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The Geometry of Linear Programming

Hyperplanes

Definition: A hyperplane in Rn is any set of the form

H(a, β) = {x : aT x = β}

where a ∈ Rn \ {0} and β ∈ R.

Fact: H ⊂ Rn is a hyperplane if and only if the set

H − x0 = {x − x0 : x ∈ H}

where x0 ∈ H is a subspace of Rn of dimension (n − 1).
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Hyperplanes

What are the hyperplanes in R?

Points

What are the hyperplanes in R2? Lines

What are the hyperplanes in R3? Planes

What are the hyperplanes in Rn?

Translates of (n − 1) dimensional subspaces.
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Hyperplanes

Every hyperplane divides the space in half.

This division defines two closed half-spaces.

The two closed half-spaces associated with the hyperplane

H(a, β) = {x : aT x = β}

are
H+(a, β) = {x ∈ Rn : aT x ≥ β}

and
H−(a, β) = {x ∈ Rn : aT x ≤ β}.
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Intersections of Closed Half-Spaces

Consider the constraint region to an LP

Ω = {x : Ax ≤ b, 0 ≤ x}.

Define the half-spaces

Hj = {x : eTj x ≥ 0} for j = 1, . . . , n

and
Hn+i = {x : aTi· x ≤ bi} for i = 1, . . . ,m,

where ai· is the ith row of A.
Then

Ω =
n+m⋂
k=1

Hk .

That is, the constraint region of an LP is the intersection of finitely many closed
half-spaces.
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Convex Polyhedra

Definition: Any subset of Rn that can be represented as the intersection of finitely
many closed half spaces is called a convex polyhedron.

If a convex polyhedron in Rn is contained within a set of the form

{x | ` ≤ x ≤ u } ,

where `, u ∈ Rn with ` ≤ u, then it is called a convex polytope.

A linear program is simply the problem of either maximizing or minimizing a linear
function over a convex polyhedron.

We now develop the geometry of convex polyhedra.
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Convex sets

Fact: Given any two points in Rn, say x and y , the line segment connecting them
is given by

[x , y ] = {(1− λ)x + λy : 0 ≤ λ ≤ 1}.

Definition: A subset C ∈ Rn is said to be convex if [x , y ] ⊂ C whenever x , y ∈ C .

Fact: A convex polyhedron is a convex set.

Lecture 12: The Geometry of Linear Programming (Math Dept, University of Washington)Math 407A: Linear Optimization 8 / 49



Convex sets

Fact: Given any two points in Rn, say x and y , the line segment connecting them
is given by

[x , y ] = {(1− λ)x + λy : 0 ≤ λ ≤ 1}.

Definition: A subset C ∈ Rn is said to be convex if [x , y ] ⊂ C whenever x , y ∈ C .

Fact: A convex polyhedron is a convex set.

Lecture 12: The Geometry of Linear Programming (Math Dept, University of Washington)Math 407A: Linear Optimization 8 / 49



Convex sets

Fact: Given any two points in Rn, say x and y , the line segment connecting them
is given by

[x , y ] = {(1− λ)x + λy : 0 ≤ λ ≤ 1}.

Definition: A subset C ∈ Rn is said to be convex if [x , y ] ⊂ C whenever x , y ∈ C .

Fact: A convex polyhedron is a convex set.

Lecture 12: The Geometry of Linear Programming (Math Dept, University of Washington)Math 407A: Linear Optimization 8 / 49



Example

c1 : −x1 − x2 ≤ −2
c2 : 3x1 − 4x2 ≤ 0
c3 : −x1 + 3x2 ≤ 6

\tex{$v_2$}

\tex{$c_3$}

\tex{$c_1$}

\tex{$c_2$}

\tex{$x_1$}

\tex{$x_2$}

\tex{5}

\tex{4}

\tex{3}

\tex{2}

\tex{1}

\tex{1} \tex{2} \tex{3} \tex{4} \tex{5}

\tex{$v_3$}

\tex{$v_1$}

\tex{$C$}

The vertices are v1 =
(

8
7 ,

6
7

)
, v2 = (0, 2), and v3 =

(
24
5 ,

18
5

)
.
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Vertices

Definition: Let C be a convex polyhedron. We say that x ∈ C is a vertex of C if
whenever x ∈ [u, v ] for some u, v ∈ C , it must be the case that either x = u or x = v .

The Fundamental Representation Theorem for Vertices
Let T = (tij)m×n, g ∈ Rm, and consider the convex polyhedron C := {x ∈ Rn |Tx ≤ g }.
A point x ∈ C is a vertex of C if and only if there exist an index set I ⊂ {1, . . . ,m}
such that x is the unique solution to the system of equations

n∑
j=1

tijxj = gi i ∈ I.

Moreover, if x is a vertex, then one can take |I| = n, where |I| denotes the number of

elements in I.
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Observations

When does the system of equations

n∑
j=1

tijxj = gi i ∈ I

have a unique solution?

|I| ≥ n; otherwise, one solution implies infinitely many solutions.

If |I| > n, we can select a subset R ⊂ I of the rows Ti· of T so that the set of
vectors {Ti· | i ∈ R} form a basis of the row space of T . Then |R| = n and x is
the unique solution to

n∑
j=1

tijxj = gi i ∈ R.

Lecture 12: The Geometry of Linear Programming (Math Dept, University of Washington)Math 407A: Linear Optimization 11 / 49



Observations

When does the system of equations

n∑
j=1

tijxj = gi i ∈ I

have a unique solution?

|I| ≥ n; otherwise, one solution implies infinitely many solutions.

If |I| > n, we can select a subset R ⊂ I of the rows Ti· of T so that the set of
vectors {Ti· | i ∈ R} form a basis of the row space of T . Then |R| = n and x is
the unique solution to

n∑
j=1

tijxj = gi i ∈ R.

Lecture 12: The Geometry of Linear Programming (Math Dept, University of Washington)Math 407A: Linear Optimization 11 / 49



Observations

When does the system of equations

n∑
j=1

tijxj = gi i ∈ I

have a unique solution?

|I| ≥ n; otherwise, one solution implies infinitely many solutions.

If |I| > n, we can select a subset R ⊂ I of the rows Ti· of T so that the set of
vectors {Ti· | i ∈ R} form a basis of the row space of T . Then |R| = n and x is
the unique solution to

n∑
j=1

tijxj = gi i ∈ R.

Lecture 12: The Geometry of Linear Programming (Math Dept, University of Washington)Math 407A: Linear Optimization 11 / 49



Vertices

Corollary: A point x in the convex polyhedron described by the system of
inequalities

Ax ≤ b and 0 ≤ x ,

where A = (aij)m×n, is a vertex of this polyhedron if and only if there exist index
sets I ⊂ {1, . . . ,m} and J ⊂ {1, . . . , n} with |I|+ |J | = n such that x is the
unique solution to the system of equations

n∑
j=1

aijxj = bi i ∈ I, and

xj = 0 j ∈ J .
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Example

c1 : −x1 − x2 ≤ −2
c2 : 3x1 − 4x2 ≤ 0
c3 : −x1 + 3x2 ≤ 6

(a)The vertex v1 = ( 8
7 ,

6
7 ) is given as the solution to the system

−x1 − x2 = −2

3x1 − 4x2 = 0,
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Example

c1 : −x1 − x2 ≤ −2
c2 : 3x1 − 4x2 ≤ 0
c3 : −x1 + 3x2 ≤ 6

(b)The vertex v2 = (0, 2) is given as the solution to the system

−x1 − x2 = −2

−x1 + 3x2 = 6,
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Example

c1 : −x1 − x2 ≤ −2
c2 : 3x1 − 4x2 ≤ 0
c3 : −x1 + 3x2 ≤ 6

(c)The vertex v3 =
(

24
5 ,

18
5

)
is given as the solution to the system

3x1 − 4x2 = 0

−x1 + 3x2 = 6.
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Application to LPs in Standard Form

n∑
j=1

aijxj ≤ bi i = 1, . . . ,m

0 ≤ xj j = 1, . . . , n.

The associated slack variables:

xn+i = bi −
n∑

j=1

aijxj i = 1, . . . ,m. ♣

Let x̄ = (x̄1, . . . , x̄n+m) be any solution to the system ♣.

J = {j ∈⊂ {1, . . . , n} | x̄j = 0} I = {j ∈ {1, . . . ,m} | x̄n+i = 0}}

Let x̂ = (x̄1, . . . , x̄n) be the values for the decision variables at x̄ .
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Application to LPs in Standard Form

For each j ∈ J ⊂ {1, . . . , n}, x̄j = 0, consequently the hyperplane

Hj = {x ∈ Rn : eTj x = 0}

is active at x̂ , i.e., x̂ ∈ Hj .

Similarly, for each i ∈ I ⊂ {1, 2, . . . ,m}, x̄n+i = 0, and so the hyperplane

Hn+i = {x ∈ Rn :
n∑

j=1

aijxj = bi}

is active at x̂ , i.e., x̂ ∈ Hn+i .
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Application to LPs in Standard Form

What are the vertices of the system

n∑
j=1

aijxj ≤ bi i = 1, . . . ,m

0 ≤ xj j = 1, . . . , n

x̂ = (x̄1, . . . , x̄n) is a vertex of this polyhedron if and only if there exist index sets
I ⊂ {1, . . . ,m} and J ∈ {1, . . . , n} with |I|+ |J | = n such that x̂ is the unique
solution to the system of equationsn∑

j=1

aijxj = bi i ∈ I, and xj = 0 j ∈ J .

In this case x̄m+i = 0 for i ∈ I (slack variables).
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Vertices

and BFSs

That is, x̂ is a vertex of the polyhedral constraints to an LP in standard form if
and only if a total of n of the variables {x̄1, x̄2, . . . , x̄n+m} take the value zero,
while the value of the remaining m variables are uniquely determined by setting
these n variables to the value zero.

But then, x̂ is a vertex if and only if it is a BFS!

Therefore, one can geometrically interpret the simplex algorithm as a procedure
moving from one vertex of the constraint polyhedron to another with higher
objective value until the optimal solution exists.
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Lecture 12: The Geometry of Linear Programming (Math Dept, University of Washington)Math 407A: Linear Optimization 19 / 49



Vertices and BFSs

That is, x̂ is a vertex of the polyhedral constraints to an LP in standard form if
and only if a total of n of the variables {x̄1, x̄2, . . . , x̄n+m} take the value zero,
while the value of the remaining m variables are uniquely determined by setting
these n variables to the value zero.

But then, x̂ is a vertex if and only if it is a BFS!

Therefore, one can geometrically interpret the simplex algorithm as a procedure
moving from one vertex of the constraint polyhedron to another with higher
objective value until the optimal solution exists.

Lecture 12: The Geometry of Linear Programming (Math Dept, University of Washington)Math 407A: Linear Optimization 19 / 49



Vertices and BFSs

The simplex algorithm terminates finitely since every vertex is connected to every
other vertex by a path of adjacent vertices on the surface of the polyhedron.
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Example

maximize 3x1 + 4x2

subject to −2x1 + x2 ≤ 2
2x1 − x2 ≤ 4
0 ≤ x1 ≤ 3,
0 ≤ x2 ≤ 4.
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\tex{$V_5$}

\tex{$V_6$}

\tex{$x_1$}

\tex{$1$}

\tex{$2$}

\tex{$3$}

\tex{$V_2$}
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\tex{$1$} \tex{$2$} \tex{$3$}
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Example

-2 1 1 0 0 0 2 vertex
2 -1 0 1 0 0 4 v1

1 0 0 0 1 0 3 (0, 0)
0 1 0 0 0 1 4
3 4 0 0 0 0 0

-2 1 1 0 0 0 2 vertex
0 0 1 1 0 0 6 v2

1 0 0 0 1 0 3 (0, 2)

2 0 -1 0 0 1 2
11 0 -4 0 0 0 -8

0 1 0 0 0 1 4 vertex
0 0 1 1 0 0 6 v3

0 0 1
2

0 1 − 1
2

2 (1, 4)

1 0 − 1
2

0 0 1
2

1
0 0 3

2
0 0 −11

2
-19

0 1 0 0 0 1 4 vertex
0 0 0 1 -2 1 2 v4

0 0 1 0 2 -1 4 (3, 4)
1 0 0 0 1 0 3
0 0 0 0 -3 -4 -25
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Vertex Pivoting

The BSFs in the simplex algorithm are vertices, and every vertex of the polyhedral
constraint region is a BFS.

Phase I of the simplex algorithm is a procedure for finding a vertex of the
constraint region, while Phase II is a procedure for moving between adjacent
vertices successively increasing the value of the objective function.
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The Geometry of Degeneracy

Let Ω = {x : Ax ≤ b, 0 ≤ x} be the constraint region for an LP in standard form.

Ω is the intersection of the hyperplanes

Hj = {x : eTj x ≥ 0} for j = 1, . . . , n

and

Hn+i = {x :
n∑

j=1

aijxj ≤ bi} for i = 1, . . . ,m

A basic feasible solution (vertex) is said to be degenerate if one or more of the
basic variables is assigned the value zero. This implies that more than n of the
hyperplanes Hk , k = 1, 2, . . . , n + m are active at this vertex.
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Example

-2 1© 1 0 0 0 0 0 2 vertex
2 -1 0 1 0 0 0 0 4 V1 = (0, 0)
-1 1 0 0 1 0 0 0 3
1 1 0 0 0 1 0 0 7
1 0 0 0 0 0 1 0 3
0 1 0 0 0 0 0 1 4
3 4 0 0 0 0 0 0 0

-2 1 1 0 0 0 0 0 2 vertex
0 0 1 1 0 0 0 0 6 V2 = (0, 2)
1© 0 -1 0 1 0 0 0 1
3 0 -1 0 0 1 0 0 5
1 0 0 0 0 0 1 0 3
2 0 -1 0 0 0 0 1 2

11 0 -4 0 0 0 0 0 -8
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Example

-2 1 1 0 0 0 0 0 2 vertex
0 0 1 1 0 0 0 0 6 V2 = (0, 2)
1© 0 -1 0 1 0 0 0 1
3 0 -1 0 0 1 0 0 5
1 0 0 0 0 0 1 0 3
2 0 -1 0 0 0 0 1 2

11 0 -4 0 0 0 0 0 -8

0 1 -1 0 2 0 0 0 4 vertex
0 0 1 1 0 0 0 0 6 V3 = (1, 4)
1 0 -1 0 1 0 0 0 1
0 0 2 0 -3 1 0 0 2
0 0 1 0 -1 0 1 0 2
0 0 1© 0 -2 0 0 1 0 degenerate
0 0 7 0 -11 0 0 0 -19
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Example

0 1 0 0 0 0 0 1 4 vertex
0 0 0 1 2 0 0 1 6 V3 = (1, 4)
1 0 0 0 -1 0 0 1 1
0 0 0 0 1© 1 0 -2 2
0 0 0 0 1 0 1 -1 2
0 0 1 0 -2 0 0 1 0 degenerate
0 0 0 0 3 0 0 -7 -19

0 1 0 0 0 0 0 1 4 vertex
0 0 0 1 0 -2 0 5 2 V4 = (3, 4)
1 0 0 0 0 1 0 -1 3
0 0 0 0 1 1 0 -2 2 optimal
0 0 0 0 0 -1 1 1 0 degenerate
0 0 1 0 0 2 0 -3 4
0 0 0 0 0 -3 0 -1 -25
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Example

0 1 0 0 0 0 0 1 4 vertex
0 0 0 1 2 0 0 1 6 V3 = (1, 4)
1 0 0 0 -1 0 0 1 1
0 0 0 0 1© 1 0 -2 2
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0 0 1 0 -2 0 0 1 0 degenerate
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0 1 0 0 0 0 0 1 4 vertex
0 0 0 1 0 -2 0 5 2 V4 = (3, 4)
1 0 0 0 0 1 0 -1 3
0 0 0 0 1 1 0 -2 2 optimal
0 0 0 0 0 -1 1 1 0 degenerate
0 0 1 0 0 2 0 -3 4
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Degeneracy = Multiple Representations of a Vertex

A degenerate tableau occurs when the associated BFS (or vertex) can be
represented as the intersection point of more than one subsets of n active
hyperplanes.

A degenerate pivot occurs when we move between two different representations of
a vertex as the intersection of n hyperplanes.

Cycling implies that we are cycling between different representations of the same
vertex.
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Degeneracy = Multiple Representations of a Vertex

In the previous example, the third tableau represents the vertex V3 = (1, 4) as the
intersection of the hyperplanes

−2x1 + x2 = 2 (since x3 = 0)

−x1 + x2 =3. (since x5 = 0) and

The third pivot brings us to the 4th tableau where the vertex V3 = (1, 4) is
represented as the intersection of the hyperplanes

−x1 + x2 = 3 (since x5 = 0)

x2 =4 (since x8 = 0). and

Lecture 12: The Geometry of Linear Programming (Math Dept, University of Washington)Math 407A: Linear Optimization 31 / 49



Degeneracy = Multiple Representations of a Vertex

In the previous example, the third tableau represents the vertex V3 = (1, 4) as the
intersection of the hyperplanes

−2x1 + x2 = 2 (since x3 = 0)

−x1 + x2 =3. (since x5 = 0) and

The third pivot brings us to the 4th tableau where the vertex V3 = (1, 4) is
represented as the intersection of the hyperplanes

−x1 + x2 = 3 (since x5 = 0)

x2 =4 (since x8 = 0). and

Lecture 12: The Geometry of Linear Programming (Math Dept, University of Washington)Math 407A: Linear Optimization 31 / 49



Multiple Dual Optimal Solutions and Degeneracy

0 1 0 0 0 0 0 1 4 primal solution
0 0 0 1 0 -2 0 5 2 v4 = (3, 4)
1 0 0 0 0 1 0 -1 3
0 0 0 0 1 1 0 -2 2 dual
0 0 0 0 0 -1© 1 1 0 solution
0 0 1 0 0 2 0 -3 4 (0,0,0,3,0,1)
0 0 0 0 0 -3 0 -1 -25

0 1 0 0 0 0 0 0 4 primal solution
0 0 0 1 0 0 -2 3 2 v4 = (3, 4)
1 0 0 0 0 0 1 0 3
0 0 0 0 1 0 1 -1 2 dual
0 0 0 0 0 1 -1 -1 0 solution
0 0 1 0 0 0 2 -1 4 (0,0,0,0,3,4)
0 0 0 0 0 0 -3 -4 -25
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Multiple Dual Optima and Primal Degeneracy

Primal degeneracy in an optimal tableau indicates multiple optimal solutions to
the dual which can be obtained with dual simplex pivots.

Dual degeneracy in an optimal tableau indicates multiple optimal primal
solutions that can be obtained with primal simplex pivots.

A tableau is said to be dual degenerate if there is a non-basic variable whose
objective row coefficient is zero.
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Multiple Primal Optima and Dual Degeneracy

50 0 0 100 0 1 −10 5 500
2.5 1 0 2 0 0 −.1 .15 15 primal
−.5 0 0 0 1 0 0 −.05 15 solution
−1 0 1 −1 0 0 .1 −.1 10 (0, 15, 10, 0)
−100 0 0 0 0 0 −10 −10 −11000

.5 0 0 1 0 .01 −.1 .05 5
1.5 1 0 0 0 −.02 .1 .05 5 primal
−.5 0 0 0 1 0 0 −.05 15 solution
−.5 0 1 0 0 .01 0 −.05 15 (0, 5, 15, 5)
−100 0 0 0 0 0 −10 −10 −11000
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The Geometry of Duality

max 3x1 + x2

s.t. −x1 + 2x2 ≤ 4
3x1 − x2 ≤ 3

0 ≤ x1, x2.

\tex{1}

\tex{$n_2=(3,-1)$}

\tex{$n_1=(-1,2)$}

\tex{$c=(3,1)$}

\tex{1} \tex{2} \tex{3}

\tex{3}

\tex{2}
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The Geometry of Duality

The normal to the
hyperplane
−x1 + 2x2 = 4
is n1 = (−1, 2).

The normal to the
hyperplane
3x1 − x2 = 3
is n2 = (3,−1).
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The Geometry of Duality

The objective normal
c = (3, 1)

can be written as a non-negative linear combination of the active constraint
normals

n1 = (−1, 2) and n2 = (3,−1) .

c = y1n1 + y2n2,

Equivalently (
3
1

)
= y1

(
−1
2

)
+ y2

(
3
−1

)
=

[
−1 3
2 −1

] [
y1

y2

]
.
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The Geometry of Duality

-1 3 3
2 -1 1
1 -3 -3
0 5 7
1 -3 -3
0 1 7

5

1 0 6
5

0 1 7
5

y1 = 6
5

y2 = 7
5

We claim that y = ( 6
5 ,

7
5 ) is the optimal solution to the dual!
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The Geometry of Duality

P
max 3x1 + x2

s.t. −x1 + 2x2 ≤ 4
3x1 − x2 ≤ 3
0 ≤ x1, x2.

D
min 4y1 + 3y2

s.t. −y1 + 3y2 ≥ 3
2y1 − y2 ≥ 1
0 ≤ y1, y2.

Primal Solution −− Dual Solution
(2, 3) (6/5, 7/5)

Optimal Value = 9
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Geometric Duality Theorem

Consider the LP (P) max{cT x |Ax ≤ b, 0 ≤ x}, where A ∈ Rm×n. Given a vector x̄ that
is feasible for P, define

Z(x̄) = {j ∈ {1, 2, . . . , n} : x̄j = 0}, E(x̄) = {i ∈ {1, . . . ,m} :
n∑

j=1

aij x̄j = bi}.

The indices Z(x̄) and E(x̄) are the active indices at x̄ and correspond to the active
hyperplanes at x̄ . Then x̄ solves P if and only if there exist non-negative numbers rj ,
j ∈ Z(x̄) and ȳi , i ∈ E(x̄) such that

c = −
∑

j∈Z(x̄)

rjej +
∑

i∈E(x̄)

ȳiai•

where for each i = 1, . . . ,m, ai• = (ai1, ai2, . . . , ain)T is the ith column of the matrix AT ,

and, for each j = 1, . . . , n, ej is the jth unit coordinate vector. In addition, if x̄ is the

solution to P, then the vector ȳ ∈ Rm given by

ȳi =

{
ȳi for i ∈ E(x̄)
0 otherwise

, solves the dual problem.
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Geometric Duality Theorem: Proof

First suppose that x̄ solves P, and let ȳ solve D.

The Complementary Slackness Theorem implies that

(I ) ȳi = 0 for i ∈ {1, 2, . . . ,m} \ E(x̄) (
∑n

j=1 aij x̄j < bi )
and

(II )
m∑
i=1

ȳiaij = cj for j ∈ {1, . . . , n} \ Z(x̄) (0 < x̄j).

Define r = AT ȳ − c ≥ 0. By (II), rj = 0 for j ∈ {1, . . . , n} \ Z(x̄), while

(III ) cj = −rj +
m∑
i=1

ȳiaij for j ∈ Z(x̄).

(I), (II), and (III) gives

c = −
∑

j∈Z(x̄)

rjej + AT ȳ = −
∑

j∈Z(x̄)

rjej +
∑

i∈E(x̄)

ȳiai•.
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By (II), rj = 0 for j ∈ {1, . . . , n} \ Z(x̄), while

(III ) cj = −rj +
m∑
i=1
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Geometric Duality Theorem: Proof

Conversely, suppose x̄ is feasible for P and 0 ≤ rj , j ∈ Z(x̄) and 0 ≤ ȳi , i ∈ E(x̄) satisfy

c = −
∑

j∈Z(x̄)

rjej + AT ȳ = −
∑

j∈Z(x̄)

rjej +
∑

i∈E(x̄)

ȳiai•

Set ȳi = 0 6∈ E(x̄) to obtain ȳ ∈ Rm. Then

AT ȳ =
∑

i∈E(x̄)

ȳiai• ≥ −
∑

j∈Z(x̄)

rjej +
∑

i∈E(x̄)

ȳiai• = c,

so that ȳ is feasible for D. Moreover,

cT x̄ = −
∑

j∈Z(x̄)

rje
T
j x̄ +

∑
i∈E(x̄)

ȳia
T
i•x̄ =

∑
i∈E(x̄)

ȳia
T
i•x̄ = ȳTAx̄ = ȳTb,

so x̄ solves P and ȳ solves D by the Weak Duality Theorem.
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so x̄ solves P and ȳ solves D by the Weak Duality Theorem.

Lecture 12: The Geometry of Linear Programming (Math Dept, University of Washington)Math 407A: Linear Optimization 42 / 49



Geometric Duality Theorem: Proof

Conversely, suppose x̄ is feasible for P and 0 ≤ rj , j ∈ Z(x̄) and 0 ≤ ȳi , i ∈ E(x̄) satisfy
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Example

Does the vector x̄ = (1, 0, 2, 0)T solve the LP

maximize x1 +x2 −x3 +2x4

subject to x1 +3x2 −2x3 +4x4 ≤ −3
4x2 −2x3 +3x4 ≤ 1
−x2 +x3 −x4 ≤ 2

−x1 −x2 +2x3 −x5 ≤ 4
0 ≤ x1, x2, x3, x4 .
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Example

Which constraints are active at x̄ = (1, 0, 2, 0)T ?

x1 +3x2 −2x3 +4x4 ≤ −3

=

4x2 −2x3 +3x4 ≤ 1

< so y2 = 0

−x2 +x3 −x4 ≤ 2

=

−x1 −x2 +2x3 −x5 ≤ 4

< so y4 = 0

The 1st and 3rd constraints are active.
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Example

Knowing y2 = y4 = 0 solve for y1 and y3 by writing the objective normal as a
non-negative linear combination of the constraint outer normals.


1 0 0 0
3 −1 −1 0
−2 1 0 0

4 −1 0 −1




y1

y3

r2
r4

 =


1
1
−1

2

 .
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Example

Row reducing, we get
y1 y3 r2 r4
1 0 0 0 1
3 −1 −1 0 1
−2 1 0 0 −1

4 −1 0 −1 2
1 0 0 0 1
0 1 1 0 2
0 1 0 0 1
0 1 0 1 2

.

Therefore, y1 = 1 y3 = 1, r2 = 1, and r4 = 1. Hence, x̄ = (1, 0, 2, 0)T sopves the
pimal and ȳ = (1, 0, 1, 0)T solves the dual.
We now double check to see if the vector ȳ = (1, 0, 1, 0) does indeed solve the
dual.
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Example

Check that ȳ = (1, 0, 1, 0) solves the dual problem.

minimize −3y1 + y2 + 2y3 + 4y4

dual slacks

subject to y1 − y4 ≥ 1

r1 = 0

3y1 + 4y2 − y3 − y4 ≥ 1

r2 = 1

−2y1 − 2y2 + y3 + 2y4 ≥ −1

r3 = 0

4y1 + 3y2 − y3 − y4 ≥ 2

r4 = 1

0 ≤ y1, y2, y3, y4.
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Example
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Example 2

Does x = (3, 1, 0)T solve P, where

A =

 −1 3 −2
1 −4 2
1 2 3

 , c =

 1
7
3

 , b =

 0
0
5

 .
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Example 3

Does x = (1, 2, 1, 0)T solve P, where

A =


3 1 4 2
−3 2 2 1

1 −2 3 0
−3 2 −1 4

 , c =


−2

0
5
2

 , b =


9
3
0
1

 .
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