Math 407A: Linear Optimization

Lecture 12: The Geometry of Linear Programming

Math Dept, University of Washington
(1) The Geometry of Linear Programming

- Hyperplanes
- Convex Polyhedra
- Vertices
(2) The Geometry of Degeneracy
(3) The Geometry of Duality

The Geometry of Linear Programming

Hyperplanes

Definition: A hyperplane in \mathbb{R}^{n} is any set of the form

$$
H(a, \beta)=\left\{x: a^{T} x=\beta\right\}
$$

where $a \in \mathbb{R}^{n} \backslash\{0\}$ and $\beta \in \mathbb{R}$.

The Geometry of Linear Programming

Hyperplanes

Definition: A hyperplane in \mathbb{R}^{n} is any set of the form

$$
H(a, \beta)=\left\{x: a^{T} x=\beta\right\}
$$

where $a \in \mathbb{R}^{n} \backslash\{0\}$ and $\beta \in \mathbb{R}$.

Fact: $H \subset \mathbb{R}^{n}$ is a hyperplane if and only if the set

$$
H-x_{0}=\left\{x-x_{0}: x \in H\right\}
$$

where $x_{0} \in H$ is a subspace of \mathbb{R}^{n} of dimension $(n-1)$.

Hyperplanes

What are the hyperplanes in \mathbb{R} ?

Hyperplanes

What are the hyperplanes in \mathbb{R} ? Points

Hyperplanes

What are the hyperplanes in \mathbb{R} ? Points

What are the hyperplanes in \mathbb{R}^{2} ?

Hyperplanes

What are the hyperplanes in \mathbb{R} ? Points

What are the hyperplanes in \mathbb{R}^{2} ? Lines

Hyperplanes

What are the hyperplanes in \mathbb{R} ? Points

What are the hyperplanes in \mathbb{R}^{2} ? Lines

What are the hyperplanes in \mathbb{R}^{3} ?

Hyperplanes

What are the hyperplanes in \mathbb{R} ? Points

What are the hyperplanes in \mathbb{R}^{2} ? Lines

What are the hyperplanes in \mathbb{R}^{3} ? Planes

Hyperplanes

What are the hyperplanes in \mathbb{R} ? Points

What are the hyperplanes in \mathbb{R}^{2} ? Lines

What are the hyperplanes in \mathbb{R}^{3} ? Planes

What are the hyperplanes in \mathbb{R}^{n} ?

Hyperplanes

What are the hyperplanes in \mathbb{R} ? Points

What are the hyperplanes in \mathbb{R}^{2} ? Lines

What are the hyperplanes in \mathbb{R}^{3} ? Planes

What are the hyperplanes in \mathbb{R}^{n} ?
Translates of $(n-1)$ dimensional subspaces.

Hyperplanes

Every hyperplane divides the space in half.

$$
H(a, \beta)=\left\{x: a^{T} x=\beta\right\}
$$

Hyperplanes

Every hyperplane divides the space in half. This division defines two closed half-spaces.

$$
H(a, \beta)=\left\{x: a^{T} x=\beta\right\}
$$

Hyperplanes

Every hyperplane divides the space in half. This division defines two closed half-spaces.

The two closed half-spaces associated with the hyperplane

$$
H(a, \beta)=\left\{x: a^{T} x=\beta\right\}
$$

Hyperplanes

Every hyperplane divides the space in half. This division defines two closed half-spaces.

The two closed half-spaces associated with the hyperplane

$$
H(a, \beta)=\left\{x: a^{T} x=\beta\right\}
$$

are

$$
H_{+}(a, \beta)=\left\{x \in \mathbb{R}^{n}: a^{T} x \geq \beta\right\}
$$

Hyperplanes

Every hyperplane divides the space in half. This division defines two closed half-spaces.

The two closed half-spaces associated with the hyperplane

$$
H(a, \beta)=\left\{x: a^{T} x=\beta\right\}
$$

are

$$
H_{+}(a, \beta)=\left\{x \in \mathbb{R}^{n}: a^{T} x \geq \beta\right\}
$$

and

$$
H_{-}(a, \beta)=\left\{x \in \mathbb{R}^{n}: a^{T} x \leq \beta\right\} .
$$

Intersections of Closed Half-Spaces

Consider the constraint region to an LP

$$
\Omega=\{x: A x \leq b, 0 \leq x\} .
$$

Intersections of Closed Half-Spaces

Consider the constraint region to an LP

$$
\Omega=\{x: A x \leq b, 0 \leq x\} .
$$

Define the half-spaces

$$
H_{j}=\left\{x: e_{j}^{T} x \geq 0\right\} \quad \text { for } j=1, \ldots, n
$$

and

$$
H_{n+i}=\left\{x: a_{i}^{T} . x \leq b_{i}\right\} \quad \text { for } i=1, \ldots, m,
$$

where a_{i}. is the i th row of A.

Intersections of Closed Half-Spaces

Consider the constraint region to an LP

$$
\Omega=\{x: A x \leq b, 0 \leq x\} .
$$

Define the half-spaces

$$
H_{j}=\left\{x: e_{j}^{T} x \geq 0\right\} \quad \text { for } j=1, \ldots, n
$$

and

$$
H_{n+i}=\left\{x: a_{i}^{T} . x \leq b_{i}\right\} \quad \text { for } i=1, \ldots, m,
$$

where a_{i}. is the i th row of A.
Then

$$
\Omega=\bigcap_{k=1}^{n+m} H_{k} .
$$

Intersections of Closed Half-Spaces

Consider the constraint region to an LP

$$
\Omega=\{x: A x \leq b, 0 \leq x\} .
$$

Define the half-spaces

$$
H_{j}=\left\{x: e_{j}^{T} x \geq 0\right\} \quad \text { for } j=1, \ldots, n
$$

and

$$
H_{n+i}=\left\{x: a_{i}^{T} . x \leq b_{i}\right\} \quad \text { for } i=1, \ldots, m,
$$

where a_{i}. is the i th row of A.
Then

$$
\Omega=\bigcap_{k=1}^{n+m} H_{k} .
$$

That is, the constraint region of an LP is the intersection of finitely many closed half-spaces.

Convex Polyhedra

Definition: Any subset of \mathbb{R}^{n} that can be represented as the intersection of finitely many closed half spaces is called a convex polyhedron.

Convex Polyhedra

Definition: Any subset of \mathbb{R}^{n} that can be represented as the intersection of finitely many closed half spaces is called a convex polyhedron.

If a convex polyhedron in \mathbb{R}^{n} is contained within a set of the form

$$
\{x \mid \ell \leq x \leq u\}
$$

where $\ell, u \in \mathbb{R}^{n}$ with $\ell \leq u$, then it is called a convex polytope.

Convex Polyhedra

Definition: Any subset of \mathbb{R}^{n} that can be represented as the intersection of finitely many closed half spaces is called a convex polyhedron.

If a convex polyhedron in \mathbb{R}^{n} is contained within a set of the form

$$
\{x \mid \ell \leq x \leq u\}
$$

where $\ell, u \in \mathbb{R}^{n}$ with $\ell \leq u$, then it is called a convex polytope.

A linear program is simply the problem of either maximizing or minimizing a linear function over a convex polyhedron.

Convex Polyhedra

Definition: Any subset of \mathbb{R}^{n} that can be represented as the intersection of finitely many closed half spaces is called a convex polyhedron.
If a convex polyhedron in \mathbb{R}^{n} is contained within a set of the form

$$
\{x \mid \ell \leq x \leq u\}
$$

where $\ell, u \in \mathbb{R}^{n}$ with $\ell \leq u$, then it is called a convex polytope.

A linear program is simply the problem of either maximizing or minimizing a linear function over a convex polyhedron.

We now develop the geometry of convex polyhedra.

Convex sets

Fact: Given any two points in \mathbb{R}^{n}, say x and y, the line segment connecting them is given by

$$
[x, y]=\{(1-\lambda) x+\lambda y: 0 \leq \lambda \leq 1\}
$$

Convex sets

Fact: Given any two points in \mathbb{R}^{n}, say x and y, the line segment connecting them is given by

$$
[x, y]=\{(1-\lambda) x+\lambda y: 0 \leq \lambda \leq 1\} .
$$

Definition: A subset $C \in \mathbb{R}^{n}$ is said to be convex if $[x, y] \subset C$ whenever $x, y \in C$.

Convex sets

Fact: Given any two points in \mathbb{R}^{n}, say x and y, the line segment connecting them is given by

$$
[x, y]=\{(1-\lambda) x+\lambda y: 0 \leq \lambda \leq 1\} .
$$

Definition: A subset $C \in \mathbb{R}^{n}$ is said to be convex if $[x, y] \subset C$ whenever $x, y \in C$.

Fact: A convex polyhedron is a convex set.

Example

$$
\begin{array}{rcr}
c_{1} & : \quad-x_{1}-x_{2} \leq-2 \\
c_{2} & : & 3 x_{1}-4 x_{2} \leq 0 \\
c_{3} & : & -x_{1}+3 x_{2} \leq 6
\end{array}
$$

Example

The vertices are $v_{1}=\left(\frac{8}{7}, \frac{6}{7}\right), v_{2}=(0,2)$, and $v_{3}=\left(\frac{24}{5}, \frac{18}{5}\right)$.

Vertices

Definition: Let C be a convex polyhedron. We say that $x \in C$ is a vertex of C if whenever $x \in[u, v]$ for some $u, v \in C$, it must be the case that either $x=u$ or $x=v$.

Vertices

Definition: Let C be a convex polyhedron. We say that $x \in C$ is a vertex of C if whenever $x \in[u, v]$ for some $u, v \in C$, it must be the case that either $x=u$ or $x=v$.

The Fundamental Representation Theorem for Vertices

Let $T=\left(t_{i j}\right)_{m \times n}, g \in \mathbb{R}^{m}$, and consider the convex polyhedron $C:=\left\{x \in \mathbb{R}^{n} \mid T x \leq g\right\}$. A point $x \in C$ is a vertex of C if and only if there exist an index set $\mathcal{I} \subset\{1, \ldots, m\}$ such that x is the unique solution to the system of equations

$$
\sum_{j=1}^{n} t_{i j} x_{j}=g_{i} \quad i \in \mathcal{I}
$$

Moreover, if x is a vertex, then one can take $|\mathcal{I}|=n$, where $|\mathcal{I}|$ denotes the number of elements in \mathcal{I}.

Observations

When does the system of equations

$$
\sum_{j=1}^{n} t_{i j} x_{j}=g_{i} \quad i \in \mathcal{I}
$$

have a unique solution?

Observations

When does the system of equations

$$
\sum_{j=1}^{n} t_{i j} x_{j}=g_{i} \quad i \in \mathcal{I}
$$

have a unique solution?
$|\mathcal{I}| \geq n$; otherwise, one solution implies infinitely many solutions.

Observations

When does the system of equations

$$
\sum_{j=1}^{n} t_{i j} x_{j}=g_{i} \quad i \in \mathcal{I}
$$

have a unique solution?
$|\mathcal{I}| \geq n$; otherwise, one solution implies infinitely many solutions.
If $|\mathcal{I}|>n$, we can select a subset $\mathcal{R} \subset \mathcal{I}$ of the rows T_{i}. of T so that the set of vectors $\left\{T_{i} . \mid i \in \mathcal{R}\right\}$ form a basis of the row space of T. Then $|\mathcal{R}|=n$ and x is the unique solution to

$$
\sum_{j=1}^{n} t_{i j} x_{j}=g_{i} \quad i \in \mathcal{R}
$$

Vertices

Corollary: A point x in the convex polyhedron described by the system of inequalities

$$
A x \leq b \quad \text { and } \quad 0 \leq x,
$$

where $A=\left(a_{i j}\right)_{m \times n}$, is a vertex of this polyhedron if and only if there exist index sets $\mathcal{I} \subset\{1, \ldots, m\}$ and $\mathcal{J} \subset\{1, \ldots, n\}$ with $|\mathcal{I}|+|\mathcal{J}|=n$ such that x is the unique solution to the system of equations

$$
\begin{aligned}
\sum_{j=1}^{n} a_{i j} x_{j} & =b_{i} \quad i \in \mathcal{I}, \quad \text { and } \\
x_{j} & =0 \quad j \in \mathcal{J}
\end{aligned}
$$

Example

$$
\begin{array}{rlr}
c_{1}: & -x_{1}-x_{2} \leq-2 \\
c_{2}: & 3 x_{1}-4 x_{2} \leq 0 \\
c_{3} & : & -x_{1}+3 x_{2} \leq 6
\end{array}
$$

Example

$$
\begin{array}{rlr}
c_{1}: & -x_{1}-x_{2} \leq-2 \\
c_{2}: & 3 x_{1}-4 x_{2} \leq 0 \\
c_{3} & : & -x_{1}+3 x_{2} \leq 6
\end{array}
$$

(a)The vertex $v_{1}=\left(\frac{8}{7}, \frac{6}{7}\right)$ is given as the solution to the system

$$
\begin{aligned}
-x_{1}-x_{2} & =-2 \\
3 x_{1}-4 x_{2} & =0,
\end{aligned}
$$

Example

$$
\begin{array}{rlr}
c_{1}: & -x_{1}-x_{2} \leq-2 \\
c_{2}: & 3 x_{1}-4 x_{2} \leq 0 \\
c_{3}: & -x_{1}+3 x_{2} \leq 6
\end{array}
$$

(b)The vertex $v_{2}=(0,2)$ is given as the solution to the system

$$
\begin{aligned}
-x_{1}-x_{2} & =-2 \\
-x_{1}+3 x_{2} & =6
\end{aligned}
$$

Example

$$
\begin{array}{rlr}
c_{1}: & -x_{1}-x_{2} \leq-2 \\
c_{2}: & 3 x_{1}-4 x_{2} \leq 0 \\
c_{3}: & -x_{1}+3 x_{2} \leq 6
\end{array}
$$

(c)The vertex $v_{3}=\left(\frac{24}{5}, \frac{18}{5}\right)$ is given as the solution to the system

$$
\begin{aligned}
3 x_{1}-4 x_{2} & =0 \\
-x_{1}+3 x_{2} & =6
\end{aligned}
$$

Application to LPs in Standard Form

$$
\begin{array}{rlr}
\sum_{j=1}^{n} a_{i j} x_{j} & \leq b_{i} & i=1, \ldots, m \\
0 & \leq x_{j} & j=1, \ldots, n
\end{array}
$$

The associated slack variables:

$$
x_{n+i}=b_{i}-\sum_{j=1}^{n} a_{i j} x_{j} \quad i=1, \ldots, m
$$

$$
4
$$

Application to LPs in Standard Form

$$
\begin{array}{rlr}
\sum_{j=1}^{n} a_{i j} x_{j} & \leq b_{i} & i=1, \ldots, m \\
0 & \leq x_{j} & j=1, \ldots, n
\end{array}
$$

The associated slack variables:

$$
x_{n+i}=b_{i}-\sum_{j=1}^{n} a_{i j} x_{j} \quad i=1, \ldots, m
$$

Let $\bar{x}=\left(\bar{x}_{1}, \ldots, \bar{x}_{n+m}\right)$ be any solution to the system $\boldsymbol{\%}$.

$$
\left.\mathcal{J}=\left\{j \in \subset\{1, \ldots, n\} \mid \bar{x}_{j}=0\right\} \quad \mathcal{I}=\left\{j \in\{1, \ldots, m\} \mid \bar{x}_{n+i}=0\right\}\right\}
$$

Application to LPs in Standard Form

$$
\begin{array}{rlr}
\sum_{j=1}^{n} a_{i j} x_{j} & \leq b_{i} & i=1, \ldots, m \\
0 & \leq x_{j} & j=1, \ldots, n
\end{array}
$$

The associated slack variables:

$$
x_{n+i}=b_{i}-\sum_{j=1}^{n} a_{i j} x_{j} \quad i=1, \ldots, m
$$

Let $\bar{x}=\left(\bar{x}_{1}, \ldots, \bar{x}_{n+m}\right)$ be any solution to the system $\boldsymbol{\%}$.

$$
\left.\mathcal{J}=\left\{j \in \subset\{1, \ldots, n\} \mid \bar{x}_{j}=0\right\} \quad \mathcal{I}=\left\{j \in\{1, \ldots, m\} \mid \bar{x}_{n+i}=0\right\}\right\}
$$

Let $\widehat{x}=\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)$ be the values for the decision variables at \bar{x}.

Application to LPs in Standard Form

For each $j \in \mathcal{J} \subset\{1, \ldots, n\}, \bar{x}_{j}=0$, consequently the hyperplane

$$
H_{j}=\left\{x \in \mathbb{R}^{n}: e_{j}^{T} x=0\right\}
$$

is active at \widehat{x}, i.e., $\widehat{x} \in H_{j}$.

Application to LPs in Standard Form

For each $j \in \mathcal{J} \subset\{1, \ldots, n\}, \bar{x}_{j}=0$, consequently the hyperplane

$$
H_{j}=\left\{x \in \mathbb{R}^{n}: e_{j}^{T} x=0\right\}
$$

is active at \widehat{x}, i.e., $\widehat{x} \in H_{j}$.

Similarly, for each $i \in \mathcal{I} \subset\{1,2, \ldots, m\}, \bar{x}_{n+i}=0$, and so the hyperplane

$$
H_{n+i}=\left\{x \in \mathbb{R}^{n}: \sum_{j=1}^{n} a_{i j} x_{j}=b_{i}\right\}
$$

is active at \widehat{x}, i.e., $\widehat{x} \in H_{n+i}$.

Application to LPs in Standard Form

What are the vertices of the system

$$
\begin{array}{rll}
\sum_{j=1}^{n} a_{i j} x_{j} & \leq b_{i} & i=1, \ldots, m \\
0 & \leq x_{j} & j=1, \ldots, n
\end{array}
$$

Application to LPs in Standard Form

What are the vertices of the system

$$
\begin{array}{rlr}
\sum_{j=1}^{n} a_{i j} x_{j} & \leq b_{i} & i=1, \ldots, m \\
0 & \leq x_{j} & j=1, \ldots, n
\end{array}
$$

$\widehat{x}=\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)$ is a vertex of this polyhedron if and only if there exist index sets $\mathcal{I} \subset\{1, \ldots, m\}$ and $\mathcal{J} \in\{1, \ldots, n\}$ with $|\mathcal{I}|+|\mathcal{J}|=n$ such that \widehat{x} is the unique solution to the systerm of equations

$$
\sum_{j=1}^{n} a_{i j} x_{j}=b_{i} \quad i \in \mathcal{I}, \quad \text { and } \quad x_{j}=0 \quad j \in \mathcal{J} .
$$

Application to LPs in Standard Form

What are the vertices of the system

$$
\begin{array}{rlr}
\sum_{j=1}^{n} a_{i j} x_{j} & \leq b_{i} & i=1, \ldots, m \\
0 & \leq x_{j} & j=1, \ldots, n
\end{array}
$$

$\widehat{x}=\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)$ is a vertex of this polyhedron if and only if there exist index sets $\mathcal{I} \subset\{1, \ldots, m\}$ and $\mathcal{J} \in\{1, \ldots, n\}$ with $|\mathcal{I}|+|\mathcal{J}|=n$ such that \widehat{x} is the unique solution to the systerm of equations

$$
\sum_{j=1}^{n} a_{i j} x_{j}=b_{i} \quad i \in \mathcal{I}, \quad \text { and } \quad x_{j}=0 \quad j \in \mathcal{J} .
$$

In this case $\bar{x}_{m+i}=0$ for $i \in \mathcal{I}$ (slack variables).

Vertices

That is, \widehat{x} is a vertex of the polyhedral constraints to an LP in standard form if and only if a total of n of the variables $\left\{\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n+m}\right\}$ take the value zero, while the value of the remaining m variables are uniquely determined by setting these n variables to the value zero.

Vertices and BFSs

That is, \widehat{x} is a vertex of the polyhedral constraints to an LP in standard form if and only if a total of n of the variables $\left\{\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n+m}\right\}$ take the value zero, while the value of the remaining m variables are uniquely determined by setting these n variables to the value zero.

But then, \widehat{x} is a vertex if and only if it is a BFS!

Vertices and BFSs

That is, \widehat{x} is a vertex of the polyhedral constraints to an LP in standard form if and only if a total of n of the variables $\left\{\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n+m}\right\}$ take the value zero, while the value of the remaining m variables are uniquely determined by setting these n variables to the value zero.

But then, \widehat{x} is a vertex if and only if it is a BFS!

Therefore, one can geometrically interpret the simplex algorithm as a procedure moving from one vertex of the constraint polyhedron to another with higher objective value until the optimal solution exists.

Vertices and BFSs

The simplex algorithm terminates finitely since every vertex is connected to every other vertex by a path of adjacent vertices on the surface of the polyhedron.

Example

$$
\begin{array}{lr}
\text { maximize } & 3 x_{1}+4 x_{2} \\
\text { subject to } & -2 x_{1}+x_{2} \leq 2 \\
2 x_{1}-x_{2} \leq 4 \\
& 0 \leq x_{1} \leq 3 \\
0 \leq x_{2} \leq 4
\end{array}
$$

Example

								0		0	0	0	1		vertex
-2	1						vertex	0	0	1	1	0	0	6	v_{3}
2	-1	0	1	0	0	3	v_{1}		0	$\frac{1}{2}$	0	1	$-\frac{1}{2}$	2	$(1,4)$
0	0 1	0	0	1	0 1	3	$(0,0)$	1	0	${ }_{-\frac{1}{2}}$	0	0	$\begin{array}{r}-\frac{1}{2} \\ \frac{1}{2} \\ \hline\end{array}$	1	
3	4	0	0	0	0	0		0	0	$\frac{3}{2}$	0	0	$\frac{-11}{2}$	-19	
-2	1	1	0	0	0	2	vertex								
0	0	1	1	0	0	6	V_{2}	0	1	0	0	0	1	4	vertex
1	0	0	0	1	0	3	$(0,2)$	0	0	0	1	-2	1	2	
2	0	-1	0	0	1	2		0	0	1	0	2	-1	4	$(3,4)$
11	0	-4	0	0	0	-8		1	0	0	0	1	0	3	

Vertex Pivoting

The BSFs in the simplex algorithm are vertices, and every vertex of the polyhedral constraint region is a BFS.

Phase I of the simplex algorithm is a procedure for finding a vertex of the constraint region, while Phase II is a procedure for moving between adjacent vertices successively increasing the value of the objective function.

The Geometry of Degeneracy

Let $\Omega=\{x: A x \leq b, 0 \leq x\}$ be the constraint region for an LP in standard form.

The Geometry of Degeneracy

Let $\Omega=\{x: A x \leq b, 0 \leq x\}$ be the constraint region for an LP in standard form. Ω is the intersection of the hyperplanes

$$
H_{j}=\left\{x: e_{j}^{T} x \geq 0\right\} \quad \text { for } j=1, \ldots, n
$$

and

$$
H_{n+i}=\left\{x: \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}\right\} \quad \text { for } i=1, \ldots, m
$$

The Geometry of Degeneracy

Let $\Omega=\{x: A x \leq b, 0 \leq x\}$ be the constraint region for an LP in standard form. Ω is the intersection of the hyperplanes

$$
H_{j}=\left\{x: e_{j}^{T} x \geq 0\right\} \quad \text { for } j=1, \ldots, n
$$

and

$$
H_{n+i}=\left\{x: \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}\right\} \quad \text { for } i=1, \ldots, m
$$

A basic feasible solution (vertex) is said to be degenerate if one or more of the basic variables is assigned the value zero. This implies that more than n of the hyperplanes $H_{k}, k=1,2, \ldots, n+m$ are active at this vertex.

Example

$$
\begin{array}{lr}
3 x_{1}+4 x_{2} \\
\text { maximize } & -2 x_{1}+x_{2} \leq 2 \\
\text { subject to } & 2 x_{1}-x_{2} \leq 4 \\
-x_{1}+x_{2} \leq 3 \\
& x_{1}+x_{2} \leq 7 \\
0 \leq x_{1} \leq 3, \\
& 0 \leq x_{2} \leq 4 .
\end{array}
$$

Example

$$
\begin{array}{lr}
3 x_{1}+4 x_{2} \\
\text { maximize } & -2 x_{1}+x_{2} \leq 2 \\
\text { subject to } & 2 x_{1}-x_{2} \leq 4 \\
-x_{1}+x_{2} \leq 3 \\
& x_{1}+x_{2} \leq 7 \\
0 \leq x_{1} \leq 3, \\
& 0 \leq x_{2} \leq 4 .
\end{array}
$$

Example

-2	(1)	1	0	0	0	0	0	2	vertex
2	-1	0	1	0	0	0	0	4	$V_{1}=(0,0)$
-1	1	0	0	1	0	0	0	3	
1	1	0	0	0	1	0	0	7	
1	0	0	0	0	0	1	0	3	
0	1	0	0	0	0	0	1	4	
3	4	0	0	0	0	0	0	0	

Example

-2	(1)	1	0	0	0	0	0	2	vertex
2	-1	0	1	0	0	0	0	4	$V_{1}=(0,0)$
-1	1	0	0	1	0	0	0	3	
1	1	0	0	0	1	0	0	7	
1	0	0	0	0	0	1	0	3	
0	1	0	0	0	0	0	1	4	
3	4	0	0	0	0	0	0	0	
-2	1	1	0	0	0	0	0	2	vertex
0	0	1	1	0	0	0	0	6	$V_{2}=(0,2)$
(1)	0	-1	0	1	0	0	0	1	
3	0	-1	0	0	1	0	0	5	
1	0	0	0	0	0	1	0	3	
2	0	-1	0	0	0	0	1	2	
11	0	-4	0	0	0	0	0	-8	

Example

-2	1	1	0	0	0	0	0	2	vertex
0	0	1	1	0	0	0	0	6	$V_{2}=(0,2)$
(1)	0	-1	0	1	0	0	0	1	
3	0	-1	0	0	1	0	0	5	
1	0	0	0	0	0	1	0	3	
2	0	-1	0	0	0	0	1	2	
11	0	-4	0	0	0	0	0	-8	

Example

-2	1	1	0	0	0	0	0	2	vertex
0	0	1	1	0	0	0	0	6	$V_{2}=(0,2)$
(1)	0	-1	0	1	0	0	0	1	
3	0	-1	0	0	1	0	0	5	
1	0	0	0	0	0	1	0	3	
2	0	-1	0	0	0	0	1	2	
11	0	-4	0	0	0	0	0	-8	
0	1	-1	0	2	0	0	0	4	vertex
0	0	1	1	0	0	0	0	6	$V_{3}=(1,4)$
1	0	-1	0	1	0	0	0	1	
0	0	2	0	-3	1	0	0	2	
0	0	1	0	-1	0	1	0	2	
0	0	1	0	-2	0	0	1	0	degenerate
0	0	7	0	-11	0	0	0	-19	

Example

0	1	-1	0	2	0	0	0	4	vertex
0	0	1	1	0	0	0	0	6	$V_{3}=(1,4)$
1	0	-1	0	1	0	0	0	1	
0	0	2	0	-3	1	0	0	2	
0	0	1	0	-1	0	1	0	2	
0	0	1	0	-2	0	0	1	0	degenerate
0	0	7	0	-11	0	0	0	-19	

Example

0	1	-1	0	2	0	0	0	4	vertex
0	0	1	1	0	0	0	0	6	$V_{3}=(1,4)$
1	0	-1	0	1	0	0	0	1	
0	0	2	0	-3	1	0	0	2	
0	0	1	0	-1	0	1	0	2	
0	0	1	0	-2	0	0	1	0	degenerate
0	0	7	0	-11	0	0	0	-19	
0	1	0	0	0	0	0	1	4	vertex
0	0	0	1	2	0	0	1	6	$V_{3}=(1,4)$
1	0	0	0	-1	0	0	1	1	
0	0	0	0	1	1	0	-2	2	
0	0	0	0	1	0	1	-1	2	
0	0	1	0	-2	0	0	1	0	degenerate
0	0	0	0	3	0	0	-7	-19	

Example

0	1	0	0	0	0	0	1	4	vertex
0	0	0	1	2	0	0	1	6	$V_{3}=(1,4)$
1	0	0	0	-1	0	0	1	1	
0	0	0	0	1	1	0	-2	2	
0	0	0	0	1	0	1	-1	2	
0	0	1	0	-2	0	0	1	0	degenerate
0	0	0	0	3	0	0	-7	-19	

Example

0	1	0	0	0	0	0	1	4	vertex
0	0	0	1	2	0	0	1	6	$V_{3}=(1,4)$
1	0	0	0	-1	0	0	1	1	
0	0	0	0	1	1	0	-2	2	
0	0	0	0	1	0	1	-1	2	
0	0	1	0	-2	0	0	1	0	degenerate
0	0	0	0	3	0	0	-7	-19	
0	1	0	0	0	0	0	1	4	vertex
0	0	0	1	0	-2	0	5	2	$V_{4}=(3,4)$
1	0	0	0	0	1	0	-1	3	
0	0	0	0	1	1	0	-2	2	optimal
0	0	0	0	0	-1	1	1	0	degenerate
0	0	1	0	0	2	0	-3	4	
0	0	0	0	0	-3	0	-1	-25	

Degeneracy $=$ Multiple Representations of a Vertex

A degenerate tableau occurs when the associated BFS (or vertex) can be represented as the intersection point of more than one subsets of n active hyperplanes.

Degeneracy $=$ Multiple Representations of a Vertex

A degenerate tableau occurs when the associated BFS (or vertex) can be represented as the intersection point of more than one subsets of n active hyperplanes.

A degenerate pivot occurs when we move between two different representations of a vertex as the intersection of n hyperplanes.

Degeneracy $=$ Multiple Representations of a Vertex

A degenerate tableau occurs when the associated BFS (or vertex) can be represented as the intersection point of more than one subsets of n active hyperplanes.

A degenerate pivot occurs when we move between two different representations of a vertex as the intersection of n hyperplanes.

Cycling implies that we are cycling between different representations of the same vertex.

Degeneracy $=$ Multiple Representations of a Vertex

In the previous example, the third tableau represents the vertex $V_{3}=(1,4)$ as the intersection of the hyperplanes

$$
\begin{aligned}
-2 x_{1}+x_{2} & =2 \\
-x_{1}+x_{2} & =3 .
\end{aligned} \quad\left(\text { since } x_{3}=0\right) ~\left(\text { since } x_{5}=0\right) ~ \$
$$

and

Degeneracy $=$ Multiple Representations of a Vertex

In the previous example, the third tableau represents the vertex $V_{3}=(1,4)$ as the intersection of the hyperplanes

$$
\begin{aligned}
-2 x_{1}+x_{2} & =2 \\
-x_{1}+x_{2} & =3 .
\end{aligned} \quad\left(\text { since } x_{3}=0\right) ~\left(\text { since } x_{5}=0\right) ~ \$
$$

and

The third pivot brings us to the 4th tableau where the vertex $V_{3}=(1,4)$ is represented as the intersection of the hyperplanes

$$
\begin{aligned}
-x_{1}+x_{2} & =3 & & \left(\text { since } x_{5}=0\right) \\
x_{2} & =4 & & \left(\text { since } x_{8}=0\right) .
\end{aligned}
$$

and

Multiple Dual Optimal Solutions and Degeneracy

0	1	0	0	0	0	0	1	4	primal solution
0	0	0	1	0	-2	0	5	2	$v_{4}=(3,4)$
1	0	0	0	0	1	0	-1	3	
0	0	0	0	1	1	0	-2	2	dual
0	0	0	0	0	-1	1	1	0	solution
0	0	1	0	0	2	0	-3	4	$(0,0,0,3,0,1)$
0	0	0	0	0	-3	0	-1	-25	

Multiple Dual Optimal Solutions and Degeneracy

0	1	0	0	0	0	0	1	4	primal solution
0	0	0	1	0	-2	0	5	2	$v_{4}=(3,4)$
1	0	0	0	0	1	0	-1	3	
0	0	0	0	1	1	0	-2	2	dual
0	0	0	0	0	-1	1	1	0	solution
0	0	1	0	0	2	0	-3	4	$(0,0,0,3,0,1)$
0	0	0	0	0	-3	0	-1	-25	
0	1	0	0	0	0	0	0	4	primal solution
0	0	0	1	0	0	-2	3	2	$v 4=(3,4)$
1	0	0	0	0	0	1	0	3	
0	0	0	0	1	0	1	-1	2	dual
0	0	0	0	0	1	-1	-1	0	solution
0	0	1	0	0	0	2	-1	4	$(0,0,0,0,3,4)$
0	0	0	0	0	0	-3	-4	-25	

Multiple Dual Optima and Primal Degeneracy

Primal degeneracy in an optimal tableau indicates multiple optimal solutions to the dual which can be obtained with dual simplex pivots.

Multiple Dual Optima and Primal Degeneracy

Primal degeneracy in an optimal tableau indicates multiple optimal solutions to the dual which can be obtained with dual simplex pivots.

Dual degeneracy in an optimal tableau indicates multiple optimal primal solutions that can be obtained with primal simplex pivots.

Multiple Dual Optima and Primal Degeneracy

Primal degeneracy in an optimal tableau indicates multiple optimal solutions to the dual which can be obtained with dual simplex pivots.

Dual degeneracy in an optimal tableau indicates multiple optimal primal solutions that can be obtained with primal simplex pivots.

A tableau is said to be dual degenerate if there is a non-basic variable whose objective row coefficient is zero.

Multiple Primal Optima and Dual Degeneracy

50	0	0	100	0	1	-10	5	500	
2.5	1	0	2	0	0	-.1	.15	15	primal
-.5	0	0	0	1	0	0	-.05	15	solution
-1	0	1	-1	0	0	.1	-.1	10	$(0,15,10,0)$
-100	0	0	0	0	0	-10	-10	-11000	
.5	0	0	1	0	.01	-.1	.05	5	
1.5	1	0	0	0	-.02	.1	.05	5	primal
-.5	0	0	0	1	0	0	-.05	15	solution
-.5	0	1	0	0	.01	0	-.05	15	$(0,5,15,5)$
-100	0	0	0	0	0	-10	-10	-11000	

The Geometry of Duality

The Geometry of Duality

The normal to the hyperplane
$-x_{1}+2 x_{2}=4$
is $n_{1}=(-1,2)$.

The Geometry of Duality

The normal to the hyperplane
$-x_{1}+2 x_{2}=4$
is $n_{1}=(-1,2)$.
The normal to the hyperplane
$3 x_{1}-x_{2}=3$
is $n_{2}=(3,-1)$.

The Geometry of Duality

The objective normal

$$
c=(3,1)
$$

can be written as a non-negative linear combination of the active constraint normals

$$
n_{1}=(-1,2) \quad \text { and } \quad n_{2}=(3,-1)
$$

The Geometry of Duality

The objective normal

$$
c=(3,1)
$$

can be written as a non-negative linear combination of the active constraint normals

$$
\begin{gathered}
n_{1}=(-1,2) \text { and } n_{2}=(3,-1) . \\
c=y_{1} n_{1}+y_{2} n_{2},
\end{gathered}
$$

The Geometry of Duality

The objective normal

$$
c=(3,1)
$$

can be written as a non-negative linear combination of the active constraint normals

$$
\begin{gathered}
n_{1}=(-1,2) \text { and } n_{2}=(3,-1) \\
c=y_{1} n_{1}+y_{2} n_{2}
\end{gathered}
$$

Equivalently

$$
\begin{aligned}
\binom{3}{1} & =y_{1}\binom{-1}{2}+y_{2}\binom{3}{-1} \\
& =\left[\begin{array}{cc}
-1 & 3 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right] .
\end{aligned}
$$

The Geometry of Duality

-1	3	3
2	-1	1
1	-3	-3
0	5	7
1	-3	-3
0	1	$\frac{7}{5}$
1	0	$\frac{6}{5}$
0	1	$\frac{7}{5}$

The Geometry of Duality

$$
\begin{array}{rr|cc}
-1 & 3 & 3 & \\
2 & -1 & 1 & \\
\hline 1 & -3 & -3 & \\
0 & 5 & 7 & y_{1}=\frac{6}{5} \\
\hline 1 & -3 & -3 & y_{2}=\frac{7}{5} \\
0 & 1 & \frac{7}{5} & \\
\hline & & & \\
1 & 0 & \frac{6}{5} & \\
0 & 1 & \frac{7}{5} &
\end{array}
$$

The Geometry of Duality

$$
\begin{array}{rr|c}
-1 & 3 & 3 \\
2 & -1 & 1 \\
\hline 1 & -3 & -3 \\
0 & 5 & 7 \\
\hline 1 & -3 & -3 \\
0 & 1 & \frac{7}{5} \\
\hline & & \\
1 & 0 & \frac{6}{5} \\
0 & 1 & \frac{7}{5}
\end{array}
$$

We claim that $y=\left(\frac{6}{5}, \frac{7}{5}\right)$ is the optimal solution to the dual!

The Geometry of Duality

$$
\begin{array}{lll}
\mathcal{P} & & \\
\max & 3 x_{1}+x_{2} & \\
\text { s.t. } & -x_{1}+2 x_{2} & \leq 4 \\
& 3 x_{1}-x_{2} & \leq 3 \\
& 0 \leq x_{1}, & x_{2} .
\end{array}
$$

The Geometry of Duality

\mathcal{P}			\mathcal{D}		
\max	$3 x_{1}+x_{2}$		\min	$4 y_{1}+3 y_{2}$	
s.t.	$-x_{1}+2 x_{2}$	≤ 4	s.t.	$-y_{1}+3 y_{2}$	≥ 3
	$3 x_{1}-x_{2}$	≤ 3		$2 y_{1}-y_{2}$	≥ 1
	$0 \leq x_{1}$,	x_{2}.		$0 \leq y_{1}$,	y_{2}.

The Geometry of Duality

\mathcal{P}		\mathcal{D}			
max	$3 x_{1}+x_{2}$		\min	$4 y_{1}+3 y_{2}$	
s.t.	$-x_{1}+2 x_{2}$	≤ 4	s.t.	$-y_{1}+3 y_{2}$	≥ 3
	$3 x_{1}-x_{2}$	≤ 3		$2 y_{1}-y_{2}$	≥ 1
	$0 \leq x_{1}$,	x_{2}.		$0 \leq y_{1}$,	y_{2}.

Primal Solution
$(2,3)$

The Geometry of Duality

\mathcal{P}						
max	$3 x_{1}+x_{2}$			min	$4 y_{1}+3 y_{2}$	
s.t.	$-x_{1}+2 x_{2}$	≤ 4		s.t.	$-y_{1}+3 y_{2}$	≥ 3
	$3 x_{1}-x_{2}$	≤ 3			$2 y_{1}-y_{2}$	≥ 1
	$0 \leq x_{1}$,	x_{2}.			$0 \leq y_{1}$,	y_{2}.
Primal Solution $(2,3)$			- -		Dual Solution$(6 / 5,7 / 5)$	

The Geometry of Duality

\mathcal{P}		
\max	$3 x_{1}+x_{2}$	
s.t.	$-x_{1}+2 x_{2}$	≤ 4
	$3 x_{1}-x_{2}$	≤ 3
	$0 \leq x_{1}$,	x_{2}.

Primal Solution $\quad-\quad$ Dual Solution $(2,3)$

D

$$
\begin{array}{lll}
\min & 4 y_{1}+3 y_{2} & \\
\mathrm{s.t.} & -y_{1}+3 y_{2} & \geq 3 \\
& 2 y_{1}-y_{2} & \geq 1 \\
& 0 \leq y_{1}, & y_{2} .
\end{array}
$$

$$
(6 / 5,7 / 5)
$$

$$
\text { Optimal Value }=9
$$

Geometric Duality Theorem

Consider the $L P(\mathcal{P}) \max \left\{c^{T} x \mid A x \leq b, 0 \leq x\right\}$, where $A \in \mathbb{R}^{m \times n}$. Given a vector \bar{x} that is feasible for \mathcal{P}, define

$$
\mathcal{Z}(\bar{x})=\left\{j \in\{1,2, \ldots, n\}: \bar{x}_{j}=0\right\}, \mathcal{E}(\bar{x})=\left\{i \in\{1, \ldots, m\}: \sum_{j=1}^{n} a_{i j} \bar{x}_{j}=b_{i}\right\}
$$

The indices $\mathcal{Z}(\bar{x})$ and $\mathcal{E}(\bar{x})$ are the active indices at \bar{x} and correspond to the active hyperplanes at \bar{x}. Then \bar{x} solves \mathcal{P} if and only if there exist non-negative numbers r_{j}, $j \in \mathcal{Z}(\bar{x})$ and $\bar{y}_{i}, i \in \mathcal{E}(\bar{x})$ such that

$$
c=-\sum_{j \in \mathcal{Z}(\bar{x})} r_{j} e_{j}+\sum_{i \in \mathcal{E}(\bar{x})} \bar{y}_{i} a_{i} \bullet
$$

where for each $i=1, \ldots, m, a_{i \bullet}=\left(a_{i 1}, a_{i 2}, \ldots, a_{i n}\right)^{T}$ is the i th column of the matrix A^{T}, and, for each $j=1, \ldots, n, e_{j}$ is the j th unit coordinate vector. In addition, if \bar{x} is the solution to \mathcal{P}, then the vector $\bar{y} \in \mathbb{R}^{m}$ given by $\bar{y}_{i}=\left\{\begin{array}{ll}\bar{y}_{i} & \text { for } i \in \mathcal{E}(\bar{x}) \\ 0 & \text { otherwise }\end{array}, \quad\right.$ solves the dual problem.

Geometric Duality Theorem: Proof

First suppose that \bar{x} solves \mathcal{P}, and let \bar{y} solve \mathcal{D}.

Geometric Duality Theorem: Proof

First suppose that \bar{x} solves \mathcal{P}, and let \bar{y} solve \mathcal{D}.
The Complementary Slackness Theorem implies that
and

$$
\text { (I) } \bar{y}_{i}=0 \text { for } i \in\{1,2, \ldots, m\} \backslash \mathcal{E}(\bar{x}) \quad\left(\sum_{j=1}^{n} a_{i j} \bar{x}_{j}<b_{i}\right)
$$

$$
\text { (II) } \sum_{i=1}^{m} \bar{y}_{i} a_{i j}=c_{j} \text { for } j \in\{1, \ldots, n\} \backslash \mathcal{Z}(\bar{x}) \quad\left(0<\bar{x}_{j}\right)
$$

Geometric Duality Theorem: Proof

First suppose that \bar{x} solves \mathcal{P}, and let \bar{y} solve \mathcal{D}.
The Complementary Slackness Theorem implies that
and
(I) $\bar{y}_{i}=0$ for $i \in\{1,2, \ldots, m\} \backslash \mathcal{E}(\bar{x}) \quad\left(\sum_{j=1}^{n} a_{i j} \bar{x}_{j}<b_{i}\right)$

$$
\text { (II) } \sum_{i=1}^{m} \bar{y}_{i} a_{i j}=c_{j} \text { for } j \in\{1, \ldots, n\} \backslash \mathcal{Z}(\bar{x}) \quad\left(0<\bar{x}_{j}\right) \text {. }
$$

Define $r=A^{T} \bar{y}-c \geq 0$.

Geometric Duality Theorem: Proof

First suppose that \bar{x} solves \mathcal{P}, and let \bar{y} solve \mathcal{D}.
The Complementary Slackness Theorem implies that
and
(I) $\bar{y}_{i}=0$ for $i \in\{1,2, \ldots, m\} \backslash \mathcal{E}(\bar{x}) \quad\left(\sum_{j=1}^{n} a_{i j} \bar{x}_{j}<b_{i}\right)$

$$
\text { (II) } \sum_{i=1}^{m} \bar{y}_{i} a_{i j}=c_{j} \text { for } j \in\{1, \ldots, n\} \backslash \mathcal{Z}(\bar{x}) \quad\left(0<\bar{x}_{j}\right)
$$

Define $r=A^{T} \bar{y}-c \geq 0$. By (II), $r_{j}=0$ for $j \in\{1, \ldots, n\} \backslash \mathcal{Z}(\bar{x})$

Geometric Duality Theorem: Proof

First suppose that \bar{x} solves \mathcal{P}, and let \bar{y} solve \mathcal{D}.
The Complementary Slackness Theorem implies that
and
(I) $\bar{y}_{i}=0$ for $i \in\{1,2, \ldots, m\} \backslash \mathcal{E}(\bar{x}) \quad\left(\sum_{j=1}^{n} a_{i j} \bar{x}_{j}<b_{i}\right)$

$$
\text { (II) } \sum_{i=1}^{m} \bar{y}_{i} a_{i j}=c_{j} \text { for } j \in\{1, \ldots, n\} \backslash \mathcal{Z}(\bar{x}) \quad\left(0<\bar{x}_{j}\right)
$$

Define $r=A^{T} \bar{y}-c \geq 0$. By (II), $r_{j}=0$ for $j \in\{1, \ldots, n\} \backslash \mathcal{Z}(\bar{x})$, while

$$
(I I I) c_{j}=-r_{j}+\sum_{i=1}^{m} \bar{y}_{i} a_{i j} \text { for } j \in \mathcal{Z}(\bar{x}) .
$$

Geometric Duality Theorem: Proof

First suppose that \bar{x} solves \mathcal{P}, and let \bar{y} solve \mathcal{D}.
The Complementary Slackness Theorem implies that
and

$$
\text { (I) } \bar{y}_{i}=0 \text { for } i \in\{1,2, \ldots, m\} \backslash \mathcal{E}(\bar{x}) \quad\left(\sum_{j=1}^{n} a_{i j} \bar{x}_{j}<b_{i}\right)
$$

$$
\text { (II) } \sum_{i=1}^{m} \bar{y}_{i} a_{i j}=c_{j} \text { for } j \in\{1, \ldots, n\} \backslash \mathcal{Z}(\bar{x}) \quad\left(0<\bar{x}_{j}\right)
$$

Define $r=A^{T} \bar{y}-c \geq 0$. By (II), $r_{j}=0$ for $j \in\{1, \ldots, n\} \backslash \mathcal{Z}(\bar{x})$, while

$$
(I I I) c_{j}=-r_{j}+\sum_{i=1}^{m} \bar{y}_{i} a_{i j} \text { for } j \in \mathcal{Z}(\bar{x}) .
$$

(I), (II), and (III) gives

$$
c=-\sum_{j \in \mathcal{Z}(\bar{x})} r_{j} e_{j}+A^{T} \bar{y}=-\sum_{j \in \mathcal{Z}(\bar{x})} r_{j} e_{j}+\sum_{i \in \mathcal{E}(\bar{x})} \bar{y}_{i} a_{i} \cdot .
$$

Geometric Duality Theorem: Proof

Conversely, suppose \bar{x} is feasible for \mathcal{P} and $0 \leq r_{j}, j \in \mathcal{Z}(\bar{x})$ and $0 \leq \bar{y}_{i}, \quad i \in \mathcal{E}(\bar{x})$ satisfy

$$
c=-\sum_{j \in \mathcal{Z}(\bar{x})} r_{j} e_{j}+A^{T} \bar{y}=-\sum_{j \in \mathcal{Z}(\bar{x})} r_{j} e_{j}+\sum_{i \in \mathcal{E}(\bar{x})} \bar{y}_{i} a_{i}
$$

Geometric Duality Theorem: Proof

Conversely, suppose \bar{x} is feasible for \mathcal{P} and $0 \leq r_{j}, j \in \mathcal{Z}(\bar{x})$ and $0 \leq \bar{y}_{i}, i \in \mathcal{E}(\bar{x})$ satisfy

$$
c=-\sum_{j \in \mathcal{Z}(\bar{x})} r_{j} e_{j}+A^{T} \bar{y}=-\sum_{j \in \mathcal{Z}(\bar{x})} r_{j} e_{j}+\sum_{i \in \mathcal{E}(\bar{x})} \bar{y}_{i} a_{i} \bullet
$$

Set $\bar{y}_{i}=0 \notin \mathcal{E}(\bar{x})$ to obtain $\bar{y} \in \mathbb{R}^{m}$.

Geometric Duality Theorem: Proof

Conversely, suppose \bar{x} is feasible for \mathcal{P} and $0 \leq r_{j}, j \in \mathcal{Z}(\bar{x})$ and $0 \leq \bar{y}_{i}, \quad i \in \mathcal{E}(\bar{x})$ satisfy

$$
c=-\sum_{j \in \mathcal{Z}(\bar{x})} r_{j} e_{j}+A^{T} \bar{y}=-\sum_{j \in \mathcal{Z}(\bar{x})} r_{j} e_{j}+\sum_{i \in \mathcal{E}(\bar{x})} \bar{y}_{i} a_{i}
$$

Set $\bar{y}_{i}=0 \notin \mathcal{E}(\bar{x})$ to obtain $\bar{y} \in \mathbb{R}^{m}$. Then

$$
A^{T} \bar{y}=\sum_{i \in \mathcal{E}(\bar{x})} \bar{y}_{i} a_{i \bullet} \geq-\sum_{j \in \mathcal{Z}(\bar{x})} r_{j} e_{j}+\sum_{i \in \mathcal{E}(\bar{x})} \bar{y}_{i} a_{i \bullet}=c
$$

so that \bar{y} is feasible for \mathcal{D}.

Geometric Duality Theorem: Proof

Conversely, suppose \bar{x} is feasible for \mathcal{P} and $0 \leq r_{j}, j \in \mathcal{Z}(\bar{x})$ and $0 \leq \bar{y}_{i}, i \in \mathcal{E}(\bar{x})$ satisfy

$$
c=-\sum_{j \in \mathcal{Z}(\bar{x})} r_{j} e_{j}+A^{T} \bar{y}=-\sum_{j \in \mathcal{Z}(\bar{x})} r_{j} e_{j}+\sum_{i \in \mathcal{E}(\bar{x})} \bar{y}_{i} a_{i} \bullet
$$

Set $\bar{y}_{i}=0 \notin \mathcal{E}(\bar{x})$ to obtain $\bar{y} \in \mathbb{R}^{m}$. Then

$$
A^{T} \bar{y}=\sum_{i \in \mathcal{E}(\bar{x})} \bar{y}_{i} a_{i \bullet} \geq-\sum_{j \in \mathcal{Z}(\bar{x})} r_{j} e_{j}+\sum_{i \in \mathcal{E}(\bar{x})} \bar{y}_{i} a_{i \bullet}=c
$$

so that \bar{y} is feasible for \mathcal{D}. Moreover,

$$
c^{T} \bar{x}=-\sum_{j \in \mathcal{Z}(\bar{x})} r_{j} e_{j}^{T} \bar{x}+\sum_{i \in \mathcal{E}(\bar{x})} \bar{y}_{i} a_{i \bullet}^{T} \bar{x}=\sum_{i \in \mathcal{E}(\bar{x})} \bar{y}_{i} a_{i \bullet}^{T} \bar{x}=\bar{y}^{T} A \bar{x}=\bar{y}^{T} b
$$

so \bar{x} solves \mathcal{P} and \bar{y} solves \mathcal{D} by the Weak Duality Theorem.

Example

Does the vector $\bar{x}=(1,0,2,0)^{T}$ solve the LP

maximize	x_{1}	$+x_{2}$	$-x_{3}$	$+2 x_{4}$	
subject to	x_{1}	$+3 x_{2}$	$-2 x_{3}$	$+4 x_{4}$	≤-3
		$4 x_{2}$	$-2 x_{3}$	$+3 x_{4}$	≤ 1
		$-x_{2}$	$+x_{3}$	$-x_{4}$	≤ 2
	$-x_{1}$	$-x_{2}$	$+2 x_{3}$	$-x_{5}$	≤ 4
	$0 \leq$	x_{1},	x_{2},	x_{3},	x_{4}

Example

Which constraints are active at $\bar{x}=(1,0,2,0)^{T}$?

$$
\begin{array}{lrrr}
x_{1} & +3 x_{2} & -2 x_{3}+4 x_{4} & \leq-3 \\
& 4 x_{2} & -2 x_{3}+3 x_{4} \leq & 1 \\
& -x_{2} & +x_{3} & -x_{4} \leq \\
-x_{1} & -x_{2}+2 x_{3} & -x_{5} & \leq 4
\end{array}
$$

Example

Which constraints are active at $\bar{x}=(1,0,2,0)^{T}$?

$$
\begin{array}{lrrrl}
x_{1} & +3 x_{2} & -2 x_{3} & +4 x_{4} & \leq \\
& 4 x_{2} & -2 x_{3} & +3 x_{4} & \leq \\
& -x_{2} & +x_{3} & -x_{4} & \leq \\
\\
-x_{1} & -x_{2} & +2 x_{3} & -x_{5} & \leq \\
&
\end{array}
$$

Example

Which constraints are active at $\bar{x}=(1,0,2,0)^{T}$?

$$
\begin{array}{lrrrl}
x_{1} & +3 x_{2} & -2 x_{3} & +4 x_{4} & \leq \\
& 4 x_{2} & -2 x_{3} & +3 x_{4} & \leq \\
& -x_{2} & +x_{3} & -x_{4} & \leq \\
& & & \\
& -x_{2} & +2 x_{3} & -x_{5} & \leq \\
-x_{1} & \leq &
\end{array}
$$

Example

Which constraints are active at $\bar{x}=(1,0,2,0)^{T}$?

$$
\begin{array}{lrrrl}
x_{1} & +3 x_{2} & -2 x_{3} & +4 x_{4} & \leq \\
& 4 x_{2} & -2 x_{3} & +3 x_{4} & \leq \\
& -x_{2} & +x_{3} & -x_{4} & \leq \\
& \leq & & = \\
-x_{1} & -x_{2} & +2 x_{3} & -x_{5} & \leq \\
& \leq &
\end{array}
$$

Example

Which constraints are active at $\bar{x}=(1,0,2,0)^{T}$?

$$
\begin{array}{lrrll}
x_{1} & +3 x_{2} & -2 x_{3} & +4 x_{4} & \leq \\
& 4 x_{2} & -2 x_{3} & +3 x_{4} & \leq \\
& -x_{2} & +x_{3} & -x_{4} & \leq \\
& \leq & & \\
-x_{1} & -x_{2} & +2 x_{3} & -x_{5} & \leq \\
& = \\
\text { so } y_{2}=0 \\
& <\text { so } y_{4}=0
\end{array}
$$

Example

Which constraints are active at $\bar{x}=(1,0,2,0)^{T}$?

$$
\begin{array}{lrrll}
x_{1} & +3 x_{2} & -2 x_{3} & +4 x_{4} & \leq-3 \\
& 4 x_{2} & -2 x_{3} & +3 x_{4} & \leq \\
& -x_{2} & +x_{3} & -x_{4} & \leq \\
& < & & \\
-x_{1} & -x_{2} & +2 x_{3} & -x_{5} & \leq \\
& = \\
& & <\text { so } y_{2}=0 \\
y_{4}=
\end{array}
$$

The 1st and 3rd constraints are active.

Example

Knowing $y_{2}=y_{4}=0$ solve for y_{1} and y_{3} by writing the objective normal as a non-negative linear combination of the constraint outer normals.

$$
\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
3 & -1 & -1 & 0 \\
-2 & 1 & 0 & 0 \\
4 & -1 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{3} \\
r_{2} \\
r_{4}
\end{array}\right]=\left(\begin{array}{r}
1 \\
1 \\
-1 \\
2
\end{array}\right) .
$$

Example

Row reducing, we get

y_{1}	y_{3}	r_{2}	r_{4}	
1	0	0	0	1
3	-1	-1	0	1
-2	1	0	0	-1
4	-1	0	-1	2
1	0	0	0	1
0	1	1	0	2
0	1	0	0	1
0	1	0	1	2

Therefore, $y_{1}=1 y_{3}=1, r_{2}=1$, and $r_{4}=1$. Hence, $\bar{x}=(1,0,2,0)^{T}$ sopves the pimal and $\bar{y}=(1,0,1,0)^{T}$ solves the dual.
We now double check to see if the vector $\bar{y}=(1,0,1,0)$ does indeed solve the dual.

Example

Check that $\bar{y}=(1,0,1,0)$ solves the dual problem.

$$
\begin{array}{lrlllll}
\operatorname{minimize} & -3 y_{1} & +y_{2} & +2 y_{3} & +4 y_{4} \\
\text { subject to } & y_{1} & & & \\
& 3 y_{1} & +4 y_{2} & -y_{3} & -y_{4} & \geq & 1 \\
& -2 y_{1} & -2 y_{2} & +y_{3} & +2 y_{4} & \geq 1 \\
& 4 y_{1} & +3 y_{2} & -y_{3} & -y_{4} & \geq & 2 \\
& 0 \leq y_{1}, y_{2}, y_{3}, y_{4} .
\end{array}
$$

Example

Check that $\bar{y}=(1,0,1,0)$ solves the dual problem.

Example 2

Does $x=(3,1,0)^{T}$ solve \mathcal{P}, where

$$
A=\left[\begin{array}{rrr}
-1 & 3 & -2 \\
1 & -4 & 2 \\
1 & 2 & 3
\end{array}\right], \quad c=\left[\begin{array}{l}
1 \\
7 \\
3
\end{array}\right], \quad b=\left[\begin{array}{l}
0 \\
0 \\
5
\end{array}\right] .
$$

Example 3

Does $x=(1,2,1,0)^{T}$ solve \mathcal{P}, where

$$
A=\left[\begin{array}{rrrr}
3 & 1 & 4 & 2 \\
-3 & 2 & 2 & 1 \\
1 & -2 & 3 & 0 \\
-3 & 2 & -1 & 4
\end{array}\right], \quad c=\left[\begin{array}{r}
-2 \\
0 \\
5 \\
2
\end{array}\right], \quad b=\left[\begin{array}{l}
9 \\
3 \\
0 \\
1
\end{array}\right] .
$$

