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What is optimization?

A mathematical optimization problem is one in which some function is either
maximized or minimized relative to a given set of alternatives.

The function to be minimized or maximized is called the objective function.

The set of alternatives is called the feasible region (or constraint region).

In this course, the feasible region is always taken to be a subset of Rn (real
n-dimensional space) and the objective function is a function from Rn to R.
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What is linear programming (LP)?

A linear program is an optimization problem in finitely many variables
having a linear objective function and a constraint region determined
by a finite number of linear equality and/or inequality constraints.
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What is linear programming (LP)?

A linear program is an optimization problem
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having a linear objective function
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finite number of constraints
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A linear function of the variables x1, x2, . . . , xn is any function f of the form

f (x) = c1x1 + c2x2 + · · ·+ cnxn

for fixed ci ∈ R i = 1, . . . , n.

A linear equality constraint is any equation of the form

a1x1 + a2x2 + · · ·+ anxn = α,

where α, a1, a2, . . . , an ∈ R.

A linear inequality constraint is any inequality of the form

a1x1 + a2x2 + · · ·+ anxn ≤ α,

or
a1x1 + a2x2 + · · ·+ anxn ≥ α,

where α, a1, a2, . . . , an ∈ R.
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Compact Representation

maximize c1x1 + c2x2 + · · ·+ cnxn

subject to ai1xi + ai2x2 + · · ·+ ainxn ≤ αi i = 1, . . . , s

bi1xi + bi2x2 + · · ·+ binxn = βi i = 1, . . . , r .
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Vector Inequalities: Componentwise

Let x , y ∈ Rn.

x =




x1
x2
...
xn


 y =




y1
y2
...
yn




We write x ≤ y if and only if

xi ≤ yi , i = 1, 2, . . . , n .
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Matrix Notation

c1x1 + c2x2 + · · ·+ cnxn = cT x

c =




c1
c2
...
cn


 x =




x1
x2
...
xn
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Matrix Notation

ai1xi + ai2x2 + · · ·+ ainxn ≤ αi i = 1, . . . , s

⇐⇒
Ax ≤ a

A =




a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

as1 as2 . . . asn


 a =




α1

α2

...
αs
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Matrix Notation

bi1xi + bi2x2 + · · ·+ binxn = βi i = 1, . . . , r

⇐⇒
Bx = b

B =




b11 b12 . . . b1n
b21 b22 . . . b2n

...
...

. . .
...

br1 br2 . . . brn


 b =




β1
β2
...
βr
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LP’s Matrix Notation

maximize cT x
subject to Ax ≤ a and Bx = b

c =




c1
...
cn


 , a =



α1

...
αs


 , b =



β1
...
βr


 .

A =




a11 . . . a1n
. . .

as1 . . . asn


 , B =




b11 . . . b1n
. . .

br1 . . . brn
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Applications of Linear Programing

A very short list:

resource allocation

production scheduling

warehousing

layout design

transportation scheduling

facility location

supply chain management

Model selection

Machine Learning

Compressed sensing

flight crew scheduling

portfolio optimization

cash flow matching

currency exchange arbitrage

crop scheduling

diet balancing

parameter estimation

. . .
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Example: Plastic Cup Factory

A local family-owned plastic cup manufacturer wants to optimize their production
mix in order to maximize their profit. They produce personalized beer mugs and
champagne glasses. The profit on a case of beer mugs is $25 while the profit on a
case of champagne glasses is $20. The cups are manufactured with a machine
called a plastic extruder which feeds on plastic resins. Each case of beer mugs
requires 20 lbs. of plastic resins to produce while champagne glasses require 12
lbs. per case. The daily supply of plastic resins is limited to at most 1800 pounds.
About 15 cases of either product can be produced per hour. At the moment the
family wants to limit their work day to 8 hours.

Model this problem as an LP.
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LP Modeling

The four basic steps of LP modeling.

1 Identify and label the decision variables.

2 Determine the objective and use the decision variables to write an expression
for the objective function as a linear function of the decision variables.

3 Determine the explicit constraints and write a functional expression for each
of them as a linear equation/inequality in the decision variables.

4 Determine the implicit constraints and write them as a linear
equation/inequality in the decision variables.
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Decision Variables

Determining the decision variables is the most difficult part of modeling.

To determining these variables it is helpful to put yourself in the shoes of the
decision maker, then ask What must he or she know to do their job.

In the real world, the modeler often follows the decision maker around for days,
weeks, even months at a time recording all of the actions and decisions this
person must make.

In this phase of modeling, it is very important to resist the temptation to make
assumptions about the nature of the solution.
This last point cannot be over emphasized. Even the most experienced modelers
occasionally fall into this trap since such assumptions can enter in very subtle
ways.

Lecture 2: Introduction to Linear Programming Linear Programming 16 / 46



Decision Variables

Determining the decision variables is the most difficult part of modeling.

To determining these variables it is helpful to put yourself in the shoes of the
decision maker, then ask What must he or she know to do their job.

In the real world, the modeler often follows the decision maker around for days,
weeks, even months at a time recording all of the actions and decisions this
person must make.

In this phase of modeling, it is very important to resist the temptation to make
assumptions about the nature of the solution.
This last point cannot be over emphasized. Even the most experienced modelers
occasionally fall into this trap since such assumptions can enter in very subtle
ways.

Lecture 2: Introduction to Linear Programming Linear Programming 16 / 46



Decision Variables

Determining the decision variables is the most difficult part of modeling.

To determining these variables it is helpful to put yourself in the shoes of the
decision maker, then ask What must he or she know to do their job.

In the real world, the modeler often follows the decision maker around for days,
weeks, even months at a time recording all of the actions and decisions this
person must make.

In this phase of modeling, it is very important to resist the temptation to make
assumptions about the nature of the solution.
This last point cannot be over emphasized. Even the most experienced modelers
occasionally fall into this trap since such assumptions can enter in very subtle
ways.

Lecture 2: Introduction to Linear Programming Linear Programming 16 / 46



Decision Variables

Determining the decision variables is the most difficult part of modeling.

To determining these variables it is helpful to put yourself in the shoes of the
decision maker, then ask What must he or she know to do their job.

In the real world, the modeler often follows the decision maker around for days,
weeks, even months at a time recording all of the actions and decisions this
person must make.

In this phase of modeling, it is very important to resist the temptation to make
assumptions about the nature of the solution.

This last point cannot be over emphasized. Even the most experienced modelers
occasionally fall into this trap since such assumptions can enter in very subtle
ways.

Lecture 2: Introduction to Linear Programming Linear Programming 16 / 46



Decision Variables

Determining the decision variables is the most difficult part of modeling.

To determining these variables it is helpful to put yourself in the shoes of the
decision maker, then ask What must he or she know to do their job.

In the real world, the modeler often follows the decision maker around for days,
weeks, even months at a time recording all of the actions and decisions this
person must make.

In this phase of modeling, it is very important to resist the temptation to make
assumptions about the nature of the solution.
This last point cannot be over emphasized. Even the most experienced modelers
occasionally fall into this trap since such assumptions can enter in very subtle
ways.

Lecture 2: Introduction to Linear Programming Linear Programming 16 / 46



Decision Variables

A local family-owned plastic cup manufacturer wants to optimize their production mix in

order to maximize their profit. They produce personalized beer mugs and champagne

glasses. The profit on a case of beer mugs is $25 while the profit on a case of

champagne glasses is $20. The cups are manufactured with a machine called a plastic

extruder which feeds on plastic resins. Each case of beer mugs requires 20 lbs. of plastic

resins to produce while champagne glasses require 12 lbs. per case. The daily supply of

plastic resins is limited to at most 1800 pounds. About 15 cases of either product can be

produced per hour. At the moment the family wants to limit their work day to 8 hours.

B = number of cases of beer mugs produced daily
C = number of cases of champagne glasses produced daily
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Objective Function

A local family-owned plastic cup manufacturer wants to optimize their production mix in

order to maximize their profit. They produce personalized beer mugs and champagne

glasses. The profit on a case of beer mugs is $25 while the profit on a case of

champagne glasses is $20. The cups are manufactured with a machine called a plastic

extruder which feeds on plastic resins. Each case of beer mugs requires 20 lbs. of plastic

resins to produce while champagne glasses require 12 lbs. per case. The daily supply of

plastic resins is limited to at most 1800 pounds. About 15 cases of either product can be

produced per hour. At the moment the family wants to limit their work day to 8 hours.

Maximize Profit: Profit = Revenue − Costs

Profit = 25B + 20C
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Explicit Constraints
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Resin: 20B + 12C ≤ 1800

Labor: B/15 + C/15 ≤ 8
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Implicit Constraints

A local family-owned plastic cup manufacturer wants to optimize their production mix in

order to maximize their profit. They produce personalized beer mugs and champagne

glasses. The profit on a case of beer mugs is $25 while the profit on a case of

champagne glasses is $20. The cups are manufactured with a machine called a plastic

extruder which feeds on plastic resins. Each case of beer mugs requires 20 lbs. of plastic

resins to produce while champagne glasses require 12 lbs. per case. The daily supply of

plastic resins is limited to at most 1800 pounds. About 15 cases of either product can be

produced per hour. At the moment the family wants to limit their work day to 8 hours.

Implicit Constraints:
The decision variables are non-negative: 0 ≤ B, 0 ≤ C
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The Plastic Cup Factory LP Model

maximize 25B + 20C

subject to 20B + 12C ≤ 1800

1
15B + 1

15C ≤ 8

0 ≤ B,C
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The Hardest Part of Modeling: Decision Variables

Once again, the first step in the modeling process, identification of the decision
variables, is always the most difficult.

Never be afraid to add more decision variables either to clarify the model or
to improve its flexibility. Modern LP software easily solves problems with
thousands of variables on a laptop, tens of thousands of variables on a server, or
even tens of millions of variables on specialized hardware and networks. It is more
important to get a correct, easily interpretable, and flexible model then to provide
a compact minimalist model.

LP model solutions found in many texts fall into the trap of trying to provide the
most compact minimalist model with the fewest possible variables and constraints.
Do not repeat this error in developing your own models.
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Graphical Solution of 2D LPs

We now graphically solve the LP model for the Plastic Cup Factory problem.

maximize 25B + 20C

subject to 20B + 12C ≤ 1800

1
15B + 1

15C ≤ 8

0 ≤ B,C
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Graphical Solution of 2D LPs
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Recap: Graphical Solution of 2D LPs

Step 1: Graph each of the linear constraints indicating on which side of the
constraint the feasible region must lie with an arrow. Don’t forget the implicit
constraints!

Step 2: Shade in the feasible region.

Step 3: Draw the gradient vector of the objective function.

Step 4: Place a straight-edge perpendicular to the gradient vector.
Move the straight-edge in the direction of the gradient vector for maximization (or
in the opposite direction for minimization).
Move to the last point for which the straight-edge intersects the feasible region.

Step 5: The set of points of intersection between the straight-edge and the
feasible region is the set of solutions to the LP. Compute these points precisely
along with the associated optimal value.
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Sensitivity Analysis

Problems with the input data for real world LPs.

measurement error

changes over time

only an educated guess

model error

prospective studies

scenario analysis

LP approximates and nonlinear model/problem

We need to be able to study how the optimal value and solution change as the
problem input data change.
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The Optimal Value Function

v(ε1, ε2) = maximize 25B + 20C

subject to 20B + 12C ≤ 1800 + ε1

1
15B + 1

15C ≤ 8 + ε2

0 ≤ B,C
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Vertex Solutions
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The optimal solution lies at a “corner point” or “vertex” of the feasible region.
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Vertex Solutions

Conjecture: For a small range of perturbations to the resources, the vertex
associated with the current optimal solution moves but remains optimal.

v(ε1, ε2) = maximize 25B + 20C
subject to 20B + 12C ≤ 1800 + ε1

1
15B + 1

15C ≤ 8 + ε2
0 ≤ B,C
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Vertex Solutions

The conjecture implies that the solution to the perturbed LP lies at the
intersection of the two lines 20B + 12C = 1800 + ε1 and 1

15B + 1
15C = 8 + ε2 for

small values of ε1 and ε2; namely

B = 45− 45

2
ε2 +

1

8
ε1

C = 75 +
75

2
ε2 −

1

8
ε1

v(ε1, ε2) = 25B + 20C = 2625 +
375

2
ε2 +

5

8
ε1.

It can be verified by direct computation that this indeed yields the optimal
solution for small values of ε1 and ε2.
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Differentiability of the Optimal Value Function!

The optimal value function is differentiable for small values of ε1 and ε2.

v(ε1, ε2) = 2625 +
375

2
ε2 +

5

8
ε1

∇v(ε1, ε2) =




5
8

375
2




The components of the gradient are called the marginal values for the resources.
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The Theory of Linear Economic Models

Linear theory of production

John von Neumann, 1903-1957

Physics, Math, CS, Econ, Stats

Oskar Morgenstern, 1902-1977

Econ (Game Theory)

George Danzig, 1914-2005

Stats, Math, CS, Econ

Leonid Kantorovich, 1912-1986, Nobel Prize 1975

Math, Physics, Econ

Tjalling Koopmans, 1910-1985, Nobel Prize 1975

Econ, Physics, Math, Stats
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The Production Model

in

materials

raw
products

out

The production

process

The products are the raw materials reconfigured to look different.
Profit is the difference between the purchase price of the raw materials and the
sale price of their reconfigured form as products.
Making a profit means that you sell the raw materials for more than you paid for
them.
On a per unit basis, by how much does the production process increase the value
of the raw materials?
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The Optimal Value Function and Marginal Values

On a per unit basis, by how much does the production process increase the value
of the raw materials?

v(ε1, ε2) = maximize 25B + 20C
subject to 20B + 12C ≤ 1800 + ε1

1
15B + 1

15C ≤ 8 + ε2
0 ≤ B,C

Solution: The marginal values!

∇v(ε1, ε2) =

[
5/8

375/2

]
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Hidden Hand of the Market Place: Duality

In the market place there is competition for raw materials, or the inputs to
production. This collective competition is the hidden hand that sets the price for
goods in the market place.

Is there a mathematical model for how these prices are set?

Let us think of the market as a separate agent in the market place. It is the agent
that owns and sells the raw materials of production.

The goal of the market is to make the most money possible from its resources by
setting the highest prices possible for them.

The market does not want to put the producers out of business, it just wants to
take all of their profit.

How can we model this mathematically?
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Hidden Hand of the Market Place: Duality

We answer this question in the context of the Plastic Cup Factory.

A local family-owned plastic cup manufacturer wants to optimize their production mix in

order to maximize their profit. They produce personalized beer mugs and champagne

glasses. The profit on a case of beer mugs is $25 while the profit on a case of

champagne glasses is $20. The cups are manufactured with a machine called a plastic

extruder which feeds on plastic resins. Each case of beer mugs requires 20 lbs. of plastic

resins to produce while champagne glasses require 12 lbs. per case. The daily supply of

plastic resins is limited to at most 1800 pounds. About 15 cases of either product can be

produced per hour. At the moment the family wants to limit their work day to 8 hours.
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Hidden Hand of the Market Place: Duality

By how much should the market increase the sale price of plastic resin and hourly
labor in order to wipe out the profit for the Plastic Cup Factory?

Define

0 ≤ y1 = price increase for a pound of resin

0 ≤ y2 = price increase for an hour of labor

These price increases should wipe out the per unit profitability for cases of both
beer mugs and champagne glasses.
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Hidden Hand of the Market Place: Duality

production cost increase ≥ current profit

current profit

Beer Mugs: cost increase = 20y1 + 1
15y2 ≥ 25

Champagne Glasses: cost increase = 12y1 + 1
15y2 ≥ 20
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Hidden Hand of the Market Place: Duality

Now minimize the total increase in the cost of raw materials subject to wiping out
the producer’s profit. Hopefully this will keep the Plastic Cup Factory in business.

minimize 1800y1 + 8y2
Rewriting the Market’s price increase problem we get

minimize 1800y1 + 8y2

subject to 20y1 + y2/15 ≥ 25
12y1 + y2/15 ≥ 20
0 ≤ y1, y2

This is another linear program!
Let us compare this LP with the original LP.
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Linear Programming Duality

Primal: max 25B + 20C

s.t. 20B + 12C ≤ 1800

1
15B + 1

15C ≤ 8

0 ≤ B,C

Dual: min 1800y1 + 8y2

s.t. 20y1 + 1
15y2 ≥ 25

12y1 + 1
15y2 ≥ 20

0 ≤ y1, y2
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What is the Solution to the Dual?

Recall the goal of the Market:

The market wants to make the most money possible from its resources by setting
the highest prices it can without driving the producers out of business.

in

materials

raw
products

out

The production

process

The marginal values give the per unit increase in the value of the resources due to
the production process.

The marginal values should be the solution to the dual!
And indeed, they are the solution!
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Linear Programming Duality: Matrix Notation

P

Primal: max cT x

s.t. Ax ≤ b

0 ≤ x

D

Dual: min bT y

s.t. AT y ≥ c

0 ≤ y
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The Weak Duality Theorem of Linear Programming

Theorem: [Weak Duality Theorem]

If x ∈ Rn is feasible for P and y ∈ Rm is feasible for D, then

cT x ≤ yTAx ≤ bT y .

Thus, if P is unbounded, then D is necessarily infeasible, and if D is unbounded,
then P is necessarily infeasible.

Moreover, if cT x̄ = bT ȳ with x̄ feasible for P and ȳ feasible for D, then x̄ must
solve P and ȳ must solve D.
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The Weak Duality Theorem of Linear Programming

Proof:

cT x =
n∑

j=1

cjxj

≤
n∑

j=1

(
m∑
i=1

aijyi )xj [0 ≤ xj , cj ≤
m∑
i=1

aijyi ⇒ cjxj ≤ (
m∑
i=1

aijyi )xj ]

= yTAx

=
m∑
i=1

(
n∑

j=1

aijxj)yi

≤
m∑
i=1

biyi [0 ≤ yi ,
n∑

j=1

aijxj ≤ bi ⇒ (
n∑

j=1

aijxj)yi ≤ biyi ]

= bT y
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Test the WDT on the Plastic Cup Factory

Optimal Solution =

[
45
75

]

Marginal Values =

[
5/8

375/2

]
Dual: min 1800y1 + 8y2

s.t. 20y1 + (1/15)y2 ≥ 25
12y1 + (1/15)y2 ≥ 20
0 ≤ y1, y2

Dual feasibility of the marginal values:

0 ≤ 5

8

,

0 ≤ 375

2
, 20 · 5

8
+

1

15
· 375

2
≥ 25, 12 · 5

8
+

1

15
· 375

2
≥ 20

Equivalence of primal-dual objectives (WDT):

cT x = 25 · 45 + 20 · 75 = 2625 = 1800 · 5

8
+ 8 · 375

2
= bT y
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What the Weak Duality Theorem Does NOT Say

Infeasibility of either P or D does not imply the unboundedness of the other.

It is possible for both P and D to be infeasible.

Example:
maximize 2x1 − x2

x1 − x2 ≤ 1
−x1 + x2 ≤ −2

0 ≤ x1, x2
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