Math 407: Linear Optimization

Lecture 5: Simplex Algorithm I
(1) Dictionaries, Augmented Matrices, the Simplex Tableau

- Dictionaries
- The Simplex Tableau
(2) Basic Feasible Solutions (BFS)
(3) The Grand Strategy: Pivoting
(4) The Simplex Algorithm in Matrix Form
(5) The Simplex Algorithm in Matrix Form

The Simplex Algorithm

We develop a method for solving standard form LPs by considering the following example.

$$
\begin{aligned}
\max 5 x_{1}+4 x_{2}+3 x_{3} & \\
\text { s.t. } 2 x_{1}+3 x_{2}+x_{3} & \leq 5 \\
4 x_{1}+x_{2}+2 x_{3} & \leq 11 \\
3 x_{1}+4 x_{2}+2 x_{3} & \leq 8 \\
0 \leq x_{1}, x_{2}, x_{3} &
\end{aligned}
$$

The Simplex Algorithm

We develop a method for solving standard form LPs by considering the following example.

$$
\begin{aligned}
\max 5 x_{1}+4 x_{2}+3 x_{3} & \\
\text { s.t. } 2 x_{1}+3 x_{2}+x_{3} & \leq 5 \\
4 x_{1}+x_{2}+2 x_{3} & \leq 11 \\
3 x_{1}+4 x_{2}+2 x_{3} & \leq 8 \\
0 \leq x_{1}, x_{2}, x_{3} &
\end{aligned}
$$

At this point we only have one tool for attacking linear systems.
Gaussian elimination, a method for solving linear systems of equations. Let's try to use it to solve LPs.

Dictionaries

We must first build a linear system of equations that encodes all of the information associated with the LP.

$$
\begin{aligned}
\max 5 x_{1}+4 x_{2}+3 x_{3} & \\
\text { s.t. } 2 x_{1}+3 x_{2}+x_{3} & \leq 5 \\
4 x_{1}+x_{2}+2 x_{3} & \leq 11 \\
3 x_{1}+4 x_{2}+2 x_{3} & \leq 8 \\
0 \leq x_{1}, x_{2}, x_{3} &
\end{aligned}
$$

Slack Variables and Dictionaries

For each linear inequality we introduce a new variable, called a slack variable, so that we can write each linear inequality as an equation.

$$
\begin{aligned}
& x_{4}=5-\left[2 x_{1}+3 x_{2}+x_{3}\right] \\
& x_{5}=11-\left[4 x_{1}+x_{2}+2 x_{3}\right] \\
& x_{5}=0 \\
& x_{6}=8-\left[3 x_{1}+4 x_{2}+2 x_{3}\right] \\
& \geq 0
\end{aligned}
$$

Slack Variables: x_{4}, x_{5}, x_{6}

Slack Variables and Dictionaries

For each linear inequality we introduce a new variable, called a slack variable, so that we can write each linear inequality as an equation.

$$
\begin{aligned}
& x_{4}=5-\left[2 x_{1}+3 x_{2}+x_{3}\right] \\
& x_{5}=11-\left[4 x_{1}+x_{2}+2 x_{3}\right] \\
& x_{5}=0, \\
& x_{6}=8-\left[3 x_{1}+4 x_{2}+2 x_{3}\right]
\end{aligned}
$$

Slack Variables: x_{4}, x_{5}, x_{6}
Next we introduce a variable to represent the objective.

$$
z=5 x_{1}+4 x_{2}+3 x_{3} .
$$

Slack Variables and Dictionaries

For each linear inequality we introduce a new variable, called a slack variable, so that we can write each linear inequality as an equation.

$$
\begin{aligned}
& x_{4}=5-\left[2 x_{1}+3 x_{2}+x_{3}\right] \geq 0 \\
& x_{5}=11-\left[4 x_{1}+x_{2}+2 x_{3}\right] \\
& x_{6}=8-\left[3 x_{1}+4 x_{2}+2 x_{3}\right] \\
& \geq 0
\end{aligned}
$$

Slack Variables: x_{4}, x_{5}, x_{6}
Next we introduce a variable to represent the objective.

$$
z=5 x_{1}+4 x_{2}+3 x_{3} .
$$

This system of equations is called a dictionary for the the LP. The slack variables and the objective are defined by the original decision variables.

Dictionaries, Augmented Matrices, the Simplex Tableau

The LP is now encoded as the system

$$
\begin{array}{rllll}
2 x_{1}+3 x_{2}+x_{3} & +x_{4} & & = & 5 \\
4 x_{1}+x_{2}+2 x_{3} & +x_{5} & & = & 11 \\
3 x_{2}+4 x_{2}+2 x_{3} & & +x_{6} & = & 8 \\
-z+5 x_{1}+4 x_{2}+3 x_{3} & & & =0 \\
0 \leq x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} . & & \\
& &
\end{array}
$$

Dictionaries, Augmented Matrices, the Simplex Tableau

The associated augmented matrix is

$$
\left[\begin{array}{ccccccc|c}
0 & 2 & 3 & 1 & 1 & 0 & 0 & 5 \\
0 & 4 & 1 & 2 & 0 & 1 & 0 & 11 \\
0 & 3 & 4 & 2 & 0 & 0 & 1 & 8 \\
-1 & 5 & 4 & 3 & 0 & 0 & 0 & 0
\end{array}\right]
$$

with $0 \leq x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}$.

Dictionaries, Augmented Matrices, the Simplex Tableau

The associated augmented matrix is

$$
\left[\begin{array}{ccccccc|c}
0 & 2 & 3 & 1 & 1 & 0 & 0 & 5 \\
0 & 4 & 1 & 2 & 0 & 1 & 0 & 11 \\
0 & 3 & 4 & 2 & 0 & 0 & 1 & 8 \\
\hline-1 & 5 & 4 & 3 & 0 & 0 & 0 & 0
\end{array}\right]
$$

with $0 \leq x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}$.

This augmented matrix is called the initial simplex tableau.
The simplex tableau is nothing more than an augmented matrix for the linear system that relates all of the LP variables.

Basic and Nonbasic Variables

Recall the initial dictionary for our LP:

$$
\begin{array}{rlrrrr}
x_{4} & = & 5 & -2 x_{1} & -3 x_{2} & -x_{3} \\
x_{5} & = & 11 & -4 x_{1} & -x_{2} & -2 x_{3} \\
x_{6} & = & 8 & -3 x_{1} & -4 x_{2} & -2 x_{3} \\
z & = & & 5 x_{1} & +4 x_{2} & +3 x_{3}
\end{array}
$$

We call the decision variables on the left $\left(x_{4}, x_{4}, x_{6}\right)$ the basic variables, and those on the right the nonbasic variables $\left(x_{1}, x_{2}, x_{3}\right)$.

Basic and Nonbasic Variables

Recall the initial dictionary for our LP:

$$
\begin{array}{rlrrrr}
x_{4} & = & 5 & -2 x_{1} & -3 x_{2} & -x_{3} \\
x_{5} & = & 11 & -4 x_{1} & -x_{2} & -2 x_{3} \\
x_{6} & = & 8 & -3 x_{1} & -4 x_{2} & -2 x_{3} \\
z & = & & 5 x_{1} & +4 x_{2} & +3 x_{3}
\end{array}
$$

basic
nonbasic

We call the decision variables on the left $\left(x_{4}, x_{4}, x_{6}\right)$ the basic variables, and those on the right the nonbasic variables $\left(x_{1}, x_{2}, x_{3}\right)$.

Basic Solutions Identified by Dictionaries

We think of the nonbasic variables as taking the value zero. This determines the value of the basic variables and the objective z.

$$
\begin{array}{rlrrrr}
x_{4} & = & 5 & -2 x_{1} & -3 x_{2} & -x_{3} \\
x_{5} & = & 11 & -4 x_{1} & -x_{2} & -2 x_{3} \\
x_{6} & = & 8 & -3 x_{1} & -4 x_{2} & -2 x_{3} \\
z & = & & 5 x_{1} & +4 x_{2} & +3 x_{3}
\end{array}
$$

Basic Solutions Identified by Dictionaries

We think of the nonbasic variables as taking the value zero. This determines the value of the basic variables and the objective z.

$$
\begin{array}{rlrrrr}
x_{4} & = & 5 & -2 x_{1} & -3 x_{2} & -x_{3} \\
x_{5} & = & 11 & -4 x_{1} & -x_{2} & -2 x_{3} \\
x_{6} & = & 8 & -3 x_{1} & -4 x_{2} & -2 x_{3} \\
z & = & & 5 x_{1} & +4 x_{2} & +3 x_{3}
\end{array}
$$

Nonbasic: $x_{1}=x_{2}=x_{3}=0$
Basic: $x_{4}=5, x_{5}=11, x_{6}=8, z=0$

Basic Solutions Identified by Dictionaries

We think of the nonbasic variables as taking the value zero. This determines the value of the basic variables and the objective z.

$$
\begin{array}{rlrrrr}
x_{4} & = & 5 & -2 x_{1} & -3 x_{2} & -x_{3} \\
x_{5} & = & 11 & -4 x_{1} & -x_{2} & -2 x_{3} \\
x_{6} & = & 8 & -3 x_{1} & -4 x_{2} & -2 x_{3} \\
z & = & & 5 x_{1} & +4 x_{2} & +3 x_{3}
\end{array}
$$

Nonbasic: $x_{1}=x_{2}=x_{3}=0$
Basic: $x_{4}=5, x_{5}=11, x_{6}=8, z=0$

This is called the basic solution associated with this dictionary.

Basic Feasible Solutions (BFS)

The basic solution

$$
x_{1}=x_{2}=x_{3}=0 \quad x_{4}=5, x_{5}=11, x_{6}=8
$$

is feasible for the LP

$$
\begin{aligned}
\max 5 x_{1}+4 x_{2}+3 x_{3} & \\
\text { s.t. } 2 x_{1}+3 x_{2}+x_{3} & \leq 5 \\
4 x_{1}+x_{2}+2 x_{3} & \leq 11 \\
3 x_{1}+4 x_{2}+2 x_{3} & \leq 8 \\
0 \leq x_{1}, x_{2}, x_{3} &
\end{aligned}
$$

Such basic solutions are called basic feasible solutions (BFS). The associated dictionary is said to be a feasible dictionary.

Basic Feasible Solutions (BFS)

The basic solution

$$
x_{1}=x_{2}=x_{3}=0 \quad x_{4}=5, x_{5}=11, x_{6}=8
$$

is feasible for the LP

$$
\begin{aligned}
\max 5 x_{1}+4 x_{2}+3 x_{3} & \\
\text { s.t. } 2 x_{1}+3 x_{2}+x_{3} & \leq 5 \\
4 x_{1}+x_{2}+2 x_{3} & \leq 11 \\
3 x_{1}+4 x_{2}+2 x_{3} & \leq 8 \\
0 \leq x_{1}, x_{2}, x_{3} &
\end{aligned}
$$

Such basic solutions are called basic feasible solutions (BFS). The associated dictionary is said to be a feasible dictionary. In particular, this LP is said to have feasible origin, i.e. $\left(x_{1}, x_{2}, x_{3}\right)=(0,0,0)$ is feasible.

Grand Strategy: Pivoting

Move from one feasible dictionary to another increasing the value of the objective each time.

$$
\begin{array}{rlrrrr}
x_{4} & = & 5 & -2 x_{1} & -3 x_{2} & -x_{3} \\
x_{5} & = & 11 & -4 x_{1} & -x_{2} & -2 x_{3} \\
x_{6} & = & 8 & -3 x_{1} & -4 x_{2} & -2 x_{3} \\
z & = & & 5 x_{1} & +4 x_{2} & +3 x_{3}
\end{array}
$$

Grand Strategy: Pivoting

Move from one feasible dictionary to another increasing the value of the objective each time.

$$
\begin{array}{rlrrrr}
x_{4} & = & 5 & -2 x_{1} & -3 x_{2} & -x_{3} \\
x_{5} & = & 11 & -4 x_{1} & -x_{2} & -2 x_{3} \\
x_{6} & = & 8 & -3 x_{1} & -4 x_{2} & -2 x_{3} \\
z & = & & 5 x_{1} & +4 x_{2} & +3 x_{3}
\end{array}
$$

We do this by choosing a nonbasic variable with a positive coefficient, and then increase its value from zero as much as we can while maintaining feasibility.

Grand Strategy: Pivoting

Move from one feasible dictionary to another increasing the value of the objective each time.

$$
\begin{array}{rcrrrr}
x_{4} & = & 5 & -2 x_{1} & -3 x_{2} & -x_{3} \\
x_{5} & = & 11 & -4 x_{1} & -x_{2} & -2 x_{3} \\
x_{6} & = & 8 & -3 x_{1} & -4 x_{2} & -2 x_{3} \\
z & = & & 5 x_{1} & +4 x_{2} & +3 x_{3} \\
z & & \uparrow & &
\end{array}
$$

We do this by choosing a nonbasic variable with a positive coefficient, and then increase its value from zero as much as we can while maintaining feasibility.

Grand Strategy: Pivoting

Move from one feasible dictionary to another increasing the value of the objective each time.

\[

\]

We do this by choosing a nonbasic variable with a positive coefficient, and then increase its value from zero as much as we can while maintaining feasibility.

Grand Strategy: Pivoting

Move from one feasible dictionary to another increasing the value of the objective each time.

$$
\begin{array}{rcrrrr}
x_{4} & = & 5 & -2 x_{1} & -3 x_{2} & -x_{3} \\
x_{5} & = & 11 & -4 x_{1} & -x_{2} & -2 x_{3} \\
x_{6} & = & 8 & -3 x_{1} & -4 x_{2} & -2 x_{3} \\
z & = & & 5 x_{1} & +4 x_{2} & +3 x_{3} \\
& & & & & \uparrow
\end{array}
$$

We do this by choosing a nonbasic variable with a positive coefficient, and then increase its value from zero as much as we can while maintaining feasibility.

Pivoting

Let us increase the value of x_{1} from zero.
How much can we increase x_{1} and keep all other variables non-negative?

Pivoting

Let us increase the value of x_{1} from zero.
How much can we increase x_{1} and keep all other variables non-negative? Consider the equation

$$
0 \leq x_{4}=5-2 x_{1}-3 x_{2}-x_{3}
$$

Pivoting

Let us increase the value of x_{1} from zero.
How much can we increase x_{1} and keep all other variables non-negative?
Consider the equation

$$
0 \leq x_{4}=5-2 x_{1}-3 x_{2}-x_{3}
$$

Keeping x_{4} non-negative implies that we cannot increase x_{1} by more than $5 / 2$. Any further increase will push x_{4} negative.

Pivoting

Next consider the variable x_{5} :

$$
0 \leq x_{5}=11-4 x_{1}-x_{2}-2 x_{3}
$$

Pivoting

Next consider the variable x_{5} :

$$
0 \leq x_{5}=11-4 x_{1}-x_{2}-2 x_{3} .
$$

Therefore, we cannot increase x_{1} by more than $11 / 4$.

Pivoting

Next consider the variable x_{5} :

$$
0 \leq x_{5}=11-4 x_{1}-x_{2}-2 x_{3} .
$$

Therefore, we cannot increase x_{1} by more than $11 / 4$.
Similarly, for x_{6} we have

$$
0 \leq x_{6}=8-3 x_{1}-4 x_{2}-2 x_{3} .
$$

Therefore, we cannot increase x_{1} by more than $8 / 3$.

Pivoting

Next consider the variable x_{5} :

$$
0 \leq x_{5}=11-4 x_{1}-x_{2}-2 x_{3} .
$$

Therefore, we cannot increase x_{1} by more than $11 / 4$.
Similarly, for x_{6} we have

$$
0 \leq x_{6}=8-3 x_{1}-4 x_{2}-2 x_{3} .
$$

Therefore, we cannot increase x_{1} by more than $8 / 3$. Hence, we must have

$$
x_{1} \leq \min \{5 / 2,11 / 4,8 / 3\}=5 / 2
$$

Pivoting

$$
\begin{aligned}
& x_{4}=5-2 x_{1}-3 x_{2}-x_{3} \\
& x_{5}=11-4 x_{1}-x_{2}-2 x_{3} \\
& x_{6}=8-3 x_{1}-4 x_{2}-2 x_{3} \\
& z=5 x_{1}+4 x_{2}+3 x_{3}
\end{aligned}
$$

Pivoting

ratios

$$
\begin{array}{rlrrrcr}
x_{4} & = & 5 & -2 x_{1} & -3 x_{2} & -x_{3} & 5 / 2 \\
x_{5} & = & 11 & -4 x_{1} & -x_{2} & -2 x_{3} & 11 / 4 \\
x_{6} & = & 8 & -3 x_{1} & -4 x_{2} & -2 x_{3} & 8 / 3 \\
z & = & 5 x_{1} & +4 x_{2} & +3 x_{3} & &
\end{array}
$$

Pivoting

\[

\]

If we increase x_{1} to $5 / 2$, then x_{4} decreases to zero. In this case we say x_{4} leaves the basis and x_{1} enters.

Pivoting

ratios

$$
\begin{array}{rlrrrcr}
x_{4} & = & 5 & -2 x_{1} & -3 x_{2} & -x_{3} & 5 / 2 \\
x_{5} & = & 11 & -4 x_{1} & -x_{2} & -2 x_{3} & 11 / 4 \\
x_{6} & = & 8 & -3 x_{1} & -4 x_{2} & -2 x_{3} & 8 / 3 \\
z & = & 5 x_{1} & +4 x_{2} & +3 x_{3} & &
\end{array}
$$

If we increase x_{1} to $5 / 2$, then x_{4} decreases to zero. In this case we say x_{4} leaves the basis and x_{1} enters.
Moving x_{4} to the rhs and x_{1} to the lhs gives

$$
x_{1}=5 / 2-\frac{1}{2} x_{4}-\frac{3}{2} x_{2}-\frac{1}{2} x_{3} .
$$

Pivoting

We now have

$$
\begin{aligned}
& x_{1}=(5 / 2)-(1 / 2) x_{4}-(3 / 2) x_{2}-(1 / 2) x_{3} \\
& \begin{array}{rrrrrr}
x_{5} & = & 11 & -4 x_{1} & -x_{2} & -2 x_{3} \\
x_{6} & = & 8 & -3 x_{1} & -4 x_{2} & -2 x_{3} \\
z & = & & 5 x_{1} & +4 x_{2} & +3 x_{3}
\end{array}
\end{aligned}
$$

Use the first equation to remove x_{1} from the rhs to recover a dictionary.

Pivoting

$$
\begin{aligned}
x_{1} & =\frac{5}{2}-\frac{1}{2} x_{4}-\frac{3}{2} x_{2}-\frac{1}{2} x_{3} \\
x_{5} & =11-4\left(\frac{5}{2}-\frac{1}{2} x_{4}-\frac{3}{2} x_{2}-\frac{1}{2} x_{3}\right)-x_{2}-2 x_{3} \\
& =1+2 x_{4}+5 x_{2} \\
x_{6} & =8-3\left(\frac{5}{2}-\frac{1}{2} x_{4}-\frac{3}{2} x_{2}-\frac{1}{2} x_{3}\right)-4 x_{2}-2 x_{3} \\
& =\frac{1}{2}+\frac{3}{2} x_{4}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3} \\
z & =5\left(\frac{5}{2}-\frac{1}{2} x_{4}-\frac{3}{2} x_{2}-\frac{1}{2} x_{3}\right)+4 x_{2}+3 x_{3} \\
& =\frac{25}{2}-\frac{5}{2} x_{4}-\frac{7}{2} x_{2}+\frac{1}{2} x_{3} .
\end{aligned}
$$

New Dictionary

$$
\begin{aligned}
x_{1} & =\frac{5}{2}-\frac{1}{2} x_{4}-\frac{3}{2} x_{2}-\frac{1}{2} x_{3} \\
x_{5} & =1+2 x_{4}+5 x_{2} \\
x_{6} & =\frac{1}{2}+\frac{3}{2} x_{4}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3} \\
z & =\frac{25}{2}-\frac{5}{2} x_{4}-\frac{7}{2} x_{2}+\frac{1}{2} x_{3},
\end{aligned}
$$

New Dictionary

$$
\begin{aligned}
x_{1} & =\frac{5}{2}-\frac{1}{2} x_{4}-\frac{3}{2} x_{2}-\frac{1}{2} x_{3} \\
x_{5} & =1+2 x_{4}+5 x_{2} \\
x_{6} & =\frac{1}{2}+\frac{3}{2} x_{4}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3} \\
z & =\frac{25}{2}-\frac{5}{2} x_{4}-\frac{7}{2} x_{2}+\frac{1}{2} x_{3},
\end{aligned}
$$

New BFS

Nonbasic Variables: $x_{4}=x_{2}=x_{3}=0$
Basic Variables: $x_{1}=5 / 2, x_{5}=1, x_{6}=1 / 2$
Objective value: $z=25 / 2$

The Second Pivot

$$
\begin{aligned}
x_{1} & =\frac{5}{2}-\frac{1}{2} x_{4} & -\frac{3}{2} x_{2} & -\frac{1}{2} x_{3} \\
x_{5} & =1 & +2 x_{4} & +5 x_{2} \\
x_{6} & =\frac{1}{2}+\frac{3}{2} x_{4} & +\frac{1}{2} x_{2} & -\frac{1}{2} x_{3} \\
z & =\frac{25}{2}-\frac{5}{2} x_{4} & -\frac{7}{2} x_{2} & +\frac{1}{2} x_{3}
\end{aligned}
$$

The Second Pivot

$$
\left.\begin{array}{cccccc}
& = & & & \text { ratios } \\
x_{1} & -\frac{1}{2} x_{4} & -\frac{3}{2} x_{2} & -\frac{1}{2} x_{3} & 5 \\
x_{5} & = & 1 & +2 x_{4} & +5 x_{2} & \\
x_{6} & = & \frac{1}{2} & +\frac{3}{2} x_{4} & +\frac{1}{2} x_{2} & -\frac{1}{2} x_{3}
\end{array}\right) 1
$$

The Second Pivot

\[

\]

The Second Pivot

$$
\begin{array}{rlllllll}
x_{1} & = & \frac{5}{2} & -\frac{1}{2} x_{4} & -\frac{3}{2} x_{2} & -\frac{1}{2} x_{3} & 5 \\
x_{5} & = & 1 & +2 x_{4} & +5 x_{2} & & & \\
x_{6} & = & \frac{1}{2} & +\frac{3}{2} x_{4} & +\frac{1}{2} x_{2} & -\frac{1}{2} x_{3} & 1 & \rightarrow \\
\text { smallest } \\
z & = & \frac{25}{2} & -\frac{5}{2} x_{4} & -\frac{7}{2} x_{2} & +\frac{1}{2} x_{3}
\end{array}
$$

pos.
x_{3} enters the basis and x_{6} leaves.

$$
x_{3}=1+3 x_{4}+x_{2}-2 x_{6}
$$

The Second Pivot

The new dictionary is

$$
\begin{aligned}
x_{3} & =1+3 x_{4}+x_{2}-2 x_{6} \\
x_{1} & =2-2 x_{4}-2 x_{2}+x_{6} \\
x_{5} & =1+2 x_{4}+2 x_{2} \\
z & =13-x_{4}-3 x_{2}-x_{6}
\end{aligned}
$$

The Second Pivot

The new dictionary is

$$
\begin{aligned}
x_{3} & =1+3 x_{4}+x_{2}-2 x_{6} \\
x_{1} & =2-2 x_{4}-2 x_{2}+x_{6} \\
x_{5} & =1+2 x_{4}+2 x_{2} \\
z & =13-x_{4}-3 x_{2}-x_{6}
\end{aligned}
$$

The BFS identified by this dictionary is Nonbasic variables: $x_{4}=x_{2}=x_{6}=0$
Basic variables: $x_{1}=2, x_{3}=1, x_{5}=1$ Objective value: $z=13$

The Third Pivot

$$
\begin{aligned}
x_{3} & =1+3 x_{4}+x_{2}-2 x_{6} \\
x_{1} & =2-2 x_{4}-2 x_{2}+x_{6} \\
x_{5} & =1+2 x_{4}+2 x_{2} \\
z & =13-x_{4}-3 x_{2}-x_{6}
\end{aligned}
$$

What nonbasic variable should enter the basis?

The Third Pivot

$$
\begin{aligned}
x_{3} & =1+3 x_{4}+x_{2}-2 x_{6} \\
x_{1} & =2-2 x_{4}-2 x_{2}+x_{6} \\
x_{5} & =1+2 x_{4}+2 x_{2} \\
z & =13-x_{4}-3 x_{2}-x_{6}
\end{aligned}
$$

What nonbasic variable should enter the basis?
No candidate! All have a negative coefficient in the z row.
If we increase the value of any nonbasic variable, the value of the objective will be reduced.
What does this mean?

The Third Pivot

$$
\begin{aligned}
x_{3} & =1+3 x_{4}+x_{2}-2 x_{6} \\
x_{1} & =2-2 x_{4}-2 x_{2}+x_{6} \\
x_{5} & =1+2 x_{4}+2 x_{2} \\
z & =13-x_{4}-3 x_{2}-x_{6}
\end{aligned}
$$

What nonbasic variable should enter the basis?
No candidate! All have a negative coefficient in the z row.
If we increase the value of any nonbasic variable, the value of the objective will be reduced.
What does this mean? The current BFS is optimal!

Optimal BFS and Dictionary

The optimal dictionary is

$$
\begin{aligned}
x_{3} & =1+3 x_{4}+x_{2}-2 x_{6} \\
x_{1} & =2-2 x_{4}-2 x_{2}+x_{6} \\
x_{5} & =1+2 x_{4}+2 x_{2} \\
z & =13-x_{4}-3 x_{2}-x_{6}
\end{aligned}
$$

Optimal BFS and Dictionary

The optimal dictionary is

$$
\begin{aligned}
x_{3} & =1+3 x_{4}+x_{2}-2 x_{6} \\
x_{1} & =2-2 x_{4}-2 x_{2}+x_{6} \\
x_{5} & =1+2 x_{4}+2 x_{2} \\
z & =13-x_{4}-3 x_{2}-x_{6} \quad \rightarrow \text { all neg. coef.s }
\end{aligned}
$$

Optimal BFS and Dictionary

The optimal dictionary is

$$
\begin{aligned}
x_{3} & =1+3 x_{4}+x_{2}-2 x_{6} \\
x_{1} & =2-2 x_{4}-2 x_{2}+x_{6} \\
x_{5} & =1+2 x_{4}+2 x_{2} \\
z & =13-x_{4}-3 x_{2}-x_{6} \quad \rightarrow \text { all neg. coef.s }
\end{aligned}
$$

The optimal BFS is $x=(2,0,1,0,1,0)^{T}$.
The optimal value is $z=13$.

The Simplex Algorithm

The process of moving from one feasible dictionary to another is called simplex pivoting.

The Simplex Algorithm

The process of moving from one feasible dictionary to another is called simplex pivoting.

The process of pivoting from one feasible dictionary to the next until optimality is obtained is called the simplex algorithm.

The Simplex Algorithm

The process of moving from one feasible dictionary to another is called simplex pivoting.

The process of pivoting from one feasible dictionary to the next until optimality is obtained is called the simplex algorithm.

A pivot corresponds to doing Gauss-Jordan elimination on the column in the simplex tableau (augmented matrix) corresponding to the incoming variable.

The Simplex Algorithm

The process of moving from one feasible dictionary to another is called simplex pivoting.

The process of pivoting from one feasible dictionary to the next until optimality is obtained is called the simplex algorithm.

A pivot corresponds to doing Gauss-Jordan elimination on the column in the simplex tableau (augmented matrix) corresponding to the incoming variable.
Hence the simplex algorithm is a process that can be applied directly to the simplex tableau.

Simplex Pivoting on the Augmented Matrix

$$
\begin{aligned}
\max 5 x_{1}+4 x_{2}+3 x_{3} & \\
\text { s.t. } 2 x_{1}+3 x_{2}+x_{3} & \leq 5 \\
4 x_{1}+x_{2}+2 x_{3} & \leq 11 \\
3 x_{1}+4 x_{2}+2 x_{3} & \leq 8 \\
0 \leq x_{1}, x_{2}, x_{3} &
\end{aligned}
$$

The linear system associated with the initial dictionary is given by

$$
\begin{array}{rllllc}
2 x_{1}+3 x_{2}+x_{3} & + & x_{4} & & & = \\
4 x_{1}+x_{2}+2 x_{3} & & + & x_{5} & & = \\
3 x_{2}+4 x_{2}+2 x_{3} & & + & x_{6} & = & 11 \\
-z+5 x_{1}+4 x_{2}+3 x_{3} & & & & = & 0 \\
& & & & \\
0 \leq x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} & & & \\
-103
\end{array}
$$

Simplex Pivoting on the Augmented Matrix

$$
\begin{array}{rllll}
2 x_{1}+3 x_{2}+x_{3} & +x_{4} & & = & 5 \\
4 x_{1}+x_{2}+2 x_{3} & +x_{5} & = & 11 \\
3 x_{2}+4 x_{2}+2 x_{3} & & +x_{6} & = & 8 \\
-z+5 x_{1}+4 x_{2}+3 x_{3} & & = & 0 \\
0 \leq x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} . & &
\end{array}
$$

Simplex Pivoting on the Augmented Matrix

$$
\begin{array}{rllll}
2 x_{1}+3 x_{2}+x_{3} & +x_{4} & & = & 5 \\
4 x_{1}+x_{2}+2 x_{3} & + & x_{5} & & = \\
3 x_{2}+4 x_{2}+2 x_{3} & & +x_{6} & = & 8 \\
-z+5 x_{1}+4 x_{2}+3 x_{3} & & & =0 \\
0 \leq x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} . & & \\
& &
\end{array}
$$

The augmented matrix associated with the initial dictionary is

$$
\left[\begin{array}{ccc|c}
0 & A & l & b \\
\hline-1 & c^{\top} & 0 & 0
\end{array}\right]=\left[\begin{array}{rrrrrrr|r}
0 & 2 & 3 & 1 & 1 & 0 & 0 & 5 \\
0 & 4 & 1 & 2 & 0 & 1 & 0 & 11 \\
0 & 3 & 4 & 2 & 0 & 0 & 1 & 8 \\
\hline-1 & 5 & 4 & 3 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Simplex Pivoting on the Augmented Matrix

$$
\begin{array}{rllll}
2 x_{1}+3 x_{2}+x_{3} & +x_{4} & & = & 5 \\
4 x_{1}+x_{2}+2 x_{3} & + & x_{5} & & = \\
3 x_{2}+4 x_{2}+2 x_{3} & & +x_{6} & = & 8 \\
-z+5 x_{1}+4 x_{2}+3 x_{3} & & & =0 \\
0 \leq x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} . & & \\
& &
\end{array}
$$

The augmented matrix associated with the initial dictionary is

$$
\left[\begin{array}{ccc|c}
0 & A & l & b \\
\hline-1 & c^{\top} & 0 & 0
\end{array}\right]=\left[\begin{array}{rcccccc|r}
z & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} \\
0 & 2 & 3 & 1 & 1 & 0 & 0 & 5 \\
0 & 4 & 1 & 2 & 0 & 1 & 0 & 11 \\
0 & 3 & 4 & 2 & 0 & 0 & 1 & 8 \\
\hline-1 & 5 & 4 & 3 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Simplex Pivoting on the Augmented Matrix

$$
\left[\begin{array}{ccc|c}
0 & A & l & b \\
\hline-1 & c^{T} & 0 & 0
\end{array}\right]=\left[\begin{array}{rrrrrrr|r}
0 & 2 & 3 & 1 & 1 & 0 & 0 & 5 \\
0 & 4 & 1 & 2 & 0 & 1 & 0 & 11 \\
0 & 3 & 4 & 2 & 0 & 0 & 1 & 8 \\
\hline-1 & 5 & 4 & 3 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Simplex Pivoting on the Augmented Matrix

$$
\left[\begin{array}{ccc|c}
0 & A & l & b \\
\hline-1 & c^{T} & 0 & 0
\end{array}\right]=\left[\begin{array}{rrrrrrr|r}
0 & 2 & 3 & 1 & 1 & 0 & 0 & 5 \\
0 & 4 & 1 & 2 & 0 & 1 & 0 & 11 \\
0 & 3 & 4 & 2 & 0 & 0 & 1 & 8 \\
\hline-1 & 5 & 4 & 3 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Simplex Pivoting on the Augmented Matrix

$$
\left[\begin{array}{ccc|c}
0 & A & l & b \\
\hline-1 & c^{T} & 0 & 0
\end{array}\right]=\left[\begin{array}{rrrrrrr|r}
0 & 2 & 3 & 1 & 1 & 0 & 0 & 5 \\
0 & 4 & 1 & 2 & 0 & 1 & 0 & 11 \\
0 & 3 & 4 & 2 & 0 & 0 & 1 & 8 \\
\hline-1 & 5 & 4 & 3 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Simplex Pivoting on the Augmented Matrix

$$
\left[\begin{array}{ccc|c}
0 & A & l & b \\
\hline-1 & c^{T} & 0 & 0
\end{array}\right]=\left[\begin{array}{rrrrrrr|r}
0 & 2 & 3 & 1 & 1 & 0 & 0 & 5 \\
0 & 4 & 1 & 2 & 0 & 1 & 0 & 11 \\
0 & 3 & 4 & 2 & 0 & 0 & 1 & 8 \\
\hline-1 & 5 & 4 & 3 & 0 & 0 & 0 & 0
\end{array}\right] \begin{gathered}
\text { ratios } \\
5 / 2 \\
\\
\\
\\
\\
\end{gathered}
$$

Which variables are in the basis?

Simplex Pivoting on the Augmented Matrix

$$
\left[\begin{array}{ccc|c}
0 & A & l & b \\
\hline-1 & c^{\top} & 0 & 0
\end{array}\right]=\left[\begin{array}{rrrrrrr|r}
0 & 2 & 3 & 1 & 1 & 0 & 0 & 5 \\
0 & 4 & 1 & 2 & 0 & 1 & 0 & 11 \\
0 & 3 & 4 & 2 & 0 & 0 & 1 & 8 \\
\hline-1 & 5 & 4 & 3 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Which variables are in the basis?
Columns of the identity.

Simplex Pivoting on the Augmented Matrix

$$
\left[\begin{array}{ccc|c}
0 & A & l & b \\
\hline-1 & c^{T} & 0 & 0
\end{array}\right]=\left[\begin{array}{rrrrrrr|r}
0 & 2 & 3 & 1 & 1 & 0 & 0 & 5 \\
0 & 4 & 1 & 2 & 0 & 1 & 0 & 11 \\
0 & 3 & 4 & 2 & 0 & 0 & 1 & 8 \\
\hline-1 & 5 & 4 & 3 & 0 & 0 & 0 & 0
\end{array}\right]
$$

How do we choose the variable to enter the basis?

Simplex Pivoting on the Augmented Matrix

$$
\left[\begin{array}{ccc|c}
0 & A & l & b \\
\hline-1 & c^{T} & 0 & 0
\end{array}\right]=\left[\begin{array}{rrrrrrr|r}
0 & 2 & 3 & 1 & 1 & 0 & 0 & 5 \\
0 & 4 & 1 & 2 & 0 & 1 & 0 & 11 \\
0 & 3 & 4 & 2 & 0 & 0 & 1 & 8 \\
\hline-1 & 5 & 4 & 3 & 0 & 0 & 0 & 0
\end{array}\right]
$$

How do we choose the variable to enter the basis? How do we choose the variable to leave the basis?

Simplex Tableau Pivot

	\downarrow							
0	2	3	1	1	0	0	5	$5 / 2$
0	4	1	2	0	1	0	11	$11 / 4$
0	3	4	2	0	0	1	8	$8 / 3$
-1	5	4	3	0	0	0	0	

Simplex Tableau Pivot

Pivot column								
	\downarrow							
0	2	3	1	1	0	0	5	ratios
0	4	1	2	0	1	0	11	$11 / 4$
0	3	4	2	0	0	1	8	$8 / 3$
-1	(5)	4	3	0	0	0	0	

Simplex Tableau Pivot

Pivot column								
	\downarrow							
0	2	3	1	1	0	0	5	ratios
0	4	1	2	0	1	0	11	$11 / 4$
0	3	4	2	0	0	1	8	$8 / 3$
-1	(5)	4	3	0	0	0	0	

Simplex Tableau Pivot

Simplex Tableau Pivot

	Pivot column							ratios		
0	(2)	3	1	1	0	0	5	(5/2)	\leftarrow	Pivot row
0	4	1	2	0	1	0	11	11/4		
0	3	4	2	0	0	1	8	8/3		
-1	(5)	4	3	0	0	0	0			
0	1	3/2	1/2	1/2	0	0	5/2			

Simplex Tableau Pivot

	Pivot column							ratios		
0	(2)	3	1	1	0	0	5	(5/2)	\leftarrow	Pivot row
0	4	1		0	1	0	11	11/4		
0	3	4	2	0	0	1	8	8/3		
-1	(5)	4	3	0	0	0	0			
0	1	3/2	1/2	1/2	0	0	5/2			
0	0	-5	0	-2	1	0	1			

Simplex Tableau Pivot

	Pivot colum							ratios		
0	(2)	3	1	1	0	0	5	(5/2)	\leftarrow	Pivot row
0	4	1	2	0	1	0	11	11/4		
0	3	4	2	0	0	1	8	8/3		
-1	(5)	4	3	0	0	0	0			
0	1	3/2	1/2	1/2	0	0	5/2			
0	0	-5	0	-2	1	0	1			
0	0	-1/2	$1 / 2$	-3/2	0	1	$1 / 2$			

Simplex Tableau Pivot

	Pivo colum							ratios		
0	$\frac{\downarrow}{2}$	3	1	1	0	0	5	(5/2)	\leftarrow	Pivot row
0	4	1	2	0	1	0	11	11/4		
0	3	4	2	0	0	1	8	8/3		
-1	(5)	4	3	0	0	0	0			
0	1	3/2	1/2	1/2	0	0	5/2			
0	0	-5	0	-2	1	0	1			
0	0	$-1 / 2$	$1 / 2$	$-3 / 2$	0	1	$1 / 2$			
-1	0	$-7 / 2$	$1 / 2$	$-5 / 2$	0	0	-25/2			

Simplex Tableau and Its Dictionary

$$
\left[\begin{array}{ccccccc|c}
0 & 1 & 3 / 2 & 1 / 2 & 1 / 2 & 0 & 0 & 5 / 2 \\
0 & 0 & -5 & 0 & -2 & 1 & 0 & 1 \\
0 & 0 & -1 / 2 & 1 / 2 & -3 / 2 & 0 & 1 & 1 / 2 \\
\hline-1 & 0 & -7 / 2 & 1 / 2 & -5 / 2 & 0 & & -25 / 2
\end{array}\right]
$$

This tableau is the augmented matrix for the dictionary

$$
\begin{aligned}
x_{1} & =\frac{5}{2}-\frac{1}{2} x_{4}-\frac{3}{2} x_{2}-\frac{1}{2} x_{3} \\
x_{5} & =1+2 x_{4}+5 x_{2} \\
x_{6} & =\frac{1}{2}+\frac{3}{2} x_{4}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3} \\
z & =\frac{25}{2}-\frac{5}{2} x_{4}-\frac{7}{2} x_{2}+\frac{1}{2} x_{3},
\end{aligned}
$$

Simplex Tableau and Its Dictionary

$$
\left[\begin{array}{ccccccc|c}
0 & 1 & 3 / 2 & 1 / 2 & 1 / 2 & 0 & 0 & 5 / 2 \\
0 & 0 & -5 & 0 & -2 & 1 & 0 & 1 \\
0 & 0 & -1 / 2 & 1 / 2 & -3 / 2 & 0 & 1 & 1 / 2 \\
\hline-1 & 0 & -7 / 2 & 1 / 2 & -5 / 2 & 0 & & -25 / 2
\end{array}\right],
$$

Simplex Tableau and Its Dictionary

$$
\begin{gathered}
{\left[\begin{array}{ccccccc|c}
0 & 1 & 3 / 2 & 1 / 2 & 1 / 2 & 0 & 0 & 5 / 2 \\
0 & 0 & -5 & 0 & -2 & 1 & 0 & 1 \\
0 & 0 & -1 / 2 & 1 / 2 & -3 / 2 & 0 & 1 & 1 / 2 \\
\hline-1 & 0 & -7 / 2 & 1 / 2 & -5 / 2 & 0 & -25 / 2
\end{array}\right]} \\
\\
x_{1}=\frac{5}{2}-\frac{1}{2} x_{4}-\frac{3}{2} x_{2}-\frac{1}{2} x_{3}
\end{gathered}
$$

Simplex Tableau and Its Dictionary

$$
\begin{gathered}
{\left[\begin{array}{ccccccc|c}
0 & 1 & 3 / 2 & 1 / 2 & 1 / 2 & 0 & 0 & 5 / 2 \\
0 & 0 & -5 & 0 & -2 & 1 & 0 & 1 \\
0 & 0 & -1 / 2 & 1 / 2 & -3 / 2 & 0 & 1 & 1 / 2 \\
\hline-1 & 0 & -7 / 2 & 1 / 2 & -5 / 2 & 0 & -25 / 2
\end{array}\right]} \\
\\
\\
x_{1}=\frac{5}{2}-\frac{1}{2} x_{4}-\frac{3}{2} x_{2}-\frac{1}{2} x_{3} \\
x_{5}=1+2 x_{4}+5 x_{2}
\end{gathered}
$$

Simplex Tableau and Its Dictionary

$$
\begin{aligned}
& {\left[\begin{array}{ccccccc|c}
0 & 1 & 3 / 2 & 1 / 2 & 1 / 2 & 0 & 0 & 5 / 2 \\
0 & 0 & -5 & 0 & -2 & 1 & 0 & 1 \\
0 & 0 & -1 / 2 & 1 / 2 & -3 / 2 & 0 & 1 & 1 / 2 \\
\hline-1 & 0 & -7 / 2 & 1 / 2 & -5 / 2 & 0 & -25 / 2
\end{array}\right]} \\
& \\
& x_{1}=\frac{5}{2}-\frac{1}{2} x_{4}-\frac{3}{2} x_{2}-\frac{1}{2} x_{3} \\
& x_{5}=1+2 x_{4}+5 x_{2} \\
& \\
& x_{6}=\frac{1}{2}+\frac{3}{2} x_{4}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3}
\end{aligned}
$$

Simplex Tableau and Its Dictionary

$$
\begin{aligned}
& {\left[\begin{array}{ccccccc|c}
0 & 1 & 3 / 2 & 1 / 2 & 1 / 2 & 0 & 0 & 5 / 2 \\
0 & 0 & -5 & 0 & -2 & 1 & 0 & 1 \\
0 & 0 & -1 / 2 & 1 / 2 & -3 / 2 & 0 & 1 & 1 / 2 \\
\hline-1 & 0 & -7 / 2 & 1 / 2 & -5 / 2 & 0 & & -25 / 2
\end{array}\right],} \\
& x_{1}=\frac{5}{2}-\frac{1}{2} x_{4}-\frac{3}{2} x_{2}-\frac{1}{2} x_{3} \\
& x_{5}=1+2 x_{4}+5 x_{2} \\
& x_{6}=\frac{1}{2}+\frac{3}{2} x_{4}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3} \\
& z=\frac{25}{2}-\frac{5}{2} x_{4}-\frac{7}{2} x_{2}+\frac{1}{2} x_{3},
\end{aligned}
$$

Simplex Tableau and Its Dictionary

$$
\left.\begin{array}{rl}
{\left[\begin{array}{ccccccc|c}
0 & 1 & 3 / 2 & 1 / 2 & 1 / 2 & 0 & 0 & 5 / 2 \\
0 & 0 & -5 & 0 & -2 & 1 & 0 & 1 \\
0 & 0 & -1 / 2 & 1 / 2 & -3 / 2 & 0 & 1 & 1 / 2 \\
\hline-1 & 0 & -7 / 2 & 1 / 2 & -5 / 2 & 0 & & -25 / 2
\end{array}\right]} \\
& x_{1}
\end{array}\right]
$$

The BFS is obtained by setting non basic variable equal to zero.

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)=(5 / 2,0,0,0,1,1 / 2) .
$$

Second Simplex Pivot on the Tableau

0	1	$3 / 2$	$1 / 2$	$1 / 2$	0	0	$5 / 2$
0	0	-5	0	-2	1	0	1
0	0	$-1 / 2$	$1 / 2$	$-3 / 2$	0	1	$1 / 2$
-1	0	$-7 / 2$	$1 / 2$	$-5 / 2$	0	0	$-25 / 2$

Second Simplex Pivot on the Tableau

			Pivot column \downarrow				
0	1	3/2	1/2	1/2	0	0	5/2
0	0	-5	0	-2	1	0	1
0	0	$-1 / 2$	1/2	-3/2	0	1	1/2
-1	0	-7/2	1/2	-5/2	0	0	-25/2

Second Simplex Pivot on the Tableau

Pivot column \downarrow								
0	1	$3 / 2$	$1 / 2$	$1 / 2$	0	0	$5 / 2$	5
0	0	-5	0	-2	1	0	1	
0	0	$-1 / 2$	$1 / 2$	$-3 / 2$	0	1	$1 / 2$	1
-1	0	$-7 / 2$	$1 / 2$	$-5 / 2$	0	0	$-25 / 2$	

Second Simplex Pivot on the Tableau

Second Simplex Pivot on the Tableau

									ratios
0	1	$3 / 2$	$1 / 2$	$1 / 2$	0	0	$5 / 2$	5	
0	0	-5	0	-2	1	0	1		
0	0	$-1 / 2$	$1 / 2$	$-3 / 2$	0	1	$1 / 2$	1	
-1	0	$-7 / 2$	$1 / 2$	$-5 / 2$	0	0	$-25 / 2$		

Second Simplex Pivot on the Tableau

$$
\begin{array}{ccccccc|cc}
& & & & & & & & \text { ratios } \\
0 & 1 & 3 / 2 & 1 / 2 & 1 / 2 & 0 & 0 & 5 / 2 & 5 \\
0 & 0 & -5 & 0 & -2 & 1 & 0 & 1 & \\
0 & 0 & -1 / 2 & 1 / 2 & -3 / 2 & 0 & 1 & 1 / 2 & 1 \\
\hline-1 & 0 & -7 / 2 & 1 / 2 & -5 / 2 & 0 & 0 & -25 / 2 & \\
\hline & & & & & & & \\
\hline & & & & & & & & \\
0 & 0 & -1 & 1 & -3 & 0 & 2 & 1 \\
\hline
\end{array}
$$

Second Simplex Pivot on the Tableau

0	1	3/2	1/2	1/2	0	0	5/2	5
0	0	-5	0	-2	1	0	1	
0	0	-1/2	(1/2)	-3/2	0	1	1/2	1
-1	0	-7/2	1/2	-5/2	0	0	-25/2	
0	1	2	0	2	0	-1	2	
0	0	-1	1	-3	0	2	1	

Second Simplex Pivot on the Tableau

ratios

0	1	$3 / 2$	$1 / 2$	$1 / 2$	0	0	$5 / 2$	5
0	0	-5	0	-2	1	0	1	
0	0	$-1 / 2$	$1 / 2$	$-3 / 2$	0	1	$1 / 2$	1
-1	0	$-7 / 2$	$1 / 2$	$-5 / 2$	0	0	$-25 / 2$	
0	1	2	0	2	0	-1	2	
0	0	-5	0	-2	1	0	1	
0	0	-1	1	-3	0	2	1	

Second Simplex Pivot on the Tableau

| | | | | | | | | ratios |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | $3 / 2$ | $1 / 2$ | $1 / 2$ | 0 | 0 | $5 / 2$ | 5 |
| 0 | 0 | -5 | 0 | -2 | 1 | 0 | 1 | |
| 0 | 0 | $-1 / 2$ | $1 / 2$ | $-3 / 2$ | 0 | 1 | $1 / 2$ | 1 |
| -1 | 0 | $-7 / 2$ | $1 / 2$ | $-5 / 2$ | 0 | 0 | $-25 / 2$ | |
| | | | | | | | | |
| 0 | 1 | 2 | 0 | 2 | 0 | -1 | 2 | |
| 0 | 0 | -5 | 0 | -2 | 1 | 0 | 1 | |
| 0 | 0 | -1 | 1 | -3 | 0 | 2 | 1 | |
| -1 | 0 | -3 | 0 | -1 | 0 | -1 | -13 | |

Second Simplex Pivot on the Tableau

\[

\]

Optimal Solution: $\left(x_{1}, x_{2}, x_{3}\right)=(2,0,1)$

Second Simplex Pivot on the Tableau

0	1	$3 / 2$	$1 / 2$	$1 / 2$	0	0	$5 / 2$	5	
0	0	-5	0	-2	1	0	1		
0	0	$-1 / 2$	$1 / 2$	$-3 / 2$	0	1	$1 / 2$	1	
-1	0	$-7 / 2$	$1 / 2$	$-5 / 2$	0	0	$-25 / 2$		
0	1	2	0	2	0	-1	2		
0	0	-5	0	-2	1	0	1		
0	0	-1	1	-3	0	2	1		
-1	0	-3	0	-1	0	-1	-13		

Optimal Solution: $\left(x_{1}, x_{2}, x_{3}\right)=(2,0,1)$
Optimal Value: $z=13$

Recap: Tableau Pivoting

0	2	3	1	1	0	0	5	
0	4	1	2	0	1	0	11	
0	3	4	2	0	0	1	8	
-1	5	4	3	0	0	0	0	
0	1	$3 / 2$	$1 / 2$	$1 / 2$	0	0	$5 / 2$	
0	0	-5	0	-2	1	0	1	
0	0	$-1 / 2$	$1 / 2$	$-3 / 2$	0	1	$1 / 2$	
-1	0	$-7 / 2$	$1 / 2$	$-5 / 2$	0	0	$-25 / 2$	
0	1	2	0	2	0	-1	2	
0	0	-5	0	-2	1	0	1	
0	0	-1	1	-3	0	2	1	
-1	0	-3	0	-1	0	-1	-13	

Remove z Column

2	3	1	1	0	0	5	
4	1	2	0	1	0	11	
3	4	2	0	0	1	8	
5	4	3	0	0	0	0	
1	$3 / 2$	$1 / 2$	$1 / 2$	0	0	$5 / 2$	
0	-5	0	-2	1	0	1	
0	$-1 / 2$	$1 / 2$	$-3 / 2$	0	1	$1 / 2$	
0	$-7 / 2$	$1 / 2$	$-5 / 2$	0	0	$-25 / 2$	
1	2	0	2	0	-1	2	
0	-5	0	-2	1	0	1	
0	-1	1	-3	0	2	1	
0	-3	0	-1	0	-1	-13	

Another Example

$$
\begin{aligned}
& \text { maximize } 3 x+2 y-4 z \\
& \text { subject to } \begin{array}{rlr}
x & +4 y & \leq 5 \\
2 x & +4 y-2 z & \leq 6 \\
x & +y-2 z & \leq 2
\end{array} \\
& 0 \leq x, y, \quad z
\end{aligned}
$$

Second Example: Tableau Pivoting

							ratios
1	4	0	1	0	0	5	5
2	4	-2	0	1	0	6	3
1	1	-2	0	0	1	2	2
3	2	-4	0	0	0	0	
0	3	2	1	0	-1	3	$3 / 2$
0	2	2	0	1	-2	2	1
1	1	-2	0	0	1	2	
0	-1	2	0	0	-3	-6	
0	1	0	1	-1	1	1	
0	1	1	0	$1 / 2$	-1	1	
1	3	0	0	1	-1	4	
0	-3	0	0	-1	-1	-8	

