Math 407A: Linear Optimization

Lecture 4: LP Standard Form ${ }^{2}$

${ }^{2}$ Author: James Burke, University of Washington
(1) LPs in Standard Form
(2) Minimization \rightarrow maximization
(3) Linear equations to linear inequalities
(4) Lower and upper bounded variables
(5) Interval variable bounds
(6) Free variable
(7) Two Step Process to Standard Form

LPs in Standard Form

We say that an LP is in standard form if its matrix representation has the form

LPs in Standard Form

We say that an LP is in standard form if its matrix representation has the form

$$
\begin{array}{ll}
\max & c^{T} x \\
\text { s.t. } & A x \leq b \\
& 0 \leq x
\end{array}
$$

LPs in Standard Form

We say that an LP is in standard form if its matrix representation has the form

$$
\begin{array}{ll}
\max & c^{T} x \quad \text { It must be a maximization problem. } \\
\text { s.t. } & A x \leq b \\
& 0 \leq x
\end{array}
$$

LPs in Standard Form

We say that an LP is in standard form if its matrix representation has the form
$\max \quad c^{T} x \quad$ It must be a maximization problem.
s.t. $A x \leq b \quad$ Only inequalities of the correct direction.
$0 \leq x$

LPs in Standard Form

We say that an LP is in standard form if its matrix representation has the form $\max \quad c^{T} x \quad$ It must be a maximization problem.
s.t. $A x \leq b \quad$ Only inequalities of the correct direction.
$0 \leq x \quad$ All variables must be non-negative.

Every LP can be Transformed to Standard Form

Every LP can be Transformed to Standard Form

- minimization \rightarrow maximization

Every LP can be Transformed to Standard Form

- minimization \rightarrow maximization

To transform a minimization problem to a maximization problem multiply the objective function by -1 .

Every LP can be Transformed to Standard Form

- minimization \rightarrow maximization

To transform a minimization problem to a maximization problem multiply the objective function by -1 .

- linear inequalities

[^0]
Every LP can be Transformed to Standard Form

- minimization \rightarrow maximization

To transform a minimization problem to a maximization problem multiply the objective function by -1 .

- linear inequalities

If an LP has an inequality constraint of the form

$$
a_{i 1} x_{1}+a_{i 2} x_{2}+\cdots+a_{i n} x_{n} \geq b_{i}
$$

it can be transformed to one in standard form by multiplying the inequality through by -1 to get

$$
-a_{i 1} x_{1}-a_{i 2} x_{2}-\cdots-a_{i n} x_{n} \leq-b_{i}
$$

[^1]
Every LP can be Transformed to Standard Form

- linear equations

Every LP can be Transformed to Standard Form

- linear equations

The linear equation

$$
a_{i 1} x_{i}+\cdots+a_{i n} x_{n}=b_{i}
$$

can be written as two linear inequalities

$$
a_{i 1} x_{1}+\cdots+a_{i n} x_{n} \leq b_{i}
$$

and

$$
a_{i 1} x_{1}+\cdots+a_{i n} x_{n} \geq b_{i} .
$$

or equivalently

$$
\begin{aligned}
a_{i 1} x_{1}+\cdots+a_{i n} x_{n} & \leq b_{i} \\
-a_{i 1} x_{1}-\cdots-a_{i n} x_{n} & \leq-b_{i}
\end{aligned}
$$

Every LP can be Transformed to Standard Form

- variables with lower bounds

Every LP can be Transformed to Standard Form

- variables with lower bounds

If a variable x_{i} has lower bound I_{i} which is not zero ($I_{i} \leq x_{i}$) or equivalently, $0 \leq x_{i}-l_{i}$, one obtains a non-negative variable $w_{i}:=x_{i}-l_{i}$ yielding the substitution

$$
x_{i}=w_{i}+I_{i} .
$$

In this case, the bound $I_{i} \leq x_{i}$ is equivalent to the bound $0 \leq w_{i}$.

Every LP can be Transformed to Standard Form

- variables with lower bounds

If a variable x_{i} has lower bound I_{i} which is not zero ($I_{i} \leq x_{i}$) or equivalently, $0 \leq x_{i}-l_{i}$, one obtains a non-negative variable $w_{i}:=x_{i}-l_{i}$ yielding the substitution

$$
x_{i}=w_{i}+l_{i} .
$$

In this case, the bound $l_{i} \leq x_{i}$ is equivalent to the bound $0 \leq w_{i}$.

- variables with upper bounds

[^2]
Every LP can be Transformed to Standard Form

- variables with lower bounds

If a variable x_{i} has lower bound I_{i} which is not zero ($I_{i} \leq x_{i}$) or equivalently, $0 \leq x_{i}-l_{i}$, one obtains a non-negative variable $w_{i}:=x_{i}-l_{i}$ yielding the substitution

$$
x_{i}=w_{i}+I_{i} .
$$

In this case, the bound $I_{i} \leq x_{i}$ is equivalent to the bound $0 \leq w_{i}$.

- variables with upper bounds

If a variable x_{i} has an upper bound $u_{i}\left(x_{i} \leq u_{i}\right)$, or equivalently, $0 \leq u_{i}-x_{i}$, one obtains a non-negative variable $w_{i}:=u_{i}-x_{i}$ yielding the substitution

$$
x_{i}=u_{i}-w_{i}
$$

In this case, the bound $x_{i} \leq u_{i}$ is equivalent to the bound $0 \leq w_{i}$.

[^3]
Every LP can be Transformed to Standard Form

- variables with interval bounds

Every LP can be Transformed to Standard Form

- variables with interval bounds

An interval bound of the form $l_{i} \leq x_{i} \leq u_{i}$ can be transformed into one non-negativity constraint and one linear inequality constraint in standard form by making the substitution

$$
x_{i}=w_{i}+l_{i}
$$

Every LP can be Transformed to Standard Form

- variables with interval bounds

An interval bound of the form $l_{i} \leq x_{i} \leq u_{i}$ can be transformed into one non-negativity constraint and one linear inequality constraint in standard form by making the substitution

$$
x_{i}=w_{i}+l_{i}
$$

In this case, the bounds $l_{i} \leq x_{i} \leq u_{i}$ are equivalent to the constraints

$$
0 \leq w_{i} \quad \text { and } \quad w_{i} \leq u_{i}-l_{i}
$$

Every LP can be Transformed to Standard Form

- free variables

Every LP can be Transformed to Standard Form

- free variables

Sometimes a variable is given without any bounds. Such variables are called free variables. To obtain standard form every free variable must be replaced by the difference of two non-negative variables. That is, if x_{i} is free, then we get

$$
x_{i}=u_{i}-v_{i}
$$

with $0 \leq u_{i}$ and $0 \leq v_{i}$.

Transformation to Standard Form

Put the following LP into standard form.

$$
\begin{aligned}
& \begin{array}{lrrrrrrr}
\operatorname{minimize} & 3 x_{1} & - & x_{2} & & & & \\
\text { subject to } & -x_{1} & + & 6 x_{2} & - & x_{3} & +x_{4} & \geq \\
& & 7 x_{2} & & -3 \\
& & & x_{3} & +x_{4} & = & 5 \\
& & & & & &
\end{array} \\
& -1 \leq x_{2}, \quad x_{3} \leq 5, \quad-2 \leq x_{4} \leq 2 .
\end{aligned}
$$

Transformation to Standard Form

The hardest part of the translation to standard form, or at least the part most susceptible to error, is the replacement of existing variables with non-negative variables.

Transformation to Standard Form

The hardest part of the translation to standard form, or at least the part most susceptible to error, is the replacement of existing variables with non-negative variables.

Reduce errors by doing the transformation in two steps.

[^4]
Transformation to Standard Form

The hardest part of the translation to standard form, or at least the part most susceptible to error, is the replacement of existing variables with non-negative variables.

Reduce errors by doing the transformation in two steps.

Step 1: Make all of the changes that do not involve a variable substitution.

[^5]
Transformation to Standard Form

The hardest part of the translation to standard form, or at least the part most susceptible to error, is the replacement of existing variables with non-negative variables.

Reduce errors by doing the transformation in two steps.

Step 1: Make all of the changes that do not involve a variable substitution.

Step 2: Make all of the variable substitutions.

Must be a maximization problem

$$
\begin{aligned}
& \begin{array}{lrrrrrrr}
\operatorname{minimize} & 3 x_{1} & - & x_{2} & & & & \\
\text { subject to } & -x_{1} & + & 6 x_{2} & -x_{3} & + & x_{4} & \geq \\
7 x_{2} & & -3 \\
& & & x_{3} & +x_{4} & = & 5 \\
& & & & & & &
\end{array} \\
& -1 \leq x_{2}, \quad x_{3} \leq 5, \quad-2 \leq x_{4} \leq 2 .
\end{aligned}
$$

Must be a maximization problem

$$
\begin{aligned}
& \text { minimize } 3 x_{1}-x_{2}
\end{aligned}
$$

$$
\begin{aligned}
& -1 \leq x_{2}, \quad x_{3} \leq 5, \quad-2 \leq x_{4} \leq 2 .
\end{aligned}
$$

Minimization \Longrightarrow maximization

Must be a maximization problem

$$
\begin{array}{lrrrrrr}
\operatorname{minimize} & 3 x_{1} & - & x_{2} \\
\text { subject to } & -x_{1} & + & x_{2} & - & x_{3} & +x_{4} \\
& & \geq & -3 \\
& +x_{2} & = & 5 \\
& x_{3} \quad x_{4} & \leq & 2 \\
& -1 \leq x_{2}, \quad x_{3} \leq 5, \quad-2 \leq x_{4} \leq 2
\end{array}
$$

Minimization \Longrightarrow maximization

$$
\text { maximize }-3 x_{1}+x_{2}
$$

Inequalities must go the right way.

Inequalities must go the right way.

$$
-x_{1}+6 x_{2}-x_{3}+x_{4} \geq-3
$$

Inequalities must go the right way.

$$
-x_{1}+6 x_{2}-x_{3}+x_{4} \geq-3
$$

becomes

Inequalities must go the right way.

$$
-x_{1}+6 x_{2}-x_{3}+x_{4} \geq-3
$$

becomes

$$
x_{1}-6 x_{2}+x_{3}-x_{4} \leq 3
$$

[^6]
Equalities are replaced by 2 inequalities.

$$
7 x_{2}+x_{4}=5
$$

Equalities are replaced by 2 inequalities.

$$
7 x_{2}+x_{4}=5
$$

becomes

24 Author: James Burke, University of Washington
Lecture 4: LP Standard Form ${ }^{24}$

Equalities are replaced by 2 inequalities.

$$
7 x_{2}+x_{4}=5
$$

becomes

$$
7 x_{2}+x_{4} \leq 5
$$

Equalities are replaced by 2 inequalities.

$$
7 x_{2}+x_{4}=5
$$

becomes

$$
7 x_{2}+x_{4} \leq 5
$$

and

24 Author: James Burke, University of Washington
Lecture 4: LP Standard Form ${ }^{24}$

Equalities are replaced by 2 inequalities.

$$
7 x_{2}+x_{4}=5
$$

becomes

$$
7 x_{2}+x_{4} \leq 5
$$

and

$$
-7 x_{2}-x_{4} \leq-5
$$

[^7]
Grouping upper bounds with the linear inequalities.

The double bound $-2 \leq x_{4} \leq 2$ indicates that we should group the upper bound with the linear inequalities.

Grouping upper bounds with the linear inequalities.

The double bound $-2 \leq x_{4} \leq 2$ indicates that we should group the upper bound with the linear inequalities.

$$
x_{4} \leq 2
$$

[^8]
Step 1: Transformation to Standard Form

Combining all of these changes gives the LP

$$
\begin{aligned}
& \text { maximize }-3 x_{1}+x_{2}
\end{aligned}
$$

$$
\begin{aligned}
& -1 \leq x_{2}, \quad x_{3} \leq 5, \quad-2 \leq x_{4} .
\end{aligned}
$$

Step 2: Variable Replacement

The variable x_{1} is free, so we replace it by

Step 2: Variable Replacement

The variable x_{1} is free, so we replace it by

$$
x_{1}=z_{1}^{+}-z_{1}^{-} \text {with } 0 \leq z_{1}^{+}, 0 \leq z_{1}^{-} .
$$

Step 2: Variable Replacement

The variable x_{1} is free, so we replace it by

$$
x_{1}=z_{1}^{+}-z_{1}^{-} \text {with } 0 \leq z_{1}^{+}, 0 \leq z_{1}^{-} .
$$

x_{2} has a non-zero lower bound $\left(-1 \leq x_{2}\right)$ so we replace it by

Step 2: Variable Replacement

The variable x_{1} is free, so we replace it by

$$
x_{1}=z_{1}^{+}-z_{1}^{-} \text {with } 0 \leq z_{1}^{+}, 0 \leq z_{1}^{-} .
$$

x_{2} has a non-zero lower bound $\left(-1 \leq x_{2}\right)$ so we replace it by

$$
z_{2}=x_{2}+1 \quad \text { or } x_{2}=z_{2}-1 \text { with } 0 \leq z_{2} .
$$

Step 2: Variable Replacement

The variable x_{1} is free, so we replace it by

$$
x_{1}=z_{1}^{+}-z_{1}^{-} \text {with } 0 \leq z_{1}^{+}, 0 \leq z_{1}^{-} .
$$

x_{2} has a non-zero lower bound $\left(-1 \leq x_{2}\right)$ so we replace it by

$$
z_{2}=x_{2}+1 \quad \text { or } \quad x_{2}=z_{2}-1 \text { with } 0 \leq z_{2} .
$$

x_{3} is bounded above ($x_{3} \leq 5$), so we replace it by

Step 2: Variable Replacement

The variable x_{1} is free, so we replace it by

$$
x_{1}=z_{1}^{+}-z_{1}^{-} \text {with } 0 \leq z_{1}^{+}, 0 \leq z_{1}^{-} .
$$

x_{2} has a non-zero lower bound $\left(-1 \leq x_{2}\right)$ so we replace it by

$$
z_{2}=x_{2}+1 \text { or } x_{2}=z_{2}-1 \text { with } 0 \leq z_{2} .
$$

x_{3} is bounded above ($x_{3} \leq 5$), so we replace it by

$$
z_{3}=5-x_{3} \text { or } x_{3}=5-z_{3} \text { with } 0 \leq z_{3} .
$$

Step 2: Variable Replacement

The variable x_{1} is free, so we replace it by

$$
x_{1}=z_{1}^{+}-z_{1}^{-} \text {with } 0 \leq z_{1}^{+}, 0 \leq z_{1}^{-} .
$$

x_{2} has a non-zero lower bound $\left(-1 \leq x_{2}\right)$ so we replace it by

$$
z_{2}=x_{2}+1 \text { or } x_{2}=z_{2}-1 \text { with } 0 \leq z_{2} .
$$

x_{3} is bounded above ($x_{3} \leq 5$), so we replace it by

$$
z_{3}=5-x_{3} \text { or } x_{3}=5-z_{3} \text { with } 0 \leq z_{3} .
$$

x_{4} is bounded below ($-2 \leq x_{4}$), so we replace it by

[^9]
Step 2: Variable Replacement

The variable x_{1} is free, so we replace it by

$$
x_{1}=z_{1}^{+}-z_{1}^{-} \text {with } 0 \leq z_{1}^{+}, 0 \leq z_{1}^{-} .
$$

x_{2} has a non-zero lower bound $\left(-1 \leq x_{2}\right)$ so we replace it by

$$
z_{2}=x_{2}+1 \text { or } x_{2}=z_{2}-1 \text { with } 0 \leq z_{2} .
$$

x_{3} is bounded above ($x_{3} \leq 5$), so we replace it by

$$
z_{3}=5-x_{3} \text { or } x_{3}=5-z_{3} \text { with } 0 \leq z_{3} .
$$

x_{4} is bounded below ($-2 \leq x_{4}$), so we replace it by

$$
z_{4}=x_{4}+2 \text { or } x_{4}=z_{4}-2 \text { with } 0 \leq z_{4} .
$$

Step 2: Transformation to Standard Form

Substituting $x_{1}=z_{1}^{+}-z_{1}^{-}$into

$$
\begin{array}{lrllllllll}
\operatorname{maximize} & -3 x_{1} & + & x_{2} \\
\text { subject to } & x_{1} & - & 6 x_{2} & + & x_{3} & - & x_{4} & \leq & 3 \\
& & & 7 x_{2} & & & + & x_{4} & \leq & 5 \\
& & & 7 x_{2} & & & -x_{4} & \leq & 5 \\
& & & x_{3} & + & x_{4} & \leq & 2 \\
& & & x_{4} & \leq & 2 \\
& & \\
& -1 \leq x_{2}, \quad x_{3} \leq 5, & -2 \leq x_{4} .
\end{array}
$$

gives

Step 2: Transformation to Standard Form

$$
\begin{aligned}
& \text { maximize }-3 z_{1}^{+}+3 z_{1}^{-}+x_{2}
\end{aligned}
$$

$$
\begin{aligned}
& 0 \leq z_{1}^{+}, 0 \leq z_{1}^{-},-1 \leq x_{2}, x_{3} \leq 5,-2 \leq x_{4} .
\end{aligned}
$$

Step 2: Transformation to Standard Form

Substituting $x_{2}=z_{2}-1$ into

$$
\begin{aligned}
& 0 \leq z_{1}^{+}, 0 \leq z_{1}^{-},-1 \leq x_{2}, x_{3} \leq 5,-2 \leq x_{4} .
\end{aligned}
$$

gives

Step 2: Transformation to Standard Form

$$
\begin{aligned}
& 0 \leq z_{1}^{+}, 0 \leq z_{1}^{-},-0 \leq z_{2}, x_{3} \leq 5,-2 \leq x_{4} .
\end{aligned}
$$

Step 2: Transformation to Standard Form

$$
\begin{aligned}
& 0 \leq z_{1}^{+}, 0 \leq z_{1}^{-},-0 \leq z_{2}, x_{3} \leq 5,-2 \leq x_{4} .
\end{aligned}
$$

Step 2: Transformation to Standard Form

Substituting $x_{3}=5-z_{3}$ into

$$
\begin{aligned}
& 0 \leq z_{1}^{+}, 0 \leq z_{1}^{-},-0 \leq z_{2}, x_{3} \leq 5,-2 \leq x_{4} .
\end{aligned}
$$

gives

Step 2: Transformation to Standard Form

$$
\begin{aligned}
& 0 \leq z_{1}^{+}, 0 \leq z_{1}^{-},-0 \leq z_{2}, 0 \leq z_{3},-2 \leq x_{4} .
\end{aligned}
$$

Step 2: Transformation to Standard Form

Substituting $x_{4}=z_{4}-2$ into

$$
\begin{aligned}
& 0 \leq z_{1}^{+}, 0 \leq z_{1}^{-},-0 \leq z_{2}, 0 \leq z_{3},-2 \leq x_{4} .
\end{aligned}
$$

gives

Step 2: Transformation to Standard Form

$$
\begin{aligned}
& 0 \leq z_{1}^{+}, 0 \leq z_{1}^{-},-0 \leq z_{2}, 0 \leq z_{3}, 0 \leq z_{4} .
\end{aligned}
$$

which is in standard form.

Step 2: Transformation to Standard Form

After making these substitutions, we get the following LP in standard form:

Step 2: Transformation to Standard Form

After making these substitutions, we get the following LP in standard form:

$$
\begin{aligned}
& 0 \leq z_{1}^{+}, z_{1}^{-}, z_{2}, z_{3}, z_{4} .
\end{aligned}
$$

Transformation to Standard Form: Practice

Transform the following LP to an LP in standard form.

$\operatorname{minimize}$	x_{1}	-	$12 x_{2}$	+	$2 x_{3}$		
subject to	$-5 x_{1}$	-	x_{2}	+	$3 x_{3}$	$=$	-15
	$2 x_{1}$	+	x_{2}	-	$20 x_{3}$	\geq	-30
	$0 \leq$	x_{2}	,	$1 \leq$	$x_{3} \leq 4$		

[^0]: ${ }^{7}$ Author: James Burke, University of Washington

[^1]: ${ }^{7}$ Author: James Burke, University of Washington

[^2]: ${ }^{11}$ Author: James Burke, University of Washington

[^3]: ${ }^{11}$ Author: James Burke, University of Washington

[^4]: 18 Author: James Burke, University of Washington

[^5]: 18 Author: James Burke, University of Washington

[^6]: ${ }^{22}$ Author: James Burke, University of Washington

[^7]: ${ }^{24}$ Author: James Burke, University of Washington

[^8]: ${ }^{26}$ Author: James Burke, University of Washington

[^9]: ${ }^{29}$ Author: James Burke, University of Washington

