Linear Programming

Lecture 2: Introduction to Linear Programming
(1) Math 407: Introduction
(2) What is linear programming?
(3) Applications of Linear Programing
(4) Example: Plastic Cup Factory
(5) Introduction to LP Modeling
(6) Graphical Solution of 2D LPs
(7) Introduction to Sensitivity Analysis
(8) The Theory of Linear Economic Models

- Production Models
- The Optimal Value Function and Marginal Values
- Duality: The Hidden Hand of the Market Place
(9) LP Duality
- The Weak Duality Theorem of Linear Programming

What is optimization?

What is optimization?

A mathematical optimization problem is one in which some function is either maximized or minimized relative to a given set of alternatives.

What is optimization?

A mathematical optimization problem is one in which some function is either maximized or minimized relative to a given set of alternatives.

- The function to be minimized or maximized is called the objective function.

What is optimization?

A mathematical optimization problem is one in which some function is either maximized or minimized relative to a given set of alternatives.

- The function to be minimized or maximized is called the objective function.
- The set of alternatives is called the feasible region (or constraint region).

What is optimization?

A mathematical optimization problem is one in which some function is either maximized or minimized relative to a given set of alternatives.

- The function to be minimized or maximized is called the objective function.
- The set of alternatives is called the feasible region (or constraint region).
- In this course, the feasible region is always taken to be a subset of \mathbb{R}^{n} (real n-dimensional space) and the objective function is a function from \mathbb{R}^{n} to \mathbb{R}.

What is linear programming (LP)?

What is linear programming (LP)?

A linear program is an optimization problem in finitely many variables having a linear objective function and a constraint region determined by a finite number of linear equality and/or inequality constraints.

What is linear programming (LP)?

What is linear programming (LP)?

A linear program is an optimization problem

What is linear programming (LP)?

A linear program is an optimization problem in finitely many variables

What is linear programming (LP)?

A linear program is an optimization problem
in finitely many variables
having a linear objective function

What is linear programming (LP)?

A linear program is an optimization problem
in finitely many variables
having a linear objective function
and a constraint region determined by a
finite number of constraints

What is linear programming (LP)?

A linear program is an optimization problem
in finitely many variables
having a linear objective function
and a constraint region determined by a
finite number of constraints
that are linear equality and/or linear inequality constraints.

- A linear function of the variables $x_{1}, x_{2}, \ldots, x_{n}$ is any function f of the form

$$
f(x)=c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}
$$

for fixed $c_{i} \in \mathbb{R} i=1, \ldots, n$.

- A linear function of the variables $x_{1}, x_{2}, \ldots, x_{n}$ is any function f of the form

$$
f(x)=c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}
$$

for fixed $c_{i} \in \mathbb{R} i=1, \ldots, n$.

- A linear equality constraint is any equation of the form

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=\alpha,
$$

where $\alpha, a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{R}$.

- A linear function of the variables $x_{1}, x_{2}, \ldots, x_{n}$ is any function f of the form

$$
f(x)=c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}
$$

for fixed $c_{i} \in \mathbb{R} i=1, \ldots, n$.

- A linear equality constraint is any equation of the form

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=\alpha,
$$

where $\alpha, a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{R}$.

- A linear inequality constraint is any inequality of the form

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n} \leq \alpha
$$

or

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n} \geq \alpha
$$

where $\alpha, a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{R}$.

Compact Representation

$$
\begin{array}{lll}
\operatorname{maximize} & c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n} \\
\text { subject to } & a_{i 1} x_{i}+a_{i 2} x_{2}+\cdots+a_{i n} x_{n} \leq \alpha_{i} \quad i=1, \ldots, s \\
& b_{i 1} x_{i}+b_{i 2} x_{2}+\cdots+b_{i n} x_{n}=\beta_{i} \quad i=1, \ldots, r .
\end{array}
$$

Vector Inequalities: Componentwise

Let $x, y \in \mathbb{R}^{n}$.

$$
x=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \quad y=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]
$$

We write $x \leq y$ if and only if

$$
x_{i} \leq y_{i}, i=1,2, \ldots, n
$$

Matrix Notation

$$
\begin{gathered}
c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}=c^{T} x \\
c=\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right] \quad x=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
\end{gathered}
$$

Matrix Notation

$$
\begin{gathered}
a_{i 1} x_{i}+a_{i 2} x_{2}+\cdots+a_{i n} x_{n} \leq \alpha_{i} i=1, \ldots, s \\
\Longleftrightarrow \\
A x \leq a \\
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{s 1} & a_{s 2} & \ldots & a_{s n}
\end{array}\right] \quad a=\left[\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{s}
\end{array}\right]
\end{gathered}
$$

Matrix Notation

$$
\begin{gathered}
b_{i 1} x_{i}+b_{i 2} x_{2}+\cdots+b_{i n} x_{n}=\beta_{i} \quad i=1, \ldots, r \\
\Longleftrightarrow \\
B x=b \\
B=\left[\begin{array}{cccc}
b_{11} & b_{12} & \ldots & b_{1 n} \\
b_{21} & b_{22} & \ldots & b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{r 1} & b_{r 2} & \ldots & b_{r n}
\end{array}\right] \quad b=\left[\begin{array}{c}
\beta_{1} \\
\beta_{2} \\
\vdots \\
\beta_{r}
\end{array}\right]
\end{gathered}
$$

LP's Matrix Notation

$$
\begin{array}{ll}
\text { maximize } & c^{T} x \\
\text { subject to } & A x \leq a \text { and } B x=b
\end{array}
$$

LP's Matrix Notation

maximize $c^{T} x$
subject to $A x \leq a$ and $B x=b$

$$
\begin{gathered}
c=\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right], a=\left[\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{s}
\end{array}\right], b=\left[\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{r}
\end{array}\right] \\
A=\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
& \ddots & \\
a_{s 1} & \ldots & a_{s n}
\end{array}\right], B=\left[\begin{array}{ccc}
b_{11} & \ldots & b_{1 n} \\
& \ddots & \\
b_{r 1} & \ldots & b_{r n}
\end{array}\right]
\end{gathered}
$$

Applications of Linear Programing

A very short list:

Applications of Linear Programing

A very short list:

- resource allocation

Applications of Linear Programing

A very short list:

- resource allocation
- production scheduling

Applications of Linear Programing

A very short list:

- resource allocation
- production scheduling
- warehousing

Applications of Linear Programing

A very short list:

- resource allocation
- production scheduling
- warehousing
- layout design

Applications of Linear Programing

A very short list:

- resource allocation
- production scheduling
- warehousing
- layout design
- transportation scheduling

Applications of Linear Programing

A very short list:

- resource allocation
- production scheduling
- warehousing
- layout design
- transportation scheduling
- facility location

Applications of Linear Programing

A very short list:

- resource allocation
- production scheduling
- warehousing
- layout design
- transportation scheduling
- facility location
- supply chain management

Applications of Linear Programing

A very short list:

- resource allocation
- production scheduling
- warehousing
- layout design
- transportation scheduling
- facility location
- supply chain management
- Model selection

Applications of Linear Programing

A very short list:

- resource allocation
- production scheduling
- warehousing
- layout design
- transportation scheduling
- facility location
- supply chain management
- Model selection
- Machine Learning

Applications of Linear Programing

A very short list:

- resource allocation
- Compressed sensing
- production scheduling
- warehousing
- layout design
- transportation scheduling
- facility location
- supply chain management
- Model selection
- Machine Learning

Applications of Linear Programing

A very short list:

- resource allocation
- production scheduling
- warehousing
- layout design
- transportation scheduling
- facility location
- supply chain management
- Model selection
- Machine Learning
- Compressed sensing
- flight crew scheduling

Applications of Linear Programing

A very short list:

- resource allocation
- production scheduling
- warehousing
- layout design
- transportation scheduling
- facility location
- supply chain management
- Model selection
- Machine Learning
- Compressed sensing
- flight crew scheduling
- portfolio optimization

Applications of Linear Programing

A very short list:

- resource allocation
- production scheduling
- warehousing
- layout design
- transportation scheduling
- facility location
- supply chain management
- Model selection
- Machine Learning
- Compressed sensing
- flight crew scheduling
- portfolio optimization
- cash flow matching

Applications of Linear Programing

A very short list:

- resource allocation
- production scheduling
- warehousing
- layout design
- transportation scheduling
- facility location
- supply chain management
- Model selection
- Machine Learning
- Compressed sensing
- flight crew scheduling
- portfolio optimization
- cash flow matching
- currency exchange arbitrage

Applications of Linear Programing

A very short list:

- resource allocation
- production scheduling
- warehousing
- layout design
- transportation scheduling
- facility location
- supply chain management
- Model selection
- Machine Learning
- Compressed sensing
- flight crew scheduling
- portfolio optimization
- cash flow matching
- currency exchange arbitrage
- crop scheduling

Applications of Linear Programing

A very short list:

- resource allocation
- production scheduling
- warehousing
- layout design
- transportation scheduling
- facility location
- supply chain management
- Model selection
- Machine Learning
- Compressed sensing
- flight crew scheduling
- portfolio optimization
- cash flow matching
- currency exchange arbitrage
- crop scheduling
- diet balancing

Applications of Linear Programing

A very short list:

- resource allocation
- production scheduling
- warehousing
- layout design
- transportation scheduling
- facility location
- supply chain management
- Model selection
- Machine Learning
- Compressed sensing
- flight crew scheduling
- portfolio optimization
- cash flow matching
- currency exchange arbitrage
- crop scheduling
- diet balancing
- parameter estimation

Applications of Linear Programing

A very short list:

- resource allocation
- production scheduling
- warehousing
- layout design
- transportation scheduling
- facility location
- supply chain management
- Model selection
- Machine Learning
- Compressed sensing
- flight crew scheduling
- portfolio optimization
- cash flow matching
- currency exchange arbitrage
- crop scheduling
- diet balancing
- parameter estimation
- ...

Example: Plastic Cup Factory

A local family-owned plastic cup manufacturer wants to optimize their production mix in order to maximize their profit. They produce personalized beer mugs and champagne glasses. The profit on a case of beer mugs is $\$ 25$ while the profit on a case of champagne glasses is $\$ 20$. The cups are manufactured with a machine called a plastic extruder which feeds on plastic resins. Each case of beer mugs requires 20 lbs . of plastic resins to produce while champagne glasses require 12 lbs. per case. The daily supply of plastic resins is limited to at most 1800 pounds. About 15 cases of either product can be produced per hour. At the moment the family wants to limit their work day to 8 hours.

Example: Plastic Cup Factory

A local family-owned plastic cup manufacturer wants to optimize their production mix in order to maximize their profit. They produce personalized beer mugs and champagne glasses. The profit on a case of beer mugs is $\$ 25$ while the profit on a case of champagne glasses is $\$ 20$. The cups are manufactured with a machine called a plastic extruder which feeds on plastic resins. Each case of beer mugs requires 20 lbs . of plastic resins to produce while champagne glasses require 12 lbs. per case. The daily supply of plastic resins is limited to at most 1800 pounds. About 15 cases of either product can be produced per hour. At the moment the family wants to limit their work day to 8 hours.

Model this problem as an LP.

LP Modeling

The four basic steps of LP modeling.

LP Modeling

The four basic steps of LP modeling.
(1) Identify and label the decision variables.

LP Modeling

The four basic steps of LP modeling.
(1) Identify and label the decision variables.
(2) Determine the objective and use the decision variables to write an expression for the objective function as a linear function of the decision variables.

LP Modeling

The four basic steps of LP modeling.
(1) Identify and label the decision variables.
(2) Determine the objective and use the decision variables to write an expression for the objective function as a linear function of the decision variables.
(Determine the explicit constraints and write a functional expression for each of them as a linear equation/inequality in the decision variables.

LP Modeling

The four basic steps of LP modeling.
(1) Identify and label the decision variables.
(2) Determine the objective and use the decision variables to write an expression for the objective function as a linear function of the decision variables.
(3) Determine the explicit constraints and write a functional expression for each of them as a linear equation/inequality in the decision variables.
(9) Determine the implicit constraints and write them as a linear equation/inequality in the decision variables.

Decision Variables

Determining the decision variables is the most difficult part of modeling.

Decision Variables

Determining the decision variables is the most difficult part of modeling.

To determining these variables it is helpful to put yourself in the shoes of the decision maker, then ask What must he or she know to do their job.

Decision Variables

Determining the decision variables is the most difficult part of modeling.

To determining these variables it is helpful to put yourself in the shoes of the decision maker, then ask What must he or she know to do their job.

In the real world, the modeler often follows the decision maker around for days, weeks, even months at a time recording all of the actions and decisions this person must make.

Decision Variables

Determining the decision variables is the most difficult part of modeling.

To determining these variables it is helpful to put yourself in the shoes of the decision maker, then ask What must he or she know to do their job.

In the real world, the modeler often follows the decision maker around for days, weeks, even months at a time recording all of the actions and decisions this person must make.

In this phase of modeling, it is very important to resist the temptation to make assumptions about the nature of the solution.

Decision Variables

Determining the decision variables is the most difficult part of modeling.

To determining these variables it is helpful to put yourself in the shoes of the decision maker, then ask What must he or she know to do their job.

In the real world, the modeler often follows the decision maker around for days, weeks, even months at a time recording all of the actions and decisions this person must make.

In this phase of modeling, it is very important to resist the temptation to make assumptions about the nature of the solution.
This last point cannot be over emphasized. Even the most experienced modelers occasionally fall into this trap since such assumptions can enter in very subtle ways.

Decision Variables

A local family-owned plastic cup manufacturer wants to optimize their production mix in order to maximize their profit. They produce personalized beer mugs and champagne glasses. The profit on a case of beer mugs is $\$ 25$ while the profit on a case of champagne glasses is $\$ 20$. The cups are manufactured with a machine called a plastic extruder which feeds on plastic resins. Each case of beer mugs requires 20 lbs . of plastic resins to produce while champagne glasses require 12 lbs . per case. The daily supply of plastic resins is limited to at most 1800 pounds. About 15 cases of either product can be produced per hour. At the moment the family wants to limit their work day to 8 hours.

Decision Variables

A local family-owned plastic cup manufacturer wants to optimize their production mix in order to maximize their profit. They produce personalized beer mugs and champagne glasses. The profit on a case of beer mugs is $\$ 25$ while the profit on a case of champagne glasses is $\$ 20$. The cups are manufactured with a machine called a plastic extruder which feeds on plastic resins. Each case of beer mugs requires 20 lbs . of plastic resins to produce while champagne glasses require 12 lbs . per case. The daily supply of plastic resins is limited to at most 1800 pounds. About 15 cases of either product can be produced per hour. At the moment the family wants to limit their work day to 8 hours.
$B=$ number of cases of beer mugs produced daily

Decision Variables

A local family-owned plastic cup manufacturer wants to optimize their production mix in order to maximize their profit. They produce personalized beer mugs and champagne glasses. The profit on a case of beer mugs is $\$ 25$ while the profit on a case of champagne glasses is $\$ 20$. The cups are manufactured with a machine called a plastic extruder which feeds on plastic resins. Each case of beer mugs requires 20 lbs. of plastic resins to produce while champagne glasses require 12 lbs . per case. The daily supply of plastic resins is limited to at most 1800 pounds. About 15 cases of either product can be produced per hour. At the moment the family wants to limit their work day to 8 hours.
$B=$ number of cases of beer mugs produced daily
$C=$ number of cases of champagne glasses produced daily

Objective Function

A local family-owned plastic cup manufacturer wants to optimize their production mix in order to maximize their profit. They produce personalized beer mugs and champagne glasses. The profit on a case of beer mugs is $\$ 25$ while the profit on a case of champagne glasses is $\$ 20$. The cups are manufactured with a machine called a plastic extruder which feeds on plastic resins. Each case of beer mugs requires 20 lbs . of plastic resins to produce while champagne glasses require 12 lbs . per case. The daily supply of plastic resins is limited to at most 1800 pounds. About 15 cases of either product can be produced per hour. At the moment the family wants to limit their work day to 8 hours.

Objective Function

A local family-owned plastic cup manufacturer wants to optimize their production mix in order to maximize their profit. They produce personalized beer mugs and champagne glasses. The profit on a case of beer mugs is $\$ 25$ while the profit on a case of champagne glasses is $\$ 20$. The cups are manufactured with a machine called a plastic extruder which feeds on plastic resins. Each case of beer mugs requires 20 lbs . of plastic resins to produce while champagne glasses require 12 lbs . per case. The daily supply of plastic resins is limited to at most 1800 pounds. About 15 cases of either product can be produced per hour. At the moment the family wants to limit their work day to 8 hours.

Maximize Profit:

Objective Function

A local family-owned plastic cup manufacturer wants to optimize their production mix in order to maximize their profit. They produce personalized beer mugs and champagne glasses. The profit on a case of beer mugs is $\$ 25$ while the profit on a case of champagne glasses is $\$ 20$. The cups are manufactured with a machine called a plastic extruder which feeds on plastic resins. Each case of beer mugs requires 20 lbs. of plastic resins to produce while champagne glasses require 12 lbs . per case. The daily supply of plastic resins is limited to at most 1800 pounds. About 15 cases of either product can be produced per hour. At the moment the family wants to limit their work day to 8 hours.

Maximize Profit: Profit = Revenue - Costs

Objective Function

A local family-owned plastic cup manufacturer wants to optimize their production mix in order to maximize their profit. They produce personalized beer mugs and champagne glasses. The profit on a case of beer mugs is $\$ 25$ while the profit on a case of champagne glasses is $\$ 20$. The cups are manufactured with a machine called a plastic extruder which feeds on plastic resins. Each case of beer mugs requires 20 lbs . of plastic resins to produce while champagne glasses require 12 lbs . per case. The daily supply of plastic resins is limited to at most 1800 pounds. About 15 cases of either product can be produced per hour. At the moment the family wants to limit their work day to 8 hours.

Maximize Profit: Profit = Revenue - Costs

Profit $=25 B+20 C$

Explicit Constraints

A local family-owned plastic cup manufacturer wants to optimize their production mix in order to maximize their profit. They produce personalized beer mugs and champagne glasses. The profit on a case of beer mugs is $\$ 25$ while the profit on a case of champagne glasses is $\$ 20$. The cups are manufactured with a machine called a plastic extruder which feeds on plastic resins. Each case of beer mugs requires 20 lbs . of plastic resins to produce while champagne glasses require 12 lbs . per case. The daily supply of plastic resins is limited to at most 1800 pounds. About 15 cases of either product can be produced per hour. At the moment the family wants to limit their work day to 8 hours.

Explicit Constraints

A local family-owned plastic cup manufacturer wants to optimize their production mix in order to maximize their profit. They produce personalized beer mugs and champagne glasses. The profit on a case of beer mugs is $\$ 25$ while the profit on a case of champagne glasses is $\$ 20$. The cups are manufactured with a machine called a plastic extruder which feeds on plastic resins. Each case of beer mugs requires 20 lbs . of plastic resins to produce while champagne glasses require 12 lbs . per case. The daily supply of plastic resins is limited to at most 1800 pounds. About 15 cases of either product can be produced per hour. At the moment the family wants to limit their work day to 8 hours.

Resin:

Explicit Constraints

A local family-owned plastic cup manufacturer wants to optimize their production mix in order to maximize their profit. They produce personalized beer mugs and champagne glasses. The profit on a case of beer mugs is $\$ 25$ while the profit on a case of champagne glasses is $\$ 20$. The cups are manufactured with a machine called a plastic extruder which feeds on plastic resins. Each case of beer mugs requires 20 lbs . of plastic resins to produce while champagne glasses require 12 lbs . per case. The daily supply of plastic resins is limited to at most 1800 pounds. About 15 cases of either product can be produced per hour. At the moment the family wants to limit their work day to 8 hours.

Resin: $20 B+12 C \leq 1800$

Explicit Constraints

A local family-owned plastic cup manufacturer wants to optimize their production mix in order to maximize their profit. They produce personalized beer mugs and champagne glasses. The profit on a case of beer mugs is $\$ 25$ while the profit on a case of champagne glasses is $\$ 20$. The cups are manufactured with a machine called a plastic extruder which feeds on plastic resins. Each case of beer mugs requires 20 lbs . of plastic resins to produce while champagne glasses require 12 lbs . per case. The daily supply of plastic resins is limited to at most 1800 pounds. About 15 cases of either product can be produced per hour. At the moment the family wants to limit their work day to 8 hours.

Resin: $20 B+12 C \leq 1800$

Labor:

Explicit Constraints

A local family-owned plastic cup manufacturer wants to optimize their production mix in order to maximize their profit. They produce personalized beer mugs and champagne glasses. The profit on a case of beer mugs is $\$ 25$ while the profit on a case of champagne glasses is $\$ 20$. The cups are manufactured with a machine called a plastic extruder which feeds on plastic resins. Each case of beer mugs requires 20 lbs . of plastic resins to produce while champagne glasses require 12 lbs . per case. The daily supply of plastic resins is limited to at most 1800 pounds. About 15 cases of either product can be produced per hour. At the moment the family wants to limit their work day to 8 hours.

Resin: $20 B+12 C \leq 1800$

Labor: $B / 15+C / 15 \leq 8$

Implicit Constraints

A local family-owned plastic cup manufacturer wants to optimize their production mix in order to maximize their profit. They produce personalized beer mugs and champagne glasses. The profit on a case of beer mugs is $\$ 25$ while the profit on a case of champagne glasses is $\$ 20$. The cups are manufactured with a machine called a plastic extruder which feeds on plastic resins. Each case of beer mugs requires 20 lbs . of plastic resins to produce while champagne glasses require 12 lbs . per case. The daily supply of plastic resins is limited to at most 1800 pounds. About 15 cases of either product can be produced per hour. At the moment the family wants to limit their work day to 8 hours.

Implicit Constraints

A local family-owned plastic cup manufacturer wants to optimize their production mix in order to maximize their profit. They produce personalized beer mugs and champagne glasses. The profit on a case of beer mugs is $\$ 25$ while the profit on a case of champagne glasses is $\$ 20$. The cups are manufactured with a machine called a plastic extruder which feeds on plastic resins. Each case of beer mugs requires 20 lbs . of plastic resins to produce while champagne glasses require 12 lbs . per case. The daily supply of plastic resins is limited to at most 1800 pounds. About 15 cases of either product can be produced per hour. At the moment the family wants to limit their work day to 8 hours.

Implicit Constraints

A local family-owned plastic cup manufacturer wants to optimize their production mix in order to maximize their profit. They produce personalized beer mugs and champagne glasses. The profit on a case of beer mugs is $\$ 25$ while the profit on a case of champagne glasses is $\$ 20$. The cups are manufactured with a machine called a plastic extruder which feeds on plastic resins. Each case of beer mugs requires 20 lbs . of plastic resins to produce while champagne glasses require 12 lbs . per case. The daily supply of plastic resins is limited to at most 1800 pounds. About 15 cases of either product can be produced per hour. At the moment the family wants to limit their work day to 8 hours.

Implicit Constraints:
The decision variables are non-negative:

Implicit Constraints

A local family-owned plastic cup manufacturer wants to optimize their production mix in order to maximize their profit. They produce personalized beer mugs and champagne glasses. The profit on a case of beer mugs is $\$ 25$ while the profit on a case of champagne glasses is $\$ 20$. The cups are manufactured with a machine called a plastic extruder which feeds on plastic resins. Each case of beer mugs requires 20 lbs . of plastic resins to produce while champagne glasses require 12 lbs . per case. The daily supply of plastic resins is limited to at most 1800 pounds. About 15 cases of either product can be produced per hour. At the moment the family wants to limit their work day to 8 hours.

Implicit Constraints:
The decision variables are non-negative: $0 \leq B, 0 \leq C$

The Plastic Cup Factory LP Model

$$
\begin{array}{ll}
\text { maximize } & 25 B+20 C \\
\text { subject to } & 20 B+12 C \leq 1800 \\
& \frac{1}{15} B+\frac{1}{15} C \leq 8 \\
& 0 \leq B, C
\end{array}
$$

The Hardest Part of Modeling: Decision Variables

Once again, the first step in the modeling process, identification of the decision variables, is always the most difficult.

The Hardest Part of Modeling: Decision Variables

Once again, the first step in the modeling process, identification of the decision variables, is always the most difficult.

Never be afraid to add more decision variables either to clarify the model or to improve its flexibility. Modern LP software easily solves problems with thousands of variables on a laptop, tens of thousands of variables on a server, or even tens of millions of variables on specialized hardware and networks. It is more important to get a correct, easily interpretable, and flexible model then to provide a compact minimalist model.

The Hardest Part of Modeling: Decision Variables

Once again, the first step in the modeling process, identification of the decision variables, is always the most difficult.

Never be afraid to add more decision variables either to clarify the model or to improve its flexibility. Modern LP software easily solves problems with thousands of variables on a laptop, tens of thousands of variables on a server, or even tens of millions of variables on specialized hardware and networks. It is more important to get a correct, easily interpretable, and flexible model then to provide a compact minimalist model.

LP model solutions found in many texts fall into the trap of trying to provide the most compact minimalist model with the fewest possible variables and constraints.

The Hardest Part of Modeling: Decision Variables

Once again, the first step in the modeling process, identification of the decision variables, is always the most difficult.

Never be afraid to add more decision variables either to clarify the model or to improve its flexibility. Modern LP software easily solves problems with thousands of variables on a laptop, tens of thousands of variables on a server, or even tens of millions of variables on specialized hardware and networks. It is more important to get a correct, easily interpretable, and flexible model then to provide a compact minimalist model.

LP model solutions found in many texts fall into the trap of trying to provide the most compact minimalist model with the fewest possible variables and constraints. Do not repeat this error in developing your own models.

Graphical Solution of 2D LPs

We now graphically solve the LP model for the Plastic Cup Factory problem.

$$
\begin{array}{ll}
\text { maximize } & 25 B+20 C \\
\text { subject to } & 20 B+12 C \leq 1800 \\
& \frac{1}{15} B+\frac{1}{15} C \leq 8 \\
& 0 \leq B, C
\end{array}
$$

Graphical Solution of 2D LPs

Recap: Graphical Solution of 2D LPs

Recap: Graphical Solution of 2D LPs

Step 1: Graph each of the linear constraints indicating on which side of the constraint the feasible region must lie with an arrow. Don't forget the implicit constraints!

Recap: Graphical Solution of 2D LPs

Step 1: Graph each of the linear constraints indicating on which side of the constraint the feasible region must lie with an arrow. Don't forget the implicit constraints!

Step 2: Shade in the feasible region.

Recap: Graphical Solution of 2D LPs

Step 1: Graph each of the linear constraints indicating on which side of the constraint the feasible region must lie with an arrow. Don't forget the implicit constraints!

Step 2: Shade in the feasible region.
Step 3: Draw the gradient vector of the objective function.

Recap: Graphical Solution of 2D LPs

Step 1: Graph each of the linear constraints indicating on which side of the constraint the feasible region must lie with an arrow. Don't forget the implicit constraints!

Step 2: Shade in the feasible region.
Step 3: Draw the gradient vector of the objective function.
Step 4: Place a straight-edge perpendicular to the gradient vector.

Recap: Graphical Solution of 2D LPs

Step 1: Graph each of the linear constraints indicating on which side of the constraint the feasible region must lie with an arrow. Don't forget the implicit constraints!

Step 2: Shade in the feasible region.
Step 3: Draw the gradient vector of the objective function.
Step 4: Place a straight-edge perpendicular to the gradient vector. Move the straight-edge in the direction of the gradient vector for maximization (or in the opposite direction for minimization).

Recap: Graphical Solution of 2D LPs

Step 1: Graph each of the linear constraints indicating on which side of the constraint the feasible region must lie with an arrow. Don't forget the implicit constraints!

Step 2: Shade in the feasible region.
Step 3: Draw the gradient vector of the objective function.
Step 4: Place a straight-edge perpendicular to the gradient vector. Move the straight-edge in the direction of the gradient vector for maximization (or in the opposite direction for minimization).
Move to the last point for which the straight-edge intersects the feasible region.

Recap: Graphical Solution of 2D LPs

Step 1: Graph each of the linear constraints indicating on which side of the constraint the feasible region must lie with an arrow. Don't forget the implicit constraints!

Step 2: Shade in the feasible region.
Step 3: Draw the gradient vector of the objective function.
Step 4: Place a straight-edge perpendicular to the gradient vector. Move the straight-edge in the direction of the gradient vector for maximization (or in the opposite direction for minimization).
Move to the last point for which the straight-edge intersects the feasible region.
Step 5: The set of points of intersection between the straight-edge and the feasible region is the set of solutions to the LP. Compute these points precisely along with the associated optimal value.

Sensitivity Analysis

Problems with the input data for real world LPs.

Sensitivity Analysis

Problems with the input data for real world LPs.

- measurement error

Sensitivity Analysis

Problems with the input data for real world LPs.

- measurement error
- changes over time

Sensitivity Analysis

Problems with the input data for real world LPs.

- measurement error
- changes over time
- only an educated guess

Sensitivity Analysis

Problems with the input data for real world LPs.

- measurement error
- changes over time
- only an educated guess
- model error

Sensitivity Analysis

Problems with the input data for real world LPs.

- measurement error
- changes over time
- only an educated guess
- model error
- prospective studies

Sensitivity Analysis

Problems with the input data for real world LPs.

- measurement error
- changes over time
- only an educated guess
- model error
- prospective studies
- scenario analysis

Sensitivity Analysis

Problems with the input data for real world LPs.

- measurement error
- changes over time
- only an educated guess
- model error
- prospective studies
- scenario analysis
- LP approximates and nonlinear model/problem

Sensitivity Analysis

Problems with the input data for real world LPs.

- measurement error
- changes over time
- only an educated guess
- model error
- prospective studies
- scenario analysis
- LP approximates and nonlinear model/problem

We need to be able to study how the optimal value and solution change as the problem input data change.

The Optimal Value Function

$$
\begin{array}{ll}
v\left(\epsilon_{1}, \epsilon_{2}\right)= & \text { maximize } \\
\text { subject to } & 25 B+20 C+12 C \leq 1800+\epsilon_{1} \\
& \frac{1}{15} B+\frac{1}{15} C \leq 8+\epsilon_{2} \\
& 0 \leq B, C
\end{array}
$$

Vertex Solutions

Vertex Solutions

The optimal solution lies at a "corner point" or "vertex" of the feasible region.

Vertex Solutions

Conjecture: For a small range of perturbations to the resources, the vertex associated with the current optimal solution moves but remains optimal.

$$
\begin{aligned}
& v\left(\epsilon_{1}, \epsilon_{2}\right)=\text { maximize } 25 B+20 C \\
& \text { subject to } 20 B+12 C \leq 1800+\epsilon_{1} \\
& \frac{1}{15} B+\frac{1}{15} C \leq 8+\epsilon_{2} \\
& 0 \leq B, C
\end{aligned}
$$

Vertex Solutions

The conjecture implies that the solution to the perturbed LP lies at the intersection of the two lines $20 B+12 C=1800+\epsilon_{1}$ and $\frac{1}{15} B+\frac{1}{15} C=8+\epsilon_{2}$ for small values of ϵ_{1} and ϵ_{2}; namely

Vertex Solutions

The conjecture implies that the solution to the perturbed LP lies at the intersection of the two lines $20 B+12 C=1800+\epsilon_{1}$ and $\frac{1}{15} B+\frac{1}{15} C=8+\epsilon_{2}$ for small values of ϵ_{1} and ϵ_{2}; namely

$$
\begin{aligned}
& B=45-\frac{45}{2} \epsilon_{2}+\frac{1}{8} \epsilon_{1} \\
& C=75+\frac{75}{2} \epsilon_{2}-\frac{1}{8} \epsilon_{1}
\end{aligned}
$$

Vertex Solutions

The conjecture implies that the solution to the perturbed LP lies at the intersection of the two lines $20 B+12 C=1800+\epsilon_{1}$ and $\frac{1}{15} B+\frac{1}{15} C=8+\epsilon_{2}$ for small values of ϵ_{1} and ϵ_{2}; namely

$$
\begin{gathered}
B=45-\frac{45}{2} \epsilon_{2}+\frac{1}{8} \epsilon_{1} \\
C=75+\frac{75}{2} \epsilon_{2}-\frac{1}{8} \epsilon_{1} \\
v\left(\epsilon_{1}, \epsilon_{2}\right)=25 B+20 C
\end{gathered}
$$

Vertex Solutions

The conjecture implies that the solution to the perturbed LP lies at the intersection of the two lines $20 B+12 C=1800+\epsilon_{1}$ and $\frac{1}{15} B+\frac{1}{15} C=8+\epsilon_{2}$ for small values of ϵ_{1} and ϵ_{2}; namely

$$
\begin{gathered}
B=45-\frac{45}{2} \epsilon_{2}+\frac{1}{8} \epsilon_{1} \\
C=75+\frac{75}{2} \epsilon_{2}-\frac{1}{8} \epsilon_{1} \\
v\left(\epsilon_{1}, \epsilon_{2}\right)=25 B+20 C=2625+\frac{375}{2} \epsilon_{2}+\frac{5}{8} \epsilon_{1} .
\end{gathered}
$$

Vertex Solutions

The conjecture implies that the solution to the perturbed LP lies at the intersection of the two lines $20 B+12 C=1800+\epsilon_{1}$ and $\frac{1}{15} B+\frac{1}{15} C=8+\epsilon_{2}$ for small values of ϵ_{1} and ϵ_{2}; namely

$$
\begin{gathered}
B=45-\frac{45}{2} \epsilon_{2}+\frac{1}{8} \epsilon_{1} \\
C=75+\frac{75}{2} \epsilon_{2}-\frac{1}{8} \epsilon_{1} \\
v\left(\epsilon_{1}, \epsilon_{2}\right)=25 B+20 C=2625+\frac{375}{2} \epsilon_{2}+\frac{5}{8} \epsilon_{1} .
\end{gathered}
$$

It can be verified by direct computation that this indeed yields the optimal solution for small values of ϵ_{1} and ϵ_{2}.

Differentiability of the Optimal Value Function!

The optimal value function is differentiable for small values of ϵ_{1} and ϵ_{2}.

Differentiability of the Optimal Value Function!

The optimal value function is differentiable for small values of ϵ_{1} and ϵ_{2}.

$$
v\left(\epsilon_{1}, \epsilon_{2}\right)=2625+\frac{375}{2} \epsilon_{2}+\frac{5}{8} \epsilon_{1}
$$

Differentiability of the Optimal Value Function!

The optimal value function is differentiable for small values of ϵ_{1} and ϵ_{2}.

$$
v\left(\epsilon_{1}, \epsilon_{2}\right)=2625+\frac{375}{2} \epsilon_{2}+\frac{5}{8} \epsilon_{1}
$$

$$
\nabla v\left(\epsilon_{1}, \epsilon_{2}\right)=\left[\begin{array}{c}
\frac{5}{8} \\
\frac{375}{2}
\end{array}\right]
$$

Differentiability of the Optimal Value Function!

The optimal value function is differentiable for small values of ϵ_{1} and ϵ_{2}.

$$
v\left(\epsilon_{1}, \epsilon_{2}\right)=2625+\frac{375}{2} \epsilon_{2}+\frac{5}{8} \epsilon_{1}
$$

$$
\nabla v\left(\epsilon_{1}, \epsilon_{2}\right)=\left[\begin{array}{c}
\frac{5}{8} \\
\frac{375}{2}
\end{array}\right]
$$

The components of the gradient are called the marginal values for the resources.

The Theory of Linear Economic Models

Linear theory of production
John von Neumann, 1903-1957

The Theory of Linear Economic Models

Linear theory of production
John von Neumann, 1903-1957
Physics, Math, CS, Econ, Stats

The Theory of Linear Economic Models

Linear theory of production
John von Neumann, 1903-1957
Physics, Math, CS, Econ, Stats
Oskar Morgenstern, 1902-1977

The Theory of Linear Economic Models

Linear theory of production
John von Neumann, 1903-1957
Physics, Math, CS, Econ, Stats
Oskar Morgenstern, 1902-1977
Econ (Game Theory)

The Theory of Linear Economic Models

Linear theory of production
John von Neumann, 1903-1957
Physics, Math, CS, Econ, Stats
Oskar Morgenstern, 1902-1977
Econ (Game Theory)
George Danzig, 1914-2005

The Theory of Linear Economic Models

Linear theory of production
John von Neumann, 1903-1957
Physics, Math, CS, Econ, Stats
Oskar Morgenstern, 1902-1977
Econ (Game Theory)
George Danzig, 1914-2005
Stats, Math, CS, Econ

The Theory of Linear Economic Models

Linear theory of production
John von Neumann, 1903-1957
Physics, Math, CS, Econ, Stats
Oskar Morgenstern, 1902-1977
Econ (Game Theory)
George Danzig, 1914-2005
Stats, Math, CS, Econ
Leonid Kantorovich, 1912-1986, Nobel Prize 1975

The Theory of Linear Economic Models

Linear theory of production
John von Neumann, 1903-1957
Physics, Math, CS, Econ, Stats
Oskar Morgenstern, 1902-1977
Econ (Game Theory)
George Danzig, 1914-2005
Stats, Math, CS, Econ
Leonid Kantorovich, 1912-1986, Nobel Prize 1975
Math, Physics, Econ

The Theory of Linear Economic Models

Linear theory of production
John von Neumann, 1903-1957
Physics, Math, CS, Econ, Stats
Oskar Morgenstern, 1902-1977
Econ (Game Theory)
George Danzig, 1914-2005
Stats, Math, CS, Econ
Leonid Kantorovich, 1912-1986, Nobel Prize 1975
Math, Physics, Econ
Tjalling Koopmans, 1910-1985, Nobel Prize 1975

The Theory of Linear Economic Models

Linear theory of production
John von Neumann, 1903-1957
Physics, Math, CS, Econ, Stats
Oskar Morgenstern, 1902-1977
Econ (Game Theory)
George Danzig, 1914-2005
Stats, Math, CS, Econ
Leonid Kantorovich, 1912-1986, Nobel Prize 1975
Math, Physics, Econ
Tjalling Koopmans, 1910-1985, Nobel Prize 1975
Econ, Physics, Math, Stats

The Production Model

The Production Model

The products are the raw materials reconfigured to look different.

The Production Model

The products are the raw materials reconfigured to look different. Profit is the difference between the purchase price of the raw materials and the sale price of their reconfigured form as products.

The Production Model

The products are the raw materials reconfigured to look different. Profit is the difference between the purchase price of the raw materials and the sale price of their reconfigured form as products.
Making a profit means that you sell the raw materials for more than you paid for them.

The Production Model

The products are the raw materials reconfigured to look different.
Profit is the difference between the purchase price of the raw materials and the sale price of their reconfigured form as products.
Making a profit means that you sell the raw materials for more than you paid for them.
On a per unit basis, by how much does the production process increase the value of the raw materials?

The Optimal Value Function and Marginal Values

On a per unit basis, by how much does the production process increase the value of the raw materials?

The Optimal Value Function and Marginal Values

On a per unit basis, by how much does the production process increase the value of the raw materials?

$$
\begin{aligned}
& v\left(\epsilon_{1}, \epsilon_{2}\right)= \text { maximize } \quad 25 B+20 C \\
& \text { subject to } \quad 20 B+12 C \leq 1800+\epsilon_{1} \\
& \frac{1}{15} B+\frac{1}{15} C \leq 8+\epsilon_{2} \\
& 0 \leq B, C
\end{aligned}
$$

The Optimal Value Function and Marginal Values

On a per unit basis, by how much does the production process increase the value of the raw materials?

$$
\begin{array}{ll}
v\left(\epsilon_{1}, \epsilon_{2}\right)= & \text { maximize } \quad 25 B+20 C \\
\text { subject to } \quad 20 B+12 C \leq 1800+\epsilon_{1} \\
& \frac{1}{15} B+\frac{1}{15} C \leq 8+\epsilon_{2} \\
& 0 \leq B, C
\end{array}
$$

Solution: The marginal values!

$$
\nabla v\left(\epsilon_{1}, \epsilon_{2}\right)=\left[\begin{array}{c}
5 / 8 \\
375 / 2
\end{array}\right]
$$

Hidden Hand of the Market Place: Duality

In the market place there is competition for raw materials, or the inputs to production. This collective competition is the hidden hand that sets the price for goods in the market place.

Hidden Hand of the Market Place: Duality

In the market place there is competition for raw materials, or the inputs to production. This collective competition is the hidden hand that sets the price for goods in the market place.

Is there a mathematical model for how these prices are set?

Hidden Hand of the Market Place: Duality

In the market place there is competition for raw materials, or the inputs to production. This collective competition is the hidden hand that sets the price for goods in the market place.

Is there a mathematical model for how these prices are set?
Let us think of the market as a separate agent in the market place. It is the agent that owns and sells the raw materials of production.

Hidden Hand of the Market Place: Duality

In the market place there is competition for raw materials, or the inputs to production. This collective competition is the hidden hand that sets the price for goods in the market place.

Is there a mathematical model for how these prices are set?
Let us think of the market as a separate agent in the market place. It is the agent that owns and sells the raw materials of production.

The goal of the market is to make the most money possible from its resources by setting the highest prices possible for them.

Hidden Hand of the Market Place: Duality

In the market place there is competition for raw materials, or the inputs to production. This collective competition is the hidden hand that sets the price for goods in the market place.

Is there a mathematical model for how these prices are set?
Let us think of the market as a separate agent in the market place. It is the agent that owns and sells the raw materials of production.

The goal of the market is to make the most money possible from its resources by setting the highest prices possible for them.

The market does not want to put the producers out of business, it just wants to take all of their profit.

Hidden Hand of the Market Place: Duality

In the market place there is competition for raw materials, or the inputs to production. This collective competition is the hidden hand that sets the price for goods in the market place.

Is there a mathematical model for how these prices are set?
Let us think of the market as a separate agent in the market place. It is the agent that owns and sells the raw materials of production.

The goal of the market is to make the most money possible from its resources by setting the highest prices possible for them.

The market does not want to put the producers out of business, it just wants to take all of their profit.

How can we model this mathematically?

Hidden Hand of the Market Place: Duality

We answer this question in the context of the Plastic Cup Factory.

Hidden Hand of the Market Place: Duality

We answer this question in the context of the Plastic Cup Factory.

A local family-owned plastic cup manufacturer wants to optimize their production mix in order to maximize their profit. They produce personalized beer mugs and champagne glasses. The profit on a case of beer mugs is $\$ 25$ while the profit on a case of champagne glasses is $\$ 20$. The cups are manufactured with a machine called a plastic extruder which feeds on plastic resins. Each case of beer mugs requires 20 lbs . of plastic resins to produce while champagne glasses require 12 lbs . per case. The daily supply of plastic resins is limited to at most 1800 pounds. About 15 cases of either product can be produced per hour. At the moment the family wants to limit their work day to 8 hours.

Hidden Hand of the Market Place: Duality

By how much should the market increase the sale price of plastic resin and hourly labor in order to wipe out the profit for the Plastic Cup Factory?

Hidden Hand of the Market Place: Duality

By how much should the market increase the sale price of plastic resin and hourly labor in order to wipe out the profit for the Plastic Cup Factory?

Define

$$
\begin{aligned}
& 0 \leq y_{1}=\text { price increase for a pound of resin } \\
& 0 \leq y_{2}=\text { price increase for an hour of labor }
\end{aligned}
$$

Hidden Hand of the Market Place: Duality

By how much should the market increase the sale price of plastic resin and hourly labor in order to wipe out the profit for the Plastic Cup Factory?

Define

$$
\begin{aligned}
& 0 \leq y_{1}=\text { price increase for a pound of resin } \\
& 0 \leq y_{2}=\text { price increase for an hour of labor }
\end{aligned}
$$

These price increases should wipe out the per unit profitability for cases of both beer mugs and champagne glasses.

Hidden Hand of the Market Place: Duality

production cost increase \geq current profit

Hidden Hand of the Market Place: Duality

production cost increase \geq current profit

Beer Mugs: \quad cost increase $=$

Hidden Hand of the Market Place: Duality

production cost increase \geq current profit

$$
\text { Beer Mugs: } \quad \text { cost increase }=20 y_{1}+\frac{1}{15} y_{2}
$$

Hidden Hand of the Market Place: Duality

production cost increase \geq current profit
current profit
Beer Mugs: \quad cost increase $=20 y_{1}+\frac{1}{15} y_{2} \geq 25$

Hidden Hand of the Market Place: Duality

production cost increase \geq current profit
current profit
Beer Mugs: \quad cost increase $=20 y_{1}+\frac{1}{15} y_{2} \geq 25$

Champagne Glasses:

Hidden Hand of the Market Place: Duality

production cost increase \geq current profit

current profit

Beer Mugs: \quad cost increase $=20 y_{1}+\frac{1}{15} y_{2} \geq 25$

Champagne Glasses: cost increase $=$

Hidden Hand of the Market Place: Duality

production cost increase \geq current profit

current profit

Beer Mugs: \quad cost increase $=20 y_{1}+\frac{1}{15} y_{2} \geq 25$

Champagne Glasses: cost increase $=12 y_{1}+\frac{1}{15} y_{2}$

Hidden Hand of the Market Place: Duality

production cost increase \geq current profit
current profit
Beer Mugs: \quad cost increase $=20 y_{1}+\frac{1}{15} y_{2} \geq 25$

Champagne Glasses: cost increase $=12 y_{1}+\frac{1}{15} y_{2} \geq 20$

Hidden Hand of the Market Place: Duality

Now minimize the total increase in the cost of raw materials subject to wiping out the producer's profit. Hopefully this will keep the Plastic Cup Factory in business.

Hidden Hand of the Market Place: Duality

Now minimize the total increase in the cost of raw materials subject to wiping out the producer's profit. Hopefully this will keep the Plastic Cup Factory in business.
minimize $1800 y_{1}+8 y_{2}$

Hidden Hand of the Market Place: Duality

Now minimize the total increase in the cost of raw materials subject to wiping out the producer's profit. Hopefully this will keep the Plastic Cup Factory in business.

$$
\text { minimize } 1800 y_{1}+8 y_{2}
$$

Rewriting the Market's price increase problem we get

Hidden Hand of the Market Place: Duality

Now minimize the total increase in the cost of raw materials subject to wiping out the producer's profit. Hopefully this will keep the Plastic Cup Factory in business.

$$
\text { minimize } 1800 y_{1}+8 y_{2}
$$

Rewriting the Market's price increase problem we get

$$
\begin{array}{cl}
\text { minimize } & 1800 y_{1}+8 y_{2} \\
\text { subject to } & 20 y_{1}+y_{2} / 15 \geq 25 \\
& 12 y_{1}+y_{2} / 15 \geq 20 \\
& 0 \leq y_{1}, y_{2}
\end{array}
$$

Hidden Hand of the Market Place: Duality

Now minimize the total increase in the cost of raw materials subject to wiping out the producer's profit. Hopefully this will keep the Plastic Cup Factory in business.

$$
\text { minimize } 1800 y_{1}+8 y_{2}
$$

Rewriting the Market's price increase problem we get

$$
\begin{array}{cl}
\text { minimize } & 1800 y_{1}+8 y_{2} \\
\text { subject to } & 20 y_{1}+y_{2} / 15 \geq 25 \\
& 12 y_{1}+y_{2} / 15 \geq 20 \\
& 0 \leq y_{1}, y_{2}
\end{array}
$$

This is another linear program!

Hidden Hand of the Market Place: Duality

Now minimize the total increase in the cost of raw materials subject to wiping out the producer's profit. Hopefully this will keep the Plastic Cup Factory in business.

$$
\text { minimize } 1800 y_{1}+8 y_{2}
$$

Rewriting the Market's price increase problem we get

$$
\begin{array}{cl}
\text { minimize } & 1800 y_{1}+8 y_{2} \\
\text { subject to } & 20 y_{1}+y_{2} / 15 \geq 25 \\
& 12 y_{1}+y_{2} / 15 \geq 20 \\
& 0 \leq y_{1}, y_{2}
\end{array}
$$

This is another linear program!
Let us compare this LP with the original LP.

Linear Programming Duality

\square

Linear Programming Duality

Primal:

Linear Programming Duality

$$
\begin{array}{lll}
\text { Primal: } & \max & 25 B+20 C \\
& \text { s.t. } & 20 B+12 C \leq 1800 \\
& & \frac{1}{15} B+\frac{1}{15} C \leq 8 \\
& & 0 \leq B, C
\end{array}
$$

Linear Programming Duality

$$
\begin{array}{lll}
\text { Primal: } & \max & 25 B+20 C \\
& \text { s.t. } & 20 B+12 C \leq 1800 \\
& & \frac{1}{15} B+\frac{1}{15} C \leq 8 \\
& & 0 \leq B, C
\end{array}
$$

Dual:

Linear Programming Duality

Primal: $\max 25 B+20 C$

$$
\begin{array}{ll}
\text { s.t. } & 20 B+12 C \leq 1800 \\
& \frac{1}{15} B+\frac{1}{15} C \leq 8 \\
& 0 \leq B, C
\end{array}
$$

Dual: min $1800 y_{1}+8 y_{2}$
s.t. $\quad 20 y_{1}+\frac{1}{15} y_{2} \geq 25$
$12 y_{1}+\frac{1}{15} y_{2} \geq 20$
$0 \leq y_{1}, y_{2}$

What is the Solution to the Dual?

Recall the goal of the Market:

What is the Solution to the Dual?

Recall the goal of the Market:
The market wants to make the most money possible from its resources by setting the highest prices it can without driving the producers out of business.

What is the Solution to the Dual?

Recall the goal of the Market:
The market wants to make the most money possible from its resources by setting the highest prices it can without driving the producers out of business.

What is the Solution to the Dual?

Recall the goal of the Market:
The market wants to make the most money possible from its resources by setting the highest prices it can without driving the producers out of business.

The marginal values give the per unit increase in the value of the resources due to the production process.

What is the Solution to the Dual?

Recall the goal of the Market:
The market wants to make the most money possible from its resources by setting the highest prices it can without driving the producers out of business.

The marginal values give the per unit increase in the value of the resources due to the production process.

The marginal values should be the solution to the dual!

What is the Solution to the Dual?

Recall the goal of the Market:
The market wants to make the most money possible from its resources by setting the highest prices it can without driving the producers out of business.

The marginal values give the per unit increase in the value of the resources due to the production process.

The marginal values should be the solution to the dual! And indeed, they are the solution!

Linear Programming Duality: Matrix Notation

\mathcal{P}
Primal: $\max c^{\top} x$

$$
\begin{aligned}
& \text { s.t. } \quad A x \leq b \\
& 0 \leq x \\
& \text { s.t. } \quad A^{T} y \geq c \\
& 0 \leq y
\end{aligned}
$$

Dual: $\min b^{T} y$

The Weak Duality Theorem of Linear Programming

Theorem: [Weak Duality Theorem]

The Weak Duality Theorem of Linear Programming

Theorem: [Weak Duality Theorem]
If $x \in \mathbb{R}^{n}$ is feasible for \mathcal{P} and $y \in \mathbb{R}^{m}$ is feasible for \mathcal{D}, then

$$
c^{T} x \leq y^{\top} A x \leq b^{T} y .
$$

The Weak Duality Theorem of Linear Programming

Theorem: [Weak Duality Theorem]
If $x \in \mathbb{R}^{n}$ is feasible for \mathcal{P} and $y \in \mathbb{R}^{m}$ is feasible for \mathcal{D}, then

$$
c^{T} x \leq y^{T} A x \leq b^{T} y .
$$

Thus, if \mathcal{P} is unbounded, then \mathcal{D} is necessarily infeasible, and if \mathcal{D} is unbounded, then \mathcal{P} is necessarily infeasible.

The Weak Duality Theorem of Linear Programming

Theorem: [Weak Duality Theorem]
If $x \in \mathbb{R}^{n}$ is feasible for \mathcal{P} and $y \in \mathbb{R}^{m}$ is feasible for \mathcal{D}, then

$$
c^{T} x \leq y^{T} A x \leq b^{T} y .
$$

Thus, if \mathcal{P} is unbounded, then \mathcal{D} is necessarily infeasible, and if \mathcal{D} is unbounded, then \mathcal{P} is necessarily infeasible.

Moreover, if $c^{\top} \bar{x}=b^{T} \bar{y}$ with \bar{x} feasible for \mathcal{P} and \bar{y} feasible for \mathcal{D}, then \bar{x} must solve \mathcal{P} and \bar{y} must solve \mathcal{D}.

The Weak Duality Theorem of Linear Programming

Proof:

The Weak Duality Theorem of Linear Programming

Proof:

$$
c^{T} x=\sum_{j=1}^{n} c_{j} x_{j}
$$

The Weak Duality Theorem of Linear Programming

Proof:

$$
\begin{aligned}
c^{T} x & =\sum_{j=1}^{n} c_{j} x_{j} \\
& \leq \sum_{j=1}^{n}\left(\sum_{i=1}^{m} a_{i j} y_{i}\right) x_{j} \quad\left[0 \leq x_{j}, c_{j} \leq \sum_{i=1}^{m} a_{i j} y_{i} \Rightarrow c_{j} x_{j} \leq\left(\sum_{i=1}^{m} a_{i j} y_{i}\right) x_{j}\right]
\end{aligned}
$$

The Weak Duality Theorem of Linear Programming

Proof:

$$
\begin{aligned}
c^{T} x & =\sum_{j=1}^{n} c_{j} x_{j} \\
& \leq \sum_{j=1}^{n}\left(\sum_{i=1}^{m} a_{i j} y_{i}\right) x_{j} \quad\left[0 \leq x_{j}, c_{j} \leq \sum_{i=1}^{m} a_{i j} y_{i} \Rightarrow c_{j} x_{j} \leq\left(\sum_{i=1}^{m} a_{i j} y_{i}\right) x_{j}\right] \\
& =y^{\top} A x
\end{aligned}
$$

The Weak Duality Theorem of Linear Programming

Proof:

$$
\begin{aligned}
c^{T} x & =\sum_{j=1}^{n} c_{j} x_{j} \\
& \leq \sum_{j=1}^{n}\left(\sum_{i=1}^{m} a_{i j} y_{i}\right) x_{j} \quad\left[0 \leq x_{j}, c_{j} \leq \sum_{i=1}^{m} a_{i j} y_{i} \Rightarrow c_{j} x_{j} \leq\left(\sum_{i=1}^{m} a_{i j} y_{i}\right) x_{j}\right] \\
& =y^{\top} A x \\
& =\sum_{i=1}^{m}\left(\sum_{j=1}^{n} a_{i j} x_{j}\right) y_{i}
\end{aligned}
$$

The Weak Duality Theorem of Linear Programming

Proof:

$$
\begin{aligned}
c^{T} x & =\sum_{j=1}^{n} c_{j} x_{j} \\
& \leq \sum_{j=1}^{n}\left(\sum_{i=1}^{m} a_{i j} y_{i}\right) x_{j} \quad\left[0 \leq x_{j}, c_{j} \leq \sum_{i=1}^{m} a_{i j} y_{i} \Rightarrow c_{j} x_{j} \leq\left(\sum_{i=1}^{m} a_{i j} y_{i}\right) x_{j}\right] \\
& =y^{T} A x \\
& =\sum_{i=1}^{m}\left(\sum_{j=1}^{n} a_{i j} x_{j}\right) y_{i} \\
& \leq \sum_{i=1}^{m} b_{i} y_{i} \quad\left[0 \leq y_{i}, \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \Rightarrow\left(\sum_{j=1}^{n} a_{i j} x_{j}\right) y_{i} \leq b_{i} y_{i}\right]
\end{aligned}
$$

The Weak Duality Theorem of Linear Programming

Proof:

$$
\begin{array}{rlr}
c^{T} x & =\sum_{j=1}^{n} c_{j} x_{j} & \\
& \leq \sum_{j=1}^{n}\left(\sum_{i=1}^{m} a_{i j} y_{i}\right) x_{j} \quad\left[0 \leq x_{j}, c_{j} \leq \sum_{i=1}^{m} a_{i j} y_{i} \Rightarrow c_{j} x_{j} \leq\left(\sum_{i=1}^{m} a_{i j} y_{i}\right) x_{j}\right] \\
& =y^{T} A x & \\
& =\sum_{i=1}^{m}\left(\sum_{j=1}^{n} a_{i j} x_{j}\right) y_{i} & \\
& \leq \sum_{i=1}^{m} b_{i} y_{i} & {\left[0 \leq y_{i}, \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \Rightarrow\left(\sum_{j=1}^{n} a_{i j} x_{j}\right) y_{i} \leq b_{i} y_{i}\right]} \\
& =b^{T} y &
\end{array}
$$

Test the WDT on the Plastic Cup Factory

Test the WDT on the Plastic Cup Factory

$$
\begin{aligned}
\text { Optimal Solution } & =\left[\begin{array}{c}
45 \\
75
\end{array}\right] \\
\text { Marginal Values } & =\left[\begin{array}{c}
5 / 8 \\
375 / 2
\end{array}\right]
\end{aligned}
$$

Test the WDT on the Plastic Cup Factory

$$
\begin{aligned}
\text { Optimal Solution } & =\left[\begin{array}{l}
45 \\
75
\end{array}\right]
\end{aligned} \quad \begin{array}{lll}
\text { Dual: } & \begin{array}{l}
\min \\
\text { s.t. }
\end{array} \begin{array}{l}
1800 y_{1}+8 y_{2} \\
20 y_{1}+(1 / 15) y_{2} \geq 25
\end{array} \\
\text { Marginal Values } & =\left[\begin{array}{c}
5 / 8 \\
375 / 2
\end{array}\right] & \begin{array}{l}
12 y_{1}+(1 / 15) y_{2} \geq 20 \\
0 \leq y_{1}, y_{2}
\end{array}
\end{array}
$$

Test the WDT on the Plastic Cup Factory

$$
\begin{aligned}
\text { Optimal Solution } & =\left[\begin{array}{c}
45 \\
75
\end{array}\right]
\end{aligned} \quad \begin{array}{lll}
\text { Dual: } & \min & 1800 y_{1}+8 y_{2} \\
\text { s.t. } & 20 y_{1}+(1 / 15) y_{2} \geq 25 \\
\text { Marginal Values } & =\left[\begin{array}{l}
5 / 8 \\
375 / 2
\end{array}\right] & \\
12 y_{1}+(1 / 15) y_{2} \geq 20 \\
0 \leq y_{1}, y_{2}
\end{array}
$$

Dual feasibility of the marginal values:

Test the WDT on the Plastic Cup Factory

$$
\begin{aligned}
\text { Optimal Solution } & =\left[\begin{array}{l}
45 \\
75
\end{array}\right]
\end{aligned} \quad \begin{array}{ll}
\text { Dual: } & \begin{array}{l}
\min \\
\text { s.t. }
\end{array} \begin{array}{l}
1800 y_{1}+8 y_{2} \\
20 y_{1}+(1 / 15) y_{2} \geq 25
\end{array} \\
\text { Marginal Values } & =\left[\begin{array}{c}
5 / 8 \\
375 / 2
\end{array}\right]
\end{array}
$$

Dual feasibility of the marginal values:

$$
0 \leq \frac{5}{8}
$$

Test the WDT on the Plastic Cup Factory

$$
\begin{aligned}
\text { Optimal Solution } & =\left[\begin{array}{l}
45 \\
75
\end{array}\right] \\
\text { Marginal Values } & =\left[\begin{array}{c}
5 / 8 \\
375 / 2
\end{array}\right]
\end{aligned}
$$

Dual: min $1800 y_{1}+8 y_{2}$

$$
\begin{array}{ll}
\text { s.t. } & 20 y_{1}+(1 / 15) y_{2} \geq 25 \\
& 12 y_{1}+(1 / 15) y_{2} \geq 20 \\
& 0 \leq y_{1}, y_{2}
\end{array}
$$

Dual feasibility of the marginal values:

$$
0 \leq \frac{5}{8}, 0 \leq \frac{375}{2},
$$

Test the WDT on the Plastic Cup Factory

$$
\begin{aligned}
\text { Optimal Solution } & =\left[\begin{array}{l}
45 \\
75
\end{array}\right]
\end{aligned} \quad \begin{array}{ll}
\text { Dual: } & \begin{array}{l}
\min \\
\text { s.t. }
\end{array} \begin{array}{l}
1800 y_{1}+8 y_{2} \\
20 y_{1}+(1 / 15) y_{2} \geq 25
\end{array} \\
\text { Marginal Values } & =\left[\begin{array}{c}
5 / 8 \\
375 / 2
\end{array}\right]
\end{array}
$$

Dual feasibility of the marginal values:

$$
0 \leq \frac{5}{8}, \quad 0 \leq \frac{375}{2}, \quad 20 \cdot \frac{5}{8}+\frac{1}{15} \cdot \frac{375}{2} \geq 25,
$$

Test the WDT on the Plastic Cup Factory

$$
\begin{aligned}
\text { Optimal Solution } & =\left[\begin{array}{l}
45 \\
75
\end{array}\right]
\end{aligned} \quad \begin{array}{lll}
\text { Dual: } & \begin{array}{ll}
\min & 1800 y_{1}+8 y_{2} \\
\text { s.t. } & 20 y_{1}+(1 / 15) y_{2} \geq 25 \\
\text { Marginal Values } & =\left[\begin{array}{c}
5 / 8 \\
375 / 2
\end{array}\right]
\end{array} & \begin{array}{l}
12 y_{1}+(1 / 15) y_{2} \geq 20 \\
0 \leq y_{1}, y_{2}
\end{array}
\end{array}
$$

Dual feasibility of the marginal values:

$$
0 \leq \frac{5}{8}, \quad 0 \leq \frac{375}{2}, \quad 20 \cdot \frac{5}{8}+\frac{1}{15} \cdot \frac{375}{2} \geq 25, \quad 12 \cdot \frac{5}{8}+\frac{1}{15} \cdot \frac{375}{2} \geq 20
$$

Test the WDT on the Plastic Cup Factory

$\begin{aligned} & =\left[\begin{array}{l}45 \\ 75\end{array}\right]\end{aligned} \quad \begin{array}{ll}\text { Dual: } \begin{array}{l}\text { min } \\ \text { Sptimal Solution } \\ \text { s.t. } \\ \\ 200 y_{1}+8 y_{2} \\ 20 y_{1}+(1 / 15) y_{2} \geq 25 \\ \\ \text { Marginal Values }\end{array}=\left[\begin{array}{c}5 / 8 \\ 375 / 2\end{array}\right] & \begin{array}{l}12 y_{1}+(1 / 15) y_{2} \geq 20 \\ 0 \leq y_{1}, y_{2}\end{array}\end{array}$
Dual feasibility of the marginal values:

$$
0 \leq \frac{5}{8}, \quad 0 \leq \frac{375}{2}, \quad 20 \cdot \frac{5}{8}+\frac{1}{15} \cdot \frac{375}{2} \geq 25, \quad 12 \cdot \frac{5}{8}+\frac{1}{15} \cdot \frac{375}{2} \geq 20
$$

Equivalence of primal-dual objectives (WDT):

Test the WDT on the Plastic Cup Factory

$$
\begin{aligned}
\text { Optimal Solution } & =\left[\begin{array}{l}
45 \\
75
\end{array}\right]
\end{aligned} \quad \begin{array}{lll}
\text { Dual: } & \begin{array}{l}
\min \\
\text { s.t. }
\end{array} \begin{array}{l}
1800 y_{1}+8 y_{2} \\
20 y_{1}+(1 / 15) y_{2} \geq 25
\end{array} \\
\text { Marginal Values } & =\left[\begin{array}{c}
5 / 8 \\
375 / 2
\end{array}\right] & \\
12 y_{1}+(1 / 15) y_{2} \geq 20 \\
0 \leq y_{1}, y_{2}
\end{array}
$$

Dual feasibility of the marginal values:

$$
0 \leq \frac{5}{8}, \quad 0 \leq \frac{375}{2}, \quad 20 \cdot \frac{5}{8}+\frac{1}{15} \cdot \frac{375}{2} \geq 25, \quad 12 \cdot \frac{5}{8}+\frac{1}{15} \cdot \frac{375}{2} \geq 20
$$

Equivalence of primal-dual objectives (WDT):

$$
c^{\top} x=25 \cdot 45+20 \cdot 75=2625
$$

Test the WDT on the Plastic Cup Factory

$\begin{aligned} \text { Optimal Solution } & =\left[\begin{array}{c}45 \\ 75\end{array}\right]\end{aligned} \quad \begin{array}{ll}\text { Dual: } & \text { min } \begin{array}{l}1800 y_{1}+8 y_{2} \\ \text { s.t. } \\ 20 y_{1}+(1 / 15) y_{2} \geq 25\end{array} \\ \text { Marginal Values } & =\left[\begin{array}{c}5 / 8 \\ 375 / 2\end{array}\right]\end{array} \begin{array}{ll}12 y_{1}+(1 / 15) y_{2} \geq 20 \\ 0 \leq y_{1}, y_{2}\end{array}$
Dual feasibility of the marginal values:

$$
0 \leq \frac{5}{8}, \quad 0 \leq \frac{375}{2}, \quad 20 \cdot \frac{5}{8}+\frac{1}{15} \cdot \frac{375}{2} \geq 25, \quad 12 \cdot \frac{5}{8}+\frac{1}{15} \cdot \frac{375}{2} \geq 20
$$

Equivalence of primal-dual objectives (WDT):

$$
c^{T} x=25 \cdot 45+20 \cdot 75=2625=1800 \cdot \frac{5}{8}+8 \cdot \frac{375}{2}=b^{T} y
$$

What the Weak Duality Theorem Does NOT Say

What the Weak Duality Theorem Does NOT Say

Infeasibility of either \mathcal{P} or \mathcal{D} does not imply the unboundedness of the other.

What the Weak Duality Theorem Does NOT Say

Infeasibility of either \mathcal{P} or \mathcal{D} does not imply the unboundedness of the other.

It is possible for both \mathcal{P} and \mathcal{D} to be infeasible.

What the Weak Duality Theorem Does NOT Say

Infeasibility of either \mathcal{P} or \mathcal{D} does not imply the unboundedness of the other.

It is possible for both \mathcal{P} and \mathcal{D} to be infeasible.

Example:

$$
\begin{array}{rlll}
\operatorname{maximize} & 2 x_{1} & -x_{2} \\
& x_{1} & -x_{2} \leq & 1 \\
& -x_{1} & +x_{2} \leq & -2 \\
& 0 & \leq & x_{1}, \quad x_{2}
\end{array}
$$

