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The Dual Simplex Algorithm

P maximize −4x1 − 2x2 − x3
subject to −x1 − x2 + 2x3 ≤ −3

−4x1 − 2x2 + x3 ≤ −4
x1 + x2 − 4x3 ≤ 2

0 ≤ x1, x2, x3

D minimize −3y1 − 4y2 + 2y3
subject to −y1 − 4y2 + y3 ≥ −4

−y1 − 2y2 + y3 ≥ −2
2y1 + y2 − 4y3 ≥ −1

0 ≤ y1, y2, y3

-1 -1 2 1 0 0 -3
-4 -2 1 0 1 0 -4
1 1 -4 0 0 1 2

-4 -2 -1 0 0 0 0

Not
primal

feasible.

Dual feasible!

The dual has feasible origin.
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The Dual Simplex Algorithm

The tableau below is said to be dual feasible because the objective row
coefficients are all non-positive, but it is not primal feasible.

-1 -1 2 1 0 0 -3
-4 -2 1 0 1 0 -4
1 1 -4 0 0 1 2

-4 -2 -1 0 0 0 0

A tableau is optimal if and only if it is both primal feasible and dual feasible.

Can we design a pivot for this tableau that tries to move it toward primal
feasibility while retaining dual feasibility?
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The Dual Simplex Algorithm

D
minimize −3y1 − 4y2 + 2y3
subject to −y1 − 4y2 + y3 ≥ −4

−y1 − 2y2 + y3 ≥ −2
2y1 + y2 − 4y3 ≥ −1

0 ≤ y1, y2, y3

−1 −1 2 1 0 0 −3
−4 −2 1 0 1 0 −4

1 1 −4 0 0 1 2

−4 −2 −1 0 0 0 0

dual
objective
coefficients

Dual variables
↑ ↑ ↑
y1 y2 y3

Increasing y1 decreases the value of the dual objective.
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The Dual Simplex Algorithm

Increasing y1 means we pivot on row 1.

−1 −1 2 1 0 0 −3

← pivot row

−4 −2 1 0 1 0 −4
1 1 −4 0 0 1 2
−4 −2 −1 0 0 0 0

4/1 2/1 ratios
By how much can we increase the value of y1?

ratio
− y1 − 4y2 + y3 ≥ −4 4/1
− y1 − 2y2 + y3 ≥ −2 2/1

2y1 + y2 − 4y3 ≥ −1
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The Dual Simplex Algorithm

pivot
column
↓

-1 -1 2 1 0 0 -3

← pivot row

-4 -2 1 0 1 0 -4
1 1 -4 0 0 1 2

-4 -2 -1 0 0 0 0

Any row having a negative rhs is a candidate pivot row.

Form the ratios with the negative entries in pivot row.

The pivot column is given by the smallest ratio.
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The Dual Simplex Algorithm
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-2 0 -5 -2 0 0 6
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The Dual Simplex Algorithm
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The Dual Simplex Algorithm

1 1 -2 -1 0 0 3
-2 0 -3 -2 1 0 2

0 0 -2 1 0 1 -1 ← pivot row
-2 0 -5 -2 0 0 6
1 1 0 -2 0 -1 4

-2 0 0 -7/2 1 -3/2 7/2
0 0 1 -1/2 0 -1/2 1/2

-2 0 0 -9/2 0 -5/2 17/2

optimal
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The Dual Simplex Algorithm

1 1 0 -2 0 -1 4
-2 0 0 -7/2 1 -3/2 7/2
0 0 1 -1/2 0 -1/2 1/2

-2 0 0 -9/2 0 -5/2 17/2 optimal

 x1
x2
x3

 =

 0
4

1/2

 and

 y1
y2
y3

 =

 9/2
0

5/2

 ,

Optimal value = −17/2.
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The Dual Simplex Algorithm

Apply the dual simplex algorithm to the following problem.

P maximize −4x1 − 2x2 − x3
subject to − x1 − x2 + 2x3 ≤ −3

−4x1 − 2x2 + x3 ≤ −4
x1 + x2 − x3 ≤ 2

0 ≤ x1, x2, x3 .
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The Dual Simplex Algorithm

-1 -1 2 1 0 0 -3 ← pivot row
-4 -2 1 0 1 0 -4
1 1 -1 0 0 1 2

-4 -2 -1 0 0 0 0

1 1 -2 -1 0 0 3
-2 0 -3 -2 1 0 2
0 0 1 1 0 1 -1

← pivot row

-2 0 -5 -2 0 0 6

No negative entry in the pivot row!
What does this mean?

The dual problem is unbounded.
What can you say about the primal problem?
The primal is necessarily infeasible by the Weak Duality Theorem.
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The Dual Simplex Algorithm

Solve the following LP using the dual simplex algorithm.

maximize −4x1 − 3x2 − 2x3
subject to x1 − x3 ≤ −1

−x1 − x2 ≤ −2
x1 − x2 − 2x3 ≤ 0
0 ≤ x1, x2, x3
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