\
& -x_{1}+5 x_{2}+8 x_{3} & =10 & y_{2} \text { free } \\
& x_{1} & \leq 10 & y_{3} \geq 0 \\
& 0 \leq x_{3} & &
\end{array}
$$

minimize

Example: General Duality

Compute the dual of the LP

$$
\begin{array}{llll}
\operatorname{maximize} & x_{1}-2 x_{2}+3 x_{3} & & \\
\text { subject to } & 5 x_{1}+x_{2}-2 x_{3} & \leq 8 & y_{1} \geq 0 \\
& -x_{1}+5 x_{2}+8 x_{3} & =10 & y_{2} \text { free } \\
& x_{1} & \leq 10 & y_{3} \geq 0 \\
& 0 \leq x_{3} & &
\end{array}
$$

minimize

$$
0 \leq y_{1}, 0 \leq y_{3}
$$

Example: General Duality

Compute the dual of the LP

$$
\begin{array}{llll}
\operatorname{maximize} & x_{1}-2 x_{2}+3 x_{3} & & \\
\text { subject to } & 5 x_{1}+x_{2}-2 x_{3} & \leq 8 & y_{1} \geq 0 \\
& -x_{1}+5 x_{2}+8 x_{3} & =10 & y_{2} \text { free } \\
& x_{1} & \leq 10 & y_{3} \geq 0 \\
& 0 \leq x_{3} & &
\end{array}
$$

minimize

$$
8 y_{1}+10 y_{2}+10 y_{3}
$$

$$
0 \leq y_{1}, 0 \leq y_{3}
$$

Example: General Duality

Compute the dual of the LP

$$
\begin{array}{llll}
\operatorname{maximize} & x_{1}-2 x_{2}+3 x_{3} & & \\
\text { subject to } & 5 x_{1}+x_{2}-2 x_{3} & \leq 8 & y_{1} \geq 0 \\
& -x_{1}+5 x_{2}+8 x_{3} & =10 & y_{2} \text { free } \\
& x_{1} & \leq 10 & y_{3} \geq 0 \\
& 0 \leq x_{3} & &
\end{array}
$$

$\begin{aligned} & \operatorname{minimize} \\ & \text { subject to }\end{aligned} \quad 8 y_{1}+10 y_{2}+10 y_{3}$

$$
0 \leq y_{1}, 0 \leq y_{3}
$$

Example: General Duality

Compute the dual of the LP

$$
\begin{array}{llll}
\operatorname{maximize} & x_{1}-2 x_{2}+3 x_{3} & & \\
\text { subject to } & 5 x_{1}+x_{2}-2 x_{3} & \leq 8 & y_{1} \geq 0 \\
& -x_{1}+5 x_{2}+8 x_{3} & =10 & y_{2} \text { free } \\
& x_{1} & \leq 10 & y_{3} \geq 0 \\
& 0 \leq x_{3} & &
\end{array}
$$

$$
\begin{array}{ll}
\begin{array}{ll}
\operatorname{minimize} & 8 y_{1}+10 y_{2}+10 y_{3} \\
\text { subject to } \\
5 y_{1}-y_{2}+\quad y_{3}=1
\end{array} \\
& 0 \leq y_{1}, 0 \leq y_{3}
\end{array}
$$

Example: General Duality

Compute the dual of the LP

$$
\begin{array}{llll}
\operatorname{maximize} & x_{1}-2 x_{2}+3 x_{3} & & \\
\text { subject to } & 5 x_{1}+x_{2}-2 x_{3} & \leq 8 & y_{1} \geq 0 \\
& -x_{1}+5 x_{2}+8 x_{3} & =10 & y_{2} \text { free } \\
& x_{1} & \leq 10 & y_{3} \geq 0 \\
& 0 \leq x_{3} & &
\end{array}
$$

$$
\begin{array}{lcl}
\operatorname{minimize} & 8 y_{1}+10 y_{2}+10 y_{3} & \\
\text { subject to } \quad \begin{array}{c}
5 y_{1}-y_{2}+\quad y_{3} \\
y_{1}+5 y_{2}
\end{array} & =-2 \\
& 0 \leq y_{1}, 0 \leq y_{3} & \\
&
\end{array}
$$

Example: General Duality

Compute the dual of the LP

$$
\begin{array}{llll}
\operatorname{maximize} & x_{1}-2 x_{2}+3 x_{3} & & \\
\text { subject to } & 5 x_{1}+x_{2}-2 x_{3} & \leq 8 & y_{1} \geq 0 \\
& -x_{1}+5 x_{2}+8 x_{3} & =10 & y_{2} \text { free } \\
& x_{1} & \leq 10 & y_{3} \geq 0 \\
& 0 \leq x_{3} & &
\end{array}
$$

$$
\begin{array}{lcl}
\operatorname{minimize} \quad 8 y_{1}+10 y_{2}+10 y_{3} & \\
\text { subject to } \quad 5 y_{1}-y_{2}+\quad y_{3} & =1 \\
& y_{1}+5 y_{2} & =-2 \\
& -2 y_{1}+8 y_{2} & \geq 3 \\
& 0 \leq y_{1}, 0 \leq y_{3} &
\end{array}
$$

Second Example: General Duality

$$
\begin{array}{lr}
\operatorname{maximize} & 2 x_{1}-3 x_{2}+x_{3} \\
\text { subject to } & x_{1}+5 x_{2}-2 x_{3}=4 \\
& 10 x_{1}+x_{2}-5 x_{3} \leq 20 \\
& 5 x_{1}-x_{2}-x_{3}=3 \\
& x_{1} \leq 6,0 \leq x_{2}
\end{array}
$$

Second Example: Solution

Primal

$$
\begin{array}{lrrrll}
\operatorname{maximize} & 2 x_{1} & -3 x_{2}+ & x_{3} & & \\
\text { subject to } & x_{1} & +5 x_{2} & -2 x_{3} & = & 4 \\
& 10 x_{1} & +x_{2} & -5 x_{3} & \leq & 20 \\
& 5 x_{1} & -x_{2} & -x_{3} & = & 3 \\
& x_{1} & \leq 6, & 0 & \leq x_{2}
\end{array}
$$

Dual

$$
\begin{array}{lrrrrll}
\operatorname{minimize} & 4 y_{1} & +20 y_{2} & +3 y_{3} & +6 y_{4} & & \\
\text { subject to } & y_{1} & +10 y_{2} & +5 y_{3} & +y_{4} & = & 2 \\
& 5 y_{1} & +y_{2} & -y_{3} & & \geq & -3 \\
& -2 y_{1} & -5 y_{2} & -y_{3} & & = & 1 \\
& 0 & \leq y_{2}, & 0 & \leq y_{4} & &
\end{array}
$$

General Weak Duality theorem

Theorem: Consider the primal-dual pair of linear programs $\left(\mathcal{P}_{G}, \mathcal{D}_{G}\right)$ with $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$, and $c \in \mathbb{R}^{n}$. If $x \in \mathbb{R}^{n}$ is feasible for \mathcal{P}_{G} and $y \in \mathbb{R}^{m}$ is feasible for \mathcal{D}_{G}, then

$$
c^{T} x \leq y^{T} A x \leq b^{T} y
$$

Moreover, the following statements hold.

General Weak Duality theorem

Theorem: Consider the primal-dual pair of linear programs $\left(\mathcal{P}_{G}, \mathcal{D}_{G}\right)$ with $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$, and $c \in \mathbb{R}^{n}$. If $x \in \mathbb{R}^{n}$ is feasible for \mathcal{P}_{G} and $y \in \mathbb{R}^{m}$ is feasible for \mathcal{D}_{G}, then

$$
c^{T} x \leq y^{T} A x \leq b^{T} y
$$

Moreover, the following statements hold.
(i) If \mathcal{P}_{G} is unbounded, then \mathcal{D}_{G} is infeasible.

General Weak Duality theorem

Theorem: Consider the primal-dual pair of linear programs $\left(\mathcal{P}_{G}, \mathcal{D}_{G}\right)$ with $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$, and $c \in \mathbb{R}^{n}$. If $x \in \mathbb{R}^{n}$ is feasible for \mathcal{P}_{G} and $y \in \mathbb{R}^{m}$ is feasible for \mathcal{D}_{G}, then

$$
c^{T} x \leq y^{T} A x \leq b^{T} y
$$

Moreover, the following statements hold.
(i) If \mathcal{P}_{G} is unbounded, then \mathcal{D}_{G} is infeasible.
(ii) If \mathcal{D}_{G} is unbounded, then \mathcal{P}_{G} is infeasible.

General Weak Duality theorem

Theorem: Consider the primal-dual pair of linear programs $\left(\mathcal{P}_{G}, \mathcal{D}_{G}\right)$ with $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$, and $c \in \mathbb{R}^{n}$. If $x \in \mathbb{R}^{n}$ is feasible for \mathcal{P}_{G} and $y \in \mathbb{R}^{m}$ is feasible for \mathcal{D}_{G}, then

$$
c^{T} x \leq y^{T} A x \leq b^{T} y .
$$

Moreover, the following statements hold.
(i) If \mathcal{P}_{G} is unbounded, then \mathcal{D}_{G} is infeasible.
(ii) If \mathcal{D}_{G} is unbounded, then \mathcal{P}_{G} is infeasible.
(iii) If \bar{x} is feasible for \mathcal{P}_{G} and \bar{y} is feasibe for \mathcal{D}_{G} with $c^{\top} \bar{x}=b^{\top} \bar{y}$, then \bar{x} is and optimal solution to \mathcal{P}_{G} and \bar{y} is an optimal solution to \mathcal{D}_{G}.

General Weak Duality theorem

Proof: $x \in \mathbb{R}^{n}$ is feasible for \mathcal{P}_{G} and $y \in \mathbb{R}^{m}$ is feasible for \mathcal{D}_{G}.

General Weak Duality theorem

Proof: $x \in \mathbb{R}^{n}$ is feasible for \mathcal{P}_{G} and $y \in \mathbb{R}^{m}$ is feasible for \mathcal{D}_{G}.

$$
c^{T} x=\sum_{j \in R} c_{j} x_{j}+\sum_{j \in F} c_{j} x_{j}
$$

General Weak Duality theorem

Proof: $x \in \mathbb{R}^{n}$ is feasible for \mathcal{P}_{G} and $y \in \mathbb{R}^{m}$ is feasible for \mathcal{D}_{G}.

$$
\begin{aligned}
c^{T} x & =\sum_{j \in R} c_{j} x_{j}+\sum_{j \in F} c_{j} x_{j} \\
& \leq \sum_{j \in R}\left(\sum_{i=1}^{m} a_{i j} y_{i}\right) x_{j}
\end{aligned}
$$

(Since $c_{j} \leq \sum_{i=1}^{n} a_{i j} y_{i}$ and $x_{j} \geq 0$ for $j \in R$

General Weak Duality theorem

Proof: $x \in \mathbb{R}^{n}$ is feasible for \mathcal{P}_{G} and $y \in \mathbb{R}^{m}$ is feasible for \mathcal{D}_{G}.

$$
\begin{aligned}
& c^{T} x= \sum_{j \in R} c_{j} x_{j}+\sum_{j \in F} c_{j} x_{j} \\
& \leq \sum_{j \in R}\left(\sum_{i=1}^{m} a_{i j} y_{i}\right) x_{j}+\sum_{j \in F}\left(\sum_{i=1}^{m} a_{i j} y_{i}\right) x_{j} \\
& \quad\left(\text { Since } c_{j} \leq \sum_{i=1}^{n} a_{i j} y_{i} \text { and } x_{j} \geq 0 \text { for } j \in R\right. \\
&\left.\quad \text { and } c_{j}=\sum_{i=1}^{n} a_{i j} y_{i} \text { for } j \in F .\right)
\end{aligned}
$$

General Weak Duality theorem

Proof: $x \in \mathbb{R}^{n}$ is feasible for \mathcal{P}_{G} and $y \in \mathbb{R}^{m}$ is feasible for \mathcal{D}_{G}.

$$
\begin{aligned}
& c^{T} x= \sum_{j \in R} c_{j} x_{j}+\sum_{j \in F} c_{j} x_{j} \\
& \leq \sum_{j \in R}\left(\sum_{i=1}^{m} a_{i j} y_{i}\right) x_{j}+\sum_{j \in F}\left(\sum_{i=1}^{m} a_{i j} y_{i}\right) x_{j} \\
& \quad\left(\text { Since } c_{j} \leq \sum_{i=1}^{n} a_{i j} y_{i} \text { and } x_{j} \geq 0 \text { for } j \in R\right. \\
&\left.\quad \text { and } c_{j}=\sum_{i=1}^{n} a_{i j} y_{i} \text { for } j \in F .\right) \\
&= \sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j} y_{i} x_{j}
\end{aligned}
$$

General Weak Duality theorem

Proof: $x \in \mathbb{R}^{n}$ is feasible for \mathcal{P}_{G} and $y \in \mathbb{R}^{m}$ is feasible for \mathcal{D}_{G}.

$$
\begin{aligned}
& c^{T} x= \sum_{j \in R} c_{j} x_{j}+\sum_{j \in F} c_{j} x_{j} \\
& \leq \sum_{j \in R}\left(\sum_{i=1}^{m} a_{i j} y_{i}\right) x_{j}+\sum_{j \in F}\left(\sum_{i=1}^{m} a_{i j} y_{i}\right) x_{j} \\
& \quad\left(\text { Since } c_{j} \leq \sum_{i=1}^{n} a_{i j} y_{i} \text { and } x_{j} \geq 0 \text { for } j \in R\right. \\
&\left.\quad \text { and } c_{j}=\sum_{i=1}^{n} a_{i j} y_{i} \text { for } j \in F .\right) \\
&= \sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j} y_{i} x_{j} \\
&= y^{\top} A x
\end{aligned}
$$

General Weak Duality theorem

$$
x^{T} A y
$$

General Weak Duality theorem

$$
x^{T} A y=\sum_{i \in I}\left(\sum_{j=1}^{n} a_{i j} x_{j}\right) y_{i}+\sum_{i \in E}\left(\sum_{j=1}^{n} a_{i j} x_{j}\right) y_{i}
$$

General Weak Duality theorem

$$
\begin{aligned}
x^{\top} A y & =\sum_{i \in I}\left(\sum_{j=1}^{n} a_{i j} x_{j}\right) y_{i}+\sum_{i \in E}\left(\sum_{j=1}^{n} a_{i j} x_{j}\right) y_{i} \\
& \leq \sum_{i \in I} b_{i} y_{i}
\end{aligned}
$$

(Since $\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}$ and $0 \leq y_{i}$ for $i \in I$

General Weak Duality theorem

$$
\begin{aligned}
& x^{T} A y=\sum_{i \in I}\left(\sum_{j=1}^{n} a_{i j} x_{j}\right) y_{i}+\sum_{i \in E}\left(\sum_{j=1}^{n} a_{i j} x_{j}\right) y_{i} \\
& \leq \sum_{i \in I} b_{i} y_{i}+\sum_{i \in E} b_{i} y_{i} \\
& \quad\left(\text { Since } \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \text { and } 0 \leq y_{i} \text { for } i \in I\right. \\
& \quad \text { and } \sum_{j=1}^{n} a_{i j} x_{j}=b_{i} \text { for } i \in E .
\end{aligned}
$$

General Weak Duality theorem

$$
\begin{aligned}
& x^{T} A y= \sum_{i \in I}\left(\sum_{j=1}^{n} a_{i j} x_{j}\right) y_{i}+\sum_{i \in E}\left(\sum_{j=1}^{n} a_{i j} x_{j}\right) y_{i} \\
& \leq \sum_{i \in I} b_{i} y_{i}+\sum_{i \in E} b_{i} y_{i} \\
& \quad \quad \text { Since } \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \text { and } 0 \leq y_{i} \text { for } i \in I \\
& \quad \text { and } \sum_{j=1}^{n} a_{i j} x_{j}=b_{i} \text { for } i \in E . \\
&= \sum_{i=1}^{m} b_{i} y_{i}
\end{aligned}
$$

General Weak Duality theorem

$$
\begin{aligned}
& x^{T} A y= \sum_{i \in I}\left(\sum_{j=1}^{n} a_{i j} x_{j}\right) y_{i}+\sum_{i \in E}\left(\sum_{j=1}^{n} a_{i j} x_{j}\right) y_{i} \\
& \leq \sum_{i \in I} b_{i} y_{i}+\sum_{i \in E} b_{i} y_{i} \\
& \quad \quad \quad \text { Since } \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \text { and } 0 \leq y_{i} \text { for } i \in I \\
& \quad \text { and } \sum_{j=1}^{n} a_{i j} x_{j}=b_{i} \text { for } i \in E . \\
&= \sum_{i=1}^{m} b_{i} y_{i} \\
&= b^{T} y .
\end{aligned}
$$

Systems of Equations and Inequalities

Let $g \in \mathbb{R}^{n}$ and $A \in \mathbb{R}^{m \times n}$.

Systems of Equations and Inequalities

Let $g \in \mathbb{R}^{n}$ and $A \in \mathbb{R}^{m \times n}$.
Question: Does there exist $x \in \mathbb{R}^{n}$ such that

$$
0 \leq x, \quad g^{\top} x<0, \quad \text { and } \quad A x=0 ?
$$

Systems of Equations and Inequalities

Let $g \in \mathbb{R}^{n}$ and $A \in \mathbb{R}^{m \times n}$.
Question: Does there exist $x \in \mathbb{R}^{n}$ such that

$$
0 \leq x, \quad g^{\top} x<0, \quad \text { and } \quad A x=0 ?
$$

We answer this question by considering the following LP.

$$
\begin{array}{ll}
\underset{\operatorname{minimize}}{\min x} & g^{T} \\
\text { subject to } & A x=0,0 \leq x .
\end{array}
$$

Systems of Equations and Inequalities

Let $g \in \mathbb{R}^{n}$ and $A \in \mathbb{R}^{m \times n}$.
Question: Does there exist $x \in \mathbb{R}^{n}$ such that

$$
0 \leq x, \quad g^{\top} x<0, \quad \text { and } \quad A x=0 ?
$$

We answer this question by considering the following LP.

$$
\begin{array}{ll}
\underset{\operatorname{minimize}}{\min x} \\
\text { subject to } & A x=0,0 \leq x .
\end{array}
$$

If the answer to the above question is Yes, then the optimal value in this LP is $-\infty$.

Systems of Equations and Inequalities

Let $g \in \mathbb{R}^{n}$ and $A \in \mathbb{R}^{m \times n}$.
Question: Does there exist $x \in \mathbb{R}^{n}$ such that

$$
0 \leq x, \quad g^{\top} x<0, \quad \text { and } \quad A x=0 ?
$$

We answer this question by considering the following LP.

$$
\begin{array}{ll}
\underset{\operatorname{minimize}}{\min x} \\
\text { subject to } & A x=0,0 \leq x
\end{array}
$$

If the answer to the above question is Yes, then the optimal value in this LP is $-\infty$.

What does this say about the dual to this LP?

Systems of Equations and Inequalities

The dual to the LP

$$
\begin{array}{ll}
\operatorname{maximize} & -g^{T} x \\
\text { subject to } & A x=0,0 \leq x
\end{array}
$$

is

$$
\begin{array}{ll}
\operatorname{minimize} & 0 \\
\text { subject to } & A^{T} y \geq-g
\end{array}
$$

What is the relationship between these two LPs?

A Theorem of the Alternative

Theorem: Either there exists a solution $x \in \mathbb{R}^{n}$ to the system

$$
0 \leq x, \quad g^{T} x<0, \quad \text { and } \quad A x=0
$$

or there exits a solution $y \in \mathbb{R}^{m}$ to the system

$$
0 \leq g+A^{T} y
$$

but not both.

Farkas Lemma (1902)

Lemma:

Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$. Then either

$$
\text { there exists } x \in \mathbb{R}^{n} \text { such that } 0 \leq x \text { and } A x=b
$$

or
there exists $y \in \mathbb{R}^{m}$ such that $0 \leq A^{T} y$ and $b^{T} y<0$, but not both.

