Linear Programming

Lecture 6: The Simplex Algorithm
Language, Notation, and Linear Algebra
(1) Dictionaries for LPs in Standard Form
(2) The Simplex Algorithm via Matrix Multiplication
(3) The Block Structure of the Simplex Algorithm
(4) Block Structure and Matrix Multiplication
(5) The Block Structure of an Optimal Tableau
(6) Block Structure and Duality

Dictionaries for LPs in Standard Form

Dictionaries for LPs in Standard Form

\mathcal{P} : maximize $c^{\top} x$
subject to $A x \leq b$
$0 \leq x$,
where $c \in \mathbb{R}^{n}, b \in \mathbb{R}^{m}, A \in \mathbb{R}^{m \times n}$

Dictionaries for LPs in Standard Form

\mathcal{P} : maximize $c^{T} x$
subject to $A x \leq b$
$0 \leq x$,
where $c \in \mathbb{R}^{n}, b \in \mathbb{R}^{m}, A \in \mathbb{R}^{m \times n}$
The initial dictionary:

Dictionaries for LPs in Standard Form

\mathcal{P} : maximize $c^{T} x$

$$
\text { subject to } \quad A x \leq b \quad\left[\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}, i=1, \ldots, m\right]
$$

$$
0 \leq x
$$

where $c \in \mathbb{R}^{n}, b \in \mathbb{R}^{m}, A \in \mathbb{R}^{m \times n}$
The initial dictionary:
slack variables $\quad x_{n+i}:=b_{i}-\sum_{j=1}^{n} a_{i j} x_{j} \quad i=1,2, \ldots, m$

Dictionaries for LPs in Standard Form

\mathcal{P} : maximize $c^{T} x$

$$
\text { subject to } A x \leq b \quad\left[\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}, i=1, \ldots, m\right]
$$

$$
0 \leq x,
$$

where $c \in \mathbb{R}^{n}, b \in \mathbb{R}^{m}, A \in \mathbb{R}^{m \times n}$
The initial dictionary:

$$
\begin{aligned}
\text { slack variables } & x_{n+i}:=b_{i}-\sum_{j=1}^{n} a_{i j} x_{j} \quad i=1,2, \ldots, m \\
\text { objective } & z \quad:=\sum_{j=1}^{n} c_{j} x_{j}
\end{aligned}
$$

Dictionaries for LPs in Standard Form

\mathcal{P} : maximize $c^{T} x$

$$
\text { subject to } A x \leq b \quad\left[\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}, i=1, \ldots, m\right]
$$

$$
0 \leq x,
$$

where $c \in \mathbb{R}^{n}, b \in \mathbb{R}^{m}, A \in \mathbb{R}^{m \times n}$
The initial dictionary:

$$
\begin{align*}
\text { slack variables } & x_{n+i}:=b_{i}-\sum_{j=1}^{n} a_{i j} x_{j} \quad i=1,2, \ldots, m \tag{l}\\
\text { objective } & z \quad:=\sum_{j=1}^{n} c_{j} x_{j}
\end{align*}
$$

General Dictionaries

A dictionary for \mathcal{P} is any system of the form

$$
\begin{align*}
x_{i} & =\widehat{b}_{i}-\sum_{j \in N} \widehat{a}_{i j} x_{j} \quad i \in B \tag{B}\\
z & =\widehat{z}+\sum_{j \in N} \widehat{c}_{j} x_{j}
\end{align*}
$$

General Dictionaries

A dictionary for \mathcal{P} is any system of the form

$$
\begin{align*}
x_{i} & =\widehat{b}_{i}-\sum_{j \in N} \widehat{a}_{i j} x_{j} \quad i \in B \tag{B}\\
z & =\widehat{z}+\sum_{j \in N} \widehat{c}_{j} x_{j}
\end{align*}
$$

where B and N are index sets partitioning $\{1, \ldots, n+m\}$ and satisfying

General Dictionaries

A dictionary for \mathcal{P} is any system of the form

$$
\begin{align*}
x_{i} & =\widehat{b}_{i}-\sum_{j \in N} \widehat{a}_{i j} x_{j} \quad i \in B \tag{B}\\
z & =\widehat{z}+\sum_{j \in N} \widehat{c}_{j} x_{j}
\end{align*}
$$

where B and N are index sets partitioning $\{1, \ldots, n+m\}$ and satisfying
(1) B contains m elements and N contains n elements,

General Dictionaries

A dictionary for \mathcal{P} is any system of the form

$$
\begin{align*}
x_{i} & =\widehat{b}_{i}-\sum_{j \in N} \widehat{a}_{i j} x_{j} \quad i \in B \tag{B}\\
z & =\widehat{z}+\sum_{j \in N} \widehat{c}_{j} x_{j}
\end{align*}
$$

where B and N are index sets partitioning $\{1, \ldots, n+m\}$ and satisfying
(1) B contains m elements and N contains n elements,
(2) $B \cap N=\emptyset$

General Dictionaries

A dictionary for \mathcal{P} is any system of the form

$$
\begin{align*}
x_{i} & =\widehat{b}_{i}-\sum_{j \in N} \widehat{a}_{i j} x_{j} \quad i \in B \tag{B}\\
z & =\widehat{z}+\sum_{j \in N} \widehat{c}_{j} x_{j}
\end{align*}
$$

where B and N are index sets partitioning $\{1, \ldots, n+m\}$ and satisfying
(1) B contains m elements and N contains n elements,
(2) $B \cap N=\emptyset$
(3) $B \cup N=\{1,2, \ldots, n+m\}$,

General Dictionaries

A dictionary for \mathcal{P} is any system of the form

$$
\begin{align*}
x_{i} & =\widehat{b}_{i}-\sum_{j \in N} \widehat{a}_{i j} x_{j} \quad i \in B \tag{B}\\
z & =\widehat{z}+\sum_{j \in N} \widehat{c}_{j} x_{j}
\end{align*}
$$

where B and N are index sets partitioning $\{1, \ldots, n+m\}$ and satisfying
(1) B contains m elements and N contains n elements,
(2) $B \cap N=\emptyset$
(3) $B \cup N=\{1,2, \ldots, n+m\}$,
and such that the systems $\left(D_{l}\right)$ and $\left(D_{B}\right)$ have identical solution sets.

Properties of Dictionaries

$$
\begin{aligned}
x_{i} & =\widehat{b}_{i}-\sum_{j \in N} \widehat{a}_{i j} x_{j} \quad i \in B \\
z & =\widehat{z}+\sum_{j \in N} \widehat{c}_{j} x_{j}
\end{aligned}
$$

- $B \sim$ basic variables $N \sim$ nonbasic variables

Properties of Dictionaries

$$
\begin{aligned}
x_{i} & =\widehat{b}_{i}-\sum_{j \in N} \widehat{a}_{i j} x_{j} \quad i \in B \\
z & =\widehat{z}+\sum_{j \in N} \widehat{c}_{j} x_{j}
\end{aligned}
$$

- $B \sim$ basic variables $N \sim$ nonbasic variables
- Basic solution identified by the dictionary is

$$
\begin{array}{ll}
x_{i}=\widehat{b}_{i} & i \in B \\
x_{j}=0 & j \in N .
\end{array}
$$

Properties of Dictionaries

$$
\begin{aligned}
x_{i} & =\widehat{b}_{i}-\sum_{j \in N} \widehat{a}_{i j} x_{j} \quad i \in B \\
z & =\widehat{z}+\sum_{j \in N} \widehat{c}_{j} x_{j}
\end{aligned}
$$

- $B \sim$ basic variables $N \sim$ nonbasic variables
- Basic solution identified by the dictionary is

$$
\begin{array}{ll}
x_{i}=\widehat{b}_{i} & i \in B \\
x_{j}=0 & j \in N .
\end{array}
$$

- Dictionary is feasible if $0 \leq \widehat{b}_{i}$ for $i \in B$.

Properties of Dictionaries

$$
\begin{aligned}
x_{i} & =\widehat{b}_{i}-\sum_{j \in N} \widehat{a}_{i j} x_{j} \quad i \in B \\
z & =\widehat{z}+\sum_{j \in N} \widehat{c}_{j} x_{j}
\end{aligned}
$$

- $B \sim$ basic variables $N \sim$ nonbasic variables
- Basic solution identified by the dictionary is

$$
\begin{array}{ll}
x_{i}=\widehat{b}_{i} & i \in B \\
x_{j}=0 & j \in N .
\end{array}
$$

- Dictionary is feasible if $0 \leq \widehat{b}_{i}$ for $i \in B$.
- If feasible, then the basic solution is a basic feasible solution (BFS).

Properties of Dictionaries

$$
\begin{aligned}
x_{i} & =\widehat{b}_{i}-\sum_{j \in N} \widehat{a}_{i j} x_{j} \quad i \in B \\
z & =\widehat{z}+\sum_{j \in N} \widehat{c}_{j} x_{j}
\end{aligned}
$$

- $B \sim$ basic variables $N \sim$ nonbasic variables
- Basic solution identified by the dictionary is

$$
\begin{array}{ll}
x_{i}=\widehat{b}_{i} & i \in B \\
x_{j}=0 & j \in N .
\end{array}
$$

- Dictionary is feasible if $0 \leq \widehat{b}_{i}$ for $i \in B$.
- If feasible, then the basic solution is a basic feasible solution (BFS).
- A feasible dictionary is optimal if $\widehat{c}_{j} \leq 0 j \in N$.

The Simplex Algorithm via Matrix Multiplication

We have already seen that Gaussian elimination can be performed by matrix multiplication.

The Simplex Algorithm via Matrix Multiplication

We have already seen that Gaussian elimination can be performed by matrix multiplication.
How does this look in the context of the simplex algorithm?

The Simplex Algorithm via Matrix Multiplication

We have already seen that Gaussian elimination can be performed by matrix multiplication.
How does this look in the context of the simplex algorithm?

First recall that

$$
\left[\begin{array}{ccc}
I_{s \times s} & -\alpha^{-1} a & 0 \\
0 & \alpha^{-1} & 0 \\
0 & -\alpha^{-1} b & I_{t \times t}
\end{array}\right]\left(\begin{array}{c}
a \\
\alpha \\
b
\end{array}\right)=\left[\begin{array}{c}
a-a \\
\alpha^{-1} \alpha \\
-b+b
\end{array}\right]=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) .
$$

The Simplex Algorithm via Matrix Multiplication

We have already seen that Gaussian elimination can be performed by matrix multiplication.
How does this look in the context of the simplex algorithm?

First recall that

$$
\left[\begin{array}{ccc}
I_{s \times s} & -\alpha^{-1} a & 0 \\
0 & \alpha^{-1} & 0 \\
0 & -\alpha^{-1} b & I_{t \times t}
\end{array}\right]\left(\begin{array}{c}
a \\
\alpha \\
b
\end{array}\right)=\left[\begin{array}{c}
a-a \\
\alpha^{-1} \alpha \\
-b+b
\end{array}\right]=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) .
$$

The elimination matrix and its inverse.

$$
G=\left[\begin{array}{ccc}
I_{s \times s} & -\alpha^{-1} a & 0 \\
0 & \alpha^{-1} & 0 \\
0 & -\alpha^{-1} b & I_{t \times t}
\end{array}\right] \quad G^{-1}=\left[\begin{array}{ccc}
l & a & 0 \\
0 & \alpha & 0 \\
0 & b & l
\end{array}\right]
$$

The Simplex Algorithm via Matrix Multiplication

The elimination matrices also have the following important property.

$$
\left[\begin{array}{ccc}
I_{s \times s} & -\alpha^{-1} a & 0 \\
0 & \alpha^{-1} & 0 \\
0 & -\alpha^{-1} b & I_{t \times t}
\end{array}\right]\left(\begin{array}{l}
x \\
0 \\
y
\end{array}\right)=\left(\begin{array}{l}
x \\
0 \\
y
\end{array}\right)
$$

The Simplex Algorithm via Matrix Multiplication

The elimination matrices also have the following important property.

$$
\left[\begin{array}{ccc}
I_{s \times s} & -\alpha^{-1} a & 0 \\
0 & \alpha^{-1} & 0 \\
0 & -\alpha^{-1} b & I_{t \times t}
\end{array}\right]\left(\begin{array}{l}
x \\
0 \\
y
\end{array}\right)=\left(\begin{array}{l}
x \\
0 \\
y
\end{array}\right)
$$

We call these matrices Gauss-Jordan elimination or pivot matrices.

The Simplex Algorithm via Matrix Multiplication

The elimination matrices also have the following important property.

$$
\left[\begin{array}{ccc}
I_{s \times s} & -\alpha^{-1} a & 0 \\
0 & \alpha^{-1} & 0 \\
0 & -\alpha^{-1} b & I_{t \times t}
\end{array}\right]\left(\begin{array}{l}
x \\
0 \\
y
\end{array}\right)=\left(\begin{array}{l}
x \\
0 \\
y
\end{array}\right)
$$

We call these matrices Gauss-Jordan elimination or pivot matrices. These matices perform precisely the operations required in order to execute a simplex pivot.

The Simplex Algorithm via Matrix Multiplication

The elimination matrices also have the following important property.

$$
\left[\begin{array}{ccc}
I_{s \times s} & -\alpha^{-1} a & 0 \\
0 & \alpha^{-1} & 0 \\
0 & -\alpha^{-1} b & I_{t \times t}
\end{array}\right]\left(\begin{array}{l}
x \\
0 \\
y
\end{array}\right)=\left(\begin{array}{l}
x \\
0 \\
y
\end{array}\right)
$$

We call these matrices Gauss-Jordan elimination or pivot matrices.
These matices perform precisely the operations required in order to execute a simplex pivot.
Each simplex pivot can be realized as left multiplication of the simplex tableau by the appropriate Gaussian-Jordan pivot matrix.

The Simplex Algorithm via Matrix Multiplication

$$
\left[\begin{array}{cccccc|c}
1 & 4 & 2 & 1 & 0 & 0 & 11 \\
3 & 2 & 1 & 0 & 1 & 0 & 5 \\
4 & 2 & 2 & 0 & 0 & 1 & 8 \\
\hline 4 & 5 & 3 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The Simplex Algorithm via Matrix Multiplication

$$
\left[\begin{array}{cccc}
1 & -2 & 0 & 0 \\
0 & \frac{1}{2} & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & \frac{-5}{2} & 0 & 1
\end{array}\right]\left[\begin{array}{cccccc|c}
1 & 4 & 2 & 1 & 0 & 0 & 11 \\
3 & 2 & 1 & 0 & 1 & 0 & 5 \\
4 & 2 & 2 & 0 & 0 & 1 & 8 \\
\hline 4 & 5 & 3 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The Simplex Algorithm via Matrix Multiplication

$$
\left[\begin{array}{cccc}
1 & -2 & 0 & 0 \\
0 & \frac{1}{2} & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & \frac{-5}{2} & 0 & 1
\end{array}\right]\left[\begin{array}{cccccc|c}
1 & 4 & 2 & 1 & 0 & 0 & 11 \\
3 & 2 & 1 & 0 & 1 & 0 & 5 \\
4 & 2 & 2 & 0 & 0 & 1 & 8 \\
\hline 4 & 5 & 3 & 0 & 0 & 0 & 0
\end{array}\right]=\left[\begin{array}{cccccc|c}
-5 & 0 & 0 & 1 & -2 & 0 & 1 \\
\frac{3}{2} & 1 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & \frac{5}{2} \\
1 & 0 & 1 & 0 & -1 & 1 & 3 \\
\hline-\frac{7}{2} & 0 & \frac{1}{2} & 0 & \frac{-5}{2} & 0 & \frac{-25}{2}
\end{array}\right]
$$

The Simplex Algorithm via Matrix Multiplication

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & -2 & 0 & 0 \\
0 & \frac{1}{2} & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & \frac{-5}{2} & 0 & 1
\end{array}\right]\left[\begin{array}{cccccc|c}
1 & 4 & 2 & 1 & 0 & 0 & 11 \\
3 & 2 & 1 & 0 & 1 & 0 & 5 \\
4 & 2 & 2 & 0 & 0 & 1 & 8 \\
\hline 4 & 5 & 3 & 0 & 0 & 0 & 0
\end{array}\right]=\left[\begin{array}{cccccc|c}
-5 & 0 & 0 & 1 & -2 & 0 & 1 \\
\frac{3}{2} & 1 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & \frac{5}{2} \\
1 & 0 & 1 & 0 & -1 & 1 & 3 \\
\hline-\frac{7}{2} & 0 & \frac{1}{2} & 0 & \frac{-5}{2} & 0 & \frac{-25}{2}
\end{array}\right]} \\
& {\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & \frac{-1}{2} & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & \frac{-1}{2} & 1
\end{array}\right]\left[\begin{array}{cccccc|c}
-5 & 0 & 0 & 1 & -2 & 0 & 1 \\
\frac{3}{2} & 1 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & \frac{5}{2} \\
1 & 0 & 1 & 0 & -1 & 1 & 3 \\
\hline \frac{-7}{2} & 0 & \frac{1}{2} & 0 & \frac{-5}{2} & 0 & \frac{-25}{2}
\end{array}\right]}
\end{aligned}
$$

The Simplex Algorithm via Matrix Multiplication

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & -2 & 0 & 0 \\
0 & \frac{1}{2} & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & \frac{-5}{2} & 0 & 1
\end{array}\right]\left[\begin{array}{cccccc|c}
1 & 4 & 2 & 1 & 0 & 0 & 11 \\
3 & 2 & 1 & 0 & 1 & 0 & 5 \\
4 & 2 & 2 & 0 & 0 & 1 & 8 \\
\hline 4 & 5 & 3 & 0 & 0 & 0 & 0
\end{array}\right]=\left[\begin{array}{cccccc|c}
-5 & 0 & 0 & 1 & -2 & 0 & 1 \\
\frac{3}{2} & 1 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & \frac{5}{2} \\
1 & 0 & 1 & 0 & -1 & 1 & 3 \\
\hline-\frac{7}{2} & 0 & \frac{1}{2} & 0 & \frac{-5}{2} & 0 & \frac{-25}{2}
\end{array}\right]} \\
& {\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & \frac{-1}{2} & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & \frac{-1}{2} & 1
\end{array}\right]\left[\begin{array}{cccccc|c}
-5 & 0 & 0 & 1 & -2 & 0 & 1 \\
\frac{3}{2} & 1 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & \frac{5}{2} \\
1 & 0 & 1 & 0 & -1 & 1 & 3 \\
\hline \frac{-7}{2} & 0 & \frac{1}{2} & 0 & \frac{-5}{2} & 0 & \frac{-25}{2}
\end{array}\right]=\left[\begin{array}{cccccc|c}
-5 & 0 & 0 & 1 & -2 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 & \frac{-1}{2} & 1 \\
1 & 0 & 1 & 0 & -1 & 1 & 3 \\
\hline-4 & 0 & 0 & 0 & -2 & \frac{-1}{2} & -14
\end{array}\right]}
\end{aligned}
$$

The Simplex Algorithm via Matrix Multiplication

$$
\left[\begin{array}{cc|c}
A & l & b \\
\hline c^{\top} & 0 & 0
\end{array}\right]
$$

The Simplex Algorithm via Matrix Multiplication

$$
G_{2} G_{1}\left[\begin{array}{cc|c}
A & I & b \\
\hline c^{\top} & 0 & 0
\end{array}\right]
$$

The Simplex Algorithm via Matrix Multiplication

$$
G_{2} G_{1}\left[\begin{array}{cc|c}
A & l & b \\
\hline c^{\top} & 0 & 0
\end{array}\right]
$$

where

$$
G_{2} G_{1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & \frac{-1}{2} & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & \frac{-1}{2} & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & -2 & 0 & 0 \\
0 & \frac{1}{2} & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & \frac{-5}{2} & 0 & 1
\end{array}\right]=\left[\begin{array}{cccc}
1 & -2 & 0 & 0 \\
0 & 1 & \frac{-1}{2} & 0 \\
0 & -1 & 1 & 0 \\
0 & -2 & \frac{-1}{2} & 1
\end{array}\right]
$$

The Simplex Algorithm via Matrix Multiplication

$$
G_{2} G_{1}\left[\begin{array}{cc|c}
A & I & b \\
\hline c^{\top} & 0 & 0
\end{array}\right]
$$

The Simplex Algorithm via Matrix Multiplication

$$
\begin{gathered}
G_{2} G_{1}\left[\begin{array}{cc|c}
A & I & b \\
\hline c^{\top} & 0 & 0
\end{array}\right] \\
=\left[\begin{array}{cccc}
1 & -2 & 0 & 0 \\
0 & 1 & \frac{-1}{2} & 0 \\
0 & -1 & 1 & 0 \\
0 & -2 & \frac{-1}{2} & 1
\end{array}\right]\left[\begin{array}{cccccc|c}
1 & 4 & 2 & 1 & 0 & 0 & 11 \\
3 & 2 & 1 & 0 & 1 & 0 & 5 \\
4 & 2 & 2 & 0 & 0 & 1 & 8 \\
\hline 4 & 5 & 3 & 0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

The Simplex Algorithm via Matrix Multiplication

$$
\begin{gathered}
G_{2} G_{1}\left[\begin{array}{cc|c}
A & I & b \\
\hline c^{\top} & 0 & 0
\end{array}\right] \\
=\left[\begin{array}{cccc}
1 & -2 & 0 & 0 \\
0 & 1 & \frac{-1}{2} & 0 \\
0 & -1 & 1 & 0 \\
0 & -2 & \frac{-1}{2} & 1
\end{array}\right]\left[\begin{array}{cccccc|c}
1 & 4 & 2 & 1 & 0 & 0 & 11 \\
3 & 2 & 1 & 0 & 1 & 0 & 5 \\
4 & 2 & 2 & 0 & 0 & 1 & 8 \\
\hline 4 & 5 & 3 & 0 & 0 & 0 & 0
\end{array}\right] \\
=\left[\begin{array}{cccccc|c}
-5 & 0 & 0 & 1 & -2 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 & \frac{-1}{2} & 1 \\
1 & 0 & 1 & 0 & -1 & 1 & 3 \\
\hline-4 & 0 & 0 & 0 & -2 & \frac{-1}{2} & -14
\end{array}\right]
\end{gathered}
$$

The Block Structure of the Simplex Algorithm

Let T_{0} be the initial tableau:

$$
T_{0}=\left[\begin{array}{rcc|r}
0 & A & l & b \\
-1 & c^{\top} & 0 & 0
\end{array}\right] .
$$

The Block Structure of the Simplex Algorithm

Let T_{0} be the initial tableau:

$$
T_{0}=\left[\begin{array}{rcc|r}
0 & A & l & b \\
-1 & c^{\top} & 0 & 0
\end{array}\right] .
$$

Let T_{k} denote the tableau after k pivots:

$$
T_{k}=\left[\begin{array}{rrr|r}
0 & \widehat{A} & R & \widehat{b} \\
-1 & \widehat{c}^{\top} & -y^{\top} & \widehat{z}
\end{array}\right]
$$

The Block Structure of the Simplex Algorithm

Let T_{0} be the initial tableau:

$$
T_{0}=\left[\begin{array}{rcc|r}
0 & A & l & b \\
-1 & c^{\top} & 0 & 0
\end{array}\right] .
$$

Let T_{k} denote the tableau after k pivots:

$$
T_{k}=\left[\begin{array}{rrr|r}
0 & \widehat{A} & R & \widehat{b} \\
-1 & \widehat{c}^{\top} & -y^{\top} & \widehat{z}
\end{array}\right]
$$

T_{k} is obtained from T_{0} by multiplying it on the left by a product of Gaussian pivot matrices $G:=G_{k} G_{k-1} \cdots G_{1}$:

$$
G T_{0}=T_{k},
$$

where G is invertible $\left(G^{-1}=G_{1}^{-1} G_{2}^{-1} \cdots G_{k}^{-1}\right)$.

The Block Structure of the Simplex Algorithm

Let's investigate the structure of T_{k} by examining the consequence of this product in terms of the block structure of T_{0} and T_{k}.

$$
T_{0}=\left[\begin{array}{rrr|r}
0 & A & l & b \\
-1 & c^{\top} & 0 & 0
\end{array}\right] \quad T_{k}=\left[\begin{array}{rrr|r}
0 & \widehat{A} & R & \widehat{b} \\
-1 & \widehat{c}^{\top} & -y^{\top} & \widehat{z}
\end{array}\right]
$$

Here we use the fact that the first column of the simplex tableau remains unchanged by pivoting.

The Block Structure of the Simplex Algorithm

Let's investigate the structure of T_{k} by examining the consequence of this product in terms of the block structure of T_{0} and T_{k}.

$$
T_{0}=\left[\begin{array}{rrr|r}
0 & A & l & b \\
-1 & c^{\top} & 0 & 0
\end{array}\right] \quad T_{k}=\left[\begin{array}{rrr|r}
0 & \widehat{A} & R & \widehat{b} \\
-1 & \widehat{c}^{\top} & -y^{\top} & \widehat{z}
\end{array}\right]
$$

Here we use the fact that the first column of the simplex tableau remains unchanged by pivoting.

First we must decompose G into a block structure that is conformal to that of T_{0} :

The Block Structure of the Simplex Algorithm

Let's investigate the structure of T_{k} by examining the consequence of this product in terms of the block structure of T_{0} and T_{k}.

$$
T_{0}=\left[\begin{array}{rrr|r}
0 & A & l & b \\
-1 & c^{\top} & 0 & 0
\end{array}\right] \quad T_{k}=\left[\begin{array}{rrr|r}
0 & \widehat{A} & R & \widehat{b} \\
-1 & \widehat{c}^{\top} & -y^{\top} & \widehat{z}
\end{array}\right]
$$

Here we use the fact that the first column of the simplex tableau remains unchanged by pivoting.

First we must decompose G into a block structure that is conformal to that of T_{0} :

$$
G=\left[\begin{array}{cc}
M & u \\
v^{\top} & \beta
\end{array}\right],
$$

where $M \in \mathbb{R}^{m \times m}, u, v \in \mathbb{R}^{m}$, and $\beta \in \mathbb{R}$.

Block Structure and Matrix Multiplication

$$
\left[\begin{array}{rrr|r}
0 & \widehat{A} & R & \widehat{b} \\
-1 & \widehat{c}^{\top} & -y^{\top} & \widehat{z}
\end{array}\right]=T_{k}
$$

Block Structure and Matrix Multiplication

$$
\left[\begin{array}{rrr|r}
0 & \widehat{A} & R & \widehat{b} \\
-1 & \widehat{c}^{\top} & -y^{\top} & \widehat{z}
\end{array}\right]=T_{k}=G T_{0}
$$

Block Structure and Matrix Multiplication

$$
\begin{aligned}
{\left[\begin{array}{rrr|r}
0 & \widehat{A} & R & \widehat{b} \\
-1 & \widehat{c}^{\top} & -y^{\top} & \widehat{z}
\end{array}\right] } & =T_{k}=G T_{0} \\
& =\left[\begin{array}{ll}
M & u \\
v^{\top} & \beta
\end{array}\right]\left[\begin{array}{rcc|r}
0 & A & l & b \\
-1 & c^{\top} & 0 & 0
\end{array}\right]
\end{aligned}
$$

Block Structure and Matrix Multiplication

$$
\begin{aligned}
{\left[\begin{array}{rrr|r}
0 & \widehat{A} & R & \widehat{b} \\
-1 & \widehat{c}^{\top} & -y^{\top} & \widehat{z}
\end{array}\right] } & =T_{k}=G T_{0} \\
& =\left[\begin{array}{cc}
M & u \\
v^{\top} & \beta
\end{array}\right]\left[\begin{array}{rcc|r}
0 & A & l & b \\
-1 & c^{\top} & 0 & 0
\end{array}\right] \\
& =\left[\begin{array}{rrr|r}
-u & M A+u c^{\top} & M & M b \\
-\beta & v^{\top} A+\beta c^{\top} & v^{\top} & v^{\top} b
\end{array}\right]
\end{aligned}
$$

Block Structure and Matrix Multiplication

$$
\left[\begin{array}{rrr|r}
0 & \hat{A} & R & \widehat{b} \\
-1 & \widehat{c}^{\top} & -y^{\top} & \widehat{z}
\end{array}\right]=\left[\begin{array}{rcc|c}
-u & M A+u c^{\top} & M & M b \\
-\beta & v^{\top} A+\beta c^{\top} & v^{\top} & v^{\top} b
\end{array}\right]
$$

Block Structure and Matrix Multiplication

$$
\left[\begin{array}{rrr|r}
0 & \widehat{A} & R & \widehat{b} \\
-1 & \widehat{c}^{\top} & -y^{\top} & \widehat{z}
\end{array}\right]=\left[\begin{array}{rrr|r}
-u & M A+u c^{\top} & M & M b \\
-\beta & v^{\top} A+\beta c^{\top} & v^{\top} & v^{\top} b
\end{array}\right]
$$

Equating terms on the left and right gives

Block Structure and Matrix Multiplication

$$
\left[\begin{array}{rrr|r}
0 & \widehat{A} & R & \widehat{b} \\
-1 & \widehat{c}^{\top} & -y^{\top} & \widehat{z}
\end{array}\right]=\left[\begin{array}{rrr|r}
-u & M A+u c^{\top} & M & M b \\
-\beta & v^{\top} A+\beta c^{\top} & v^{\top} & v^{\top} b
\end{array}\right]
$$

Equating terms on the left and right gives

$$
u=0
$$

Block Structure and Matrix Multiplication

$$
\left[\begin{array}{rrr|r}
0 & \widehat{A} & R & \widehat{b} \\
-1 & \widehat{c}^{\top} & -y^{\top} & \widehat{z}
\end{array}\right]=\left[\begin{array}{rrr|r}
-u & M A+u c^{\top} & M & M b \\
-\beta & v^{\top} A+\beta c^{\top} & v^{\top} & v^{\top} b
\end{array}\right]
$$

Equating terms on the left and right gives

$$
u=0 \quad \beta=1
$$

Block Structure and Matrix Multiplication

$$
\left[\begin{array}{rrr|r}
0 & \widehat{A} & R & \widehat{b} \\
-1 & \widehat{c}^{\top} & -y^{\top} & \widehat{z}
\end{array}\right]=\left[\begin{array}{rrr|r}
-u & M A+u c^{\top} & M & M b \\
-\beta & v^{\top} A+\beta c^{\top} & v^{\top} & v^{\top} b
\end{array}\right]
$$

Equating terms on the left and right gives

$$
\begin{array}{rlr}
u & =0 & \beta=1 \\
M & =R &
\end{array}
$$

Block Structure and Matrix Multiplication

$$
\left[\begin{array}{rrr|r}
0 & \widehat{A} & R & \widehat{b} \\
-1 & \widehat{c}^{\top} & -y^{\top} & \widehat{z}
\end{array}\right]=\left[\begin{array}{rrr|r}
-u & M A+u c^{\top} & M & M b \\
-\beta & v^{\top} A+\beta c^{\top} & v^{\top} & v^{\top} b
\end{array}\right]
$$

Equating terms on the left and right gives

$$
\begin{aligned}
u & =0 & \beta & =1 \\
M & =R & \text { and } \quad v & =-y
\end{aligned}
$$

Block Structure and Matrix Multiplication

$$
\left[\begin{array}{rrr|r}
0 & \widehat{A} & R & \widehat{b} \\
-1 & \widehat{c}^{\top} & -y^{\top} & \widehat{z}
\end{array}\right]=\left[\begin{array}{rrr|r}
-u & M A+u c^{\top} & M & M b \\
-\beta & v^{\top} A+\beta c^{\top} & v^{\top} & v^{\top} b
\end{array}\right]
$$

Equating terms on the left and right gives

$$
\begin{aligned}
u & =0 \quad \beta=1 \\
M & =R \quad \text { and } \quad v=-y
\end{aligned}
$$

Therefore,

$$
T_{k}=\left[\begin{array}{cc}
R & 0 \\
-y^{\top} & 1
\end{array}\right]\left[\begin{array}{ccc|c}
0 & A & I & b \\
-1 & c^{\top} & 0 & 0
\end{array}\right]=\left[\begin{array}{ccc|c}
0 & R A & R & R b \\
-1 & c^{\top}-y^{\top} A & -y^{\top} & -y^{\top} b
\end{array}\right]
$$

where the matrix R is necessarily invertible.

Block Structure and Matrix Multiplication

$$
\left[\begin{array}{rrr|r}
0 & \widehat{A} & R & \widehat{b} \\
-1 & \widehat{c}^{\top} & -y^{\top} & \widehat{z}
\end{array}\right]=\left[\begin{array}{rrr|r}
-u & M A+u c^{\top} & M & M b \\
-\beta & v^{\top} A+\beta c^{\top} & v^{\top} & v^{\top} b
\end{array}\right]
$$

Equating terms on the left and right gives

$$
\begin{aligned}
u & =0 \quad \beta=1 \\
M & =R \quad \text { and } \quad v=-y
\end{aligned}
$$

Therefore,

$$
T_{k}=\left[\begin{array}{cc}
R & 0 \\
-y^{\top} & 1
\end{array}\right]\left[\begin{array}{ccc|c}
0 & A & l & b \\
-1 & c^{\top} & 0 & 0
\end{array}\right]=\left[\begin{array}{ccc|c}
0 & R A & R & R b \\
-1 & c^{\top}-y^{\top} A & -y^{\top} & -y^{\top} b
\end{array}\right]
$$

where the matrix R is necessarily invertible. ($R \sim$ record matrix)

The Block Structure of an Optimal Tableau

$$
T_{k}=\left[\begin{array}{cc}
R & 0 \\
-y^{\top} & 1
\end{array}\right]\left[\begin{array}{ccc|c}
0 & A & l & b \\
-1 & c^{\top} & 0 & 0
\end{array}\right]=\left[\begin{array}{ccc|c}
0 & R A & R & R b \\
-1 & c^{\top}-y^{\top} A & -y^{\top} & -y^{\top} b
\end{array}\right]
$$

We say that T_{k} is an optimal tableau if the simplex algorithm terminates at this tableau.

The Block Structure of an Optimal Tableau

$$
T_{k}=\left[\begin{array}{cc}
R & 0 \\
-y^{\top} & 1
\end{array}\right]\left[\begin{array}{ccc|c}
0 & A & l & b \\
-1 & c^{\top} & 0 & 0
\end{array}\right]=\left[\begin{array}{ccc|c}
0 & R A & R & R b \\
-1 & c^{\top}-y^{\top} A & -y^{\top} & -y^{\top} b
\end{array}\right]
$$

We say that T_{k} is an optimal tableau if the simplex algorithm terminates at this tableau.
That is, T_{k} is an optimal tableau if and only if

The Block Structure of an Optimal Tableau

$$
T_{k}=\left[\begin{array}{cc}
R & 0 \\
-y^{\top} & 1
\end{array}\right]\left[\begin{array}{ccc|c}
0 & A & l & b \\
-1 & c^{\top} & 0 & 0
\end{array}\right]=\left[\begin{array}{ccc|c}
0 & R A & R & R b \\
-1 & c^{\top}-y^{\top} A & -y^{\top} & -y^{\top} b
\end{array}\right]
$$

We say that T_{k} is an optimal tableau if the simplex algorithm terminates at this tableau.
That is, T_{k} is an optimal tableau if and only if

- it is feasible: $0 \leq R b$, and

The Block Structure of an Optimal Tableau

$$
T_{k}=\left[\begin{array}{cc}
R & 0 \\
-y^{\top} & 1
\end{array}\right]\left[\begin{array}{rcc|c}
0 & A & l & b \\
-1 & c^{\top} & 0 & 0
\end{array}\right]=\left[\begin{array}{ccc|c}
0 & R A & R & R b \\
-1 & c^{\top}-y^{\top} A & -y^{\top} & -y^{\top} b
\end{array}\right]
$$

We say that T_{k} is an optimal tableau if the simplex algorithm terminates at this tableau.
That is, T_{k} is an optimal tableau if and only if

- it is feasible: $0 \leq R b$, and
- the z-row has non-positive entries:

$$
\begin{gathered}
c-A^{\top} y \leq 0 \quad \text { or equivalently } \quad A^{\top} y \geq c \\
-y \leq 0 \quad \text { or equivalently } 0 \leq y .
\end{gathered}
$$

The Block Structure of an Optimal Tableau

$$
T_{k}=\left[\begin{array}{cc}
R & 0 \\
-y^{\top} & 1
\end{array}\right]\left[\begin{array}{rcc|c}
0 & A & l & b \\
-1 & c^{\top} & 0 & 0
\end{array}\right]=\left[\begin{array}{ccc|c}
0 & R A & R & R b \\
-1 & c^{\top}-y^{\top} A & -y^{\top} & -y^{\top} b
\end{array}\right]
$$

We say that T_{k} is an optimal tableau if the simplex algorithm terminates at this tableau.
That is, T_{k} is an optimal tableau if and only if

- it is feasible: $0 \leq R b$, and
- the z-row has non-positive entries:

$$
\begin{gathered}
c-A^{\top} y \leq 0 \quad \text { or equivalently } \quad A^{\top} y \geq c \\
-y \leq 0 \quad \text { or equivalently } 0 \leq y .
\end{gathered}
$$

In this case the optimal value $=z=b^{\top} y$.

The Block Structure of an Optimal Tableau

$$
\left[\begin{array}{ccc|c}
0 & R A & R & R b \\
-1 & c^{\top}-y^{\top} A & -y^{\top} & -y^{\top} b
\end{array}\right]
$$

The Block Structure of an Optimal Tableau

$$
\left[\begin{array}{ccc|c}
0 & R A & R & R b \\
-1 & c^{\top}-y^{\top} A & -y^{\top} & -y^{\top} b
\end{array}\right]
$$

with

$$
0 \leq R b,
$$

The Block Structure of an Optimal Tableau

$$
\left[\begin{array}{ccc|c}
0 & R A & R & R b \\
-1 & c^{\top}-y^{\top} A & -y^{\top} & -y^{\top} b
\end{array}\right]
$$

with

$$
0 \leq R b, \quad A^{\top} y \geq c,
$$

The Block Structure of an Optimal Tableau

$$
\left[\begin{array}{ccc|c}
0 & R A & R & R b \\
-1 & c^{\top}-y^{\top} A & -y^{\top} & -y^{\top} b
\end{array}\right]
$$

with

$$
0 \leq R b, \quad A^{\top} y \geq c, \quad 0 \leq y,
$$

The Block Structure of an Optimal Tableau

$$
\left[\begin{array}{ccc|c}
0 & R A & R & R b \\
-1 & c^{\top}-y^{\top} A & -y^{\top} & -y^{\top} b
\end{array}\right]
$$

with

$$
0 \leq R b, \quad A^{\top} y \geq c, \quad 0 \leq y, \quad c^{\top} x^{*}=z=b^{\top} y,
$$

The Block Structure of an Optimal Tableau

$$
\left[\begin{array}{ccc|c}
0 & R A & R & R b \\
-1 & c^{\top}-y^{\top} A & -y^{\top} & -y^{\top} b
\end{array}\right]
$$

with

$$
0 \leq R b, \quad A^{\top} y \geq c, \quad 0 \leq y, \quad c^{\top} x^{*}=z=b^{\top} y,
$$

where x^{*} is the optimal solution to

$$
\begin{array}{lll}
\mathcal{P} & \max & c^{\top} x \\
& \text { s.t. } & A x \leq b \\
& 0 \leq x
\end{array}
$$

The Block Structure of an Optimal Tableau

$$
\left[\begin{array}{ccc|c}
0 & R A & R & R b \\
-1 & c^{\top}-y^{\top} A & -y^{\top} & -y^{\top} b
\end{array}\right]
$$

with

$$
0 \leq R b, \quad A^{\top} y \geq c, \quad 0 \leq y, \quad c^{\top} x^{*}=z=b^{\top} y,
$$

where x^{*} is the optimal solution to

$$
\begin{array}{lllll}
\mathcal{P} \max & c^{\top} x & \mathcal{D} & \min & b^{\top} y \\
\text { s.t. } & A x \leq b & & \text { s.t. } & A^{\top} y \geq c \\
& 0 \leq x & & 0 \leq y
\end{array}
$$

The Block Structure of an Optimal Tableau

$$
\left[\begin{array}{rcc|c}
0 & R A & R & R b \\
-1 & c^{\top}-y^{\top} A & -y^{\top} & -y^{\top} b
\end{array}\right]
$$

with

$$
0 \leq R b, \quad A^{\top} y \geq c, \quad 0 \leq y, \quad c^{\top} x^{*}=z=b^{\top} y,
$$

where x^{*} is the optimal solution to

$$
\begin{array}{lllll}
\mathcal{P} & \max & c^{\top} x & \mathcal{D} & \min \\
\text { s.t. } & A x \leq b & & b^{\top} y \\
& \text { s.t. } & A^{\top} y \geq c \\
& 0 \leq x & & 0 \leq y
\end{array}
$$

WEAK DUALITY THM. \Rightarrow Y SOLVES \mathcal{D} !!!

Optimal Tableaus Yield Optimal Solutions

$$
\begin{array}{lllll}
\mathcal{P} \max & c^{\top} x & \mathcal{D} & \min & b^{\top} y \\
\text { s.t. } & A x \leq b & & \text { s.t. } & A^{\top} y \geq c \\
& 0 \leq x & & 0 \leq y
\end{array}
$$

Theorem:[Optimal Tableau Theorem] If the simplex tableau

$$
\left[\begin{array}{rcc|c}
0 & R A & R & R b \\
-1 & c^{\top}-y^{\top} A & -y^{\top} & -y^{\top} b
\end{array}\right]
$$

is optimal for \mathcal{P}, i.e. if x^{*} is the associated BFS and

$$
0 \leq R b, \quad A^{\top} y \geq c, \quad 0 \leq y, \quad c^{\top} x^{*}=z=b^{\top} y,
$$

then x^{*} is an optimal solution to \mathcal{P} and y is an optimal solution to \mathcal{D}.

Plastic Cup Factory Reprised

$$
\begin{array}{cl}
\mathcal{P} \quad \begin{array}{ll}
\text { maximize } & 25 B+20 C \\
\text { subject to } & 20 B+12 C \leq 1800 \\
& \frac{1}{15} B+\frac{1}{15} C \leq 8 \\
& 0 \leq B, C
\end{array} \\
& 0 \leq
\end{array}
$$

Plastic Cup Factory Reprised

$$
\begin{aligned}
& \mathcal{P} \text { maximize } 25 B+20 C \\
& \text { subject to } \quad 20 B+12 C \leq 1800 \\
& \frac{1}{15} B+\frac{1}{15} C \leq 8 \\
& 0 \leq B, C \\
& \mathcal{D} \text { minimize } \quad 1800 R+8 L \\
& \text { subject to } \quad 20 R+\frac{1}{15} L \geq 25 \\
& 12 R+\frac{1}{15} L \geq 20 \\
& 0 \leq R, L
\end{aligned}
$$

Plastic Cup Factory Reprised

$$
\begin{aligned}
& \mathcal{P} \begin{array}{llll}
\text { maximize } & 25 B+20 C & \mathcal{D} & \begin{array}{l}
\text { minimize }
\end{array} \\
\text { subject to } & 20 B+12 C \leq 1800 \\
& & \begin{array}{l}
1800 R+8 L \\
15 \\
\text { subject to }
\end{array} & 20 R+\frac{1}{15} C \leq 8
\end{array} \\
& \left.\begin{array}{cccc|c}
15 \\
\hline
\end{array}\right) \\
& {\left[\begin{array}{cccc|c}
20 & 12 & 1 & 0 & 1800 \\
\frac{1}{15} & \frac{1}{15} & 0 & 1 & 8 \\
\hline 25 & 20 & 0 & 0 & 0
\end{array}\right]}
\end{aligned}
$$

Plastic Cup Factory Reprised

$$
\begin{aligned}
& \mathcal{P} \text { maximize } 25 B+20 C \\
& \text { subject to } \quad 20 B+12 C \leq 1800 \\
& \frac{1}{15} B+\frac{1}{15} C \leq 8 \\
& 0 \leq B, C \\
& {\left[\begin{array}{cccc|c}
20 & 12 & 1 & 0 & 1800 \\
\frac{1}{15} & \frac{1}{15} & 0 & 1 & 8 \\
\hline 25 & 20 & 0 & 0 & 0
\end{array}\right] \Rightarrow\left[\begin{array}{cccc|c}
1 & 0 & 1 / 8 & -75 / 2 & 45 \\
0 & 1 & -1 / 8 & 75 / 2 & 75 \\
\hline 0 & 0 & -5 / 8 & -375 / 2 & -2625
\end{array}\right]}
\end{aligned}
$$

Plastic Cup Factory Reprised

$$
\begin{aligned}
& \mathcal{P} \text { maximize } \quad 25 B+20 C \\
& \text { subject to } \quad 20 B+12 C \leq 1800 \\
& \frac{1}{15} B+\frac{1}{15} C \leq 8 \\
& 0 \leq B, C \\
& {\left[\begin{array}{cccc|c}
20 & 12 & 1 & 0 & 1800 \\
\frac{1}{15} & \frac{1}{15} & 0 & 1 & 8 \\
\hline 25 & 20 & 0 & 0 & 0
\end{array}\right] \Rightarrow\left[\begin{array}{cccc|c}
1 & 0 & 1 / 8 & -75 / 2 & 45 \\
0 & 1 & -1 / 8 & 75 / 2 & 75 \\
\hline 0 & 0 & -5 / 8 & -375 / 2 & -2625
\end{array}\right]} \\
& (B, C)^{*}=(45,75),
\end{aligned}
$$

Plastic Cup Factory Reprised

$$
\begin{aligned}
& \mathcal{P} \text { maximize } 25 B+20 C \\
& \text { subject to } \quad 20 B+12 C \leq 1800 \\
& \frac{1}{15} B+\frac{1}{15} C \leq 8 \\
& 0 \leq B, C \\
& {\left[\begin{array}{cccc|c}
20 & 12 & 1 & 0 & 1800 \\
\frac{1}{15} & \frac{1}{15} & 0 & 1 & 8 \\
\hline 25 & 20 & 0 & 0 & 0
\end{array}\right] \Rightarrow\left[\begin{array}{cccc|c}
1 & 0 & 1 / 8 & -75 / 2 & 45 \\
0 & 1 & -1 / 8 & 75 / 2 & 75 \\
\hline 0 & 0 & -5 / 8 & -375 / 2 & -2625
\end{array}\right]} \\
& (B, C)^{*}=(45,75), \quad(R, L)^{*}=\left(\frac{5}{8}, \frac{375}{2}\right),
\end{aligned}
$$

Plastic Cup Factory Reprised

$$
\begin{aligned}
& \mathcal{P} \text { maximize } 25 B+20 C \\
& \text { subject to } \quad 20 B+12 C \leq 1800 \\
& \frac{1}{15} B+\frac{1}{15} C \leq 8 \\
& 0 \leq B, C \\
& {\left[\begin{array}{cccc|c}
20 & 12 & 1 & 0 & 1800 \\
\frac{1}{15} & \frac{1}{15} & 0 & 1 & 8 \\
\hline 25 & 20 & 0 & 0 & 0
\end{array}\right] \Rightarrow\left[\begin{array}{cccc|c}
1 & 0 & 1 / 8 & -75 / 2 & 45 \\
0 & 1 & -1 / 8 & 75 / 2 & 75 \\
\hline 0 & 0 & -5 / 8 & -375 / 2 & -2625
\end{array}\right]} \\
& (B, C)^{*}=(45,75), \quad(R, L)^{*}=\left(\frac{5}{8}, \frac{375}{2}\right), \quad z^{*}=2625
\end{aligned}
$$

Another Duality Example

$$
\begin{array}{lll}
\mathcal{P} \quad \max & 4 x_{1}+5 x_{2}+3 x_{3} \\
& \\
\text { s.t. } & x_{1}+4 x_{2}+2 x_{3} \leq 11 \\
& 3 x_{1}+2 x_{2}+x_{3} \leq 5 \\
& 4 x_{1}+2 x_{2}+2 x_{3} \leq 8 \\
& 0 \leq x_{1}, x_{2}, x_{3}
\end{array}
$$

Another Duality Example

$$
\begin{array}{lll}
\mathcal{P} \quad \max & 4 x_{1}+5 x_{2}+3 x_{3} \\
\text { s.t. } & x_{1}+4 x_{2}+2 x_{3} & \leq 11 \\
& 3 x_{1}+2 x_{2}+x_{3} & \leq 5 \\
& 4 x_{1}+2 x_{2}+2 x_{3} & \leq 8 \\
& 0 \leq x_{1}, x_{2}, x_{3} &
\end{array}
$$

$$
\mathcal{D} \quad \min \quad 11 y_{1}+5 y_{2}+8 y_{3}
$$

$$
\text { s.t. } y_{1}+3 y_{2}+4 y_{3} \geq 4
$$

$$
4 y_{1}+2 y_{2}+2 y_{3} \geq 5
$$

$$
2 y_{1}+y_{2}+2 y_{3} \geq 3
$$

$$
0 \leq y_{1}, y_{2}, y_{3}
$$

Another Duality Example

$$
\begin{array}{cllllll}
\mathcal{P} \begin{array}{llllll}
\max & 4 x_{1}+5 x_{2}+3 x_{3} & & \mathcal{D} & \min & 11 y_{1}+5 y_{2}+8 y_{3} \\
\text { s.t. } & x_{1}+4 x_{2}+2 x_{3} & \leq 11 & & \text { s.t. } & y_{1}+3 y_{2}+4 y_{3}
\end{array} & \geq 4 \\
& 3 x_{1}+2 x_{2}+x_{3} & \leq 5 & & & 4 y_{1}+2 y_{2}+2 y_{3} & \geq 5 \\
& 4 x_{1}+2 x_{2}+2 x_{3} & \leq 8 & & & 2 y_{1}+y_{2}+2 y_{3} & \geq 3 \\
& 0 \leq x_{1}, x_{2}, x_{3} \\
& T_{0}=\left[\begin{array}{llllll|l}
1 & 4 & 2 & 1 & 0 & 0 & 11 \\
3 & 2 & 1 & 0 & 1 & 0 & 5 \\
4 & 2 & 2 & 0 & 0 & 1 & 8 \\
\hline 4 & 5 & 3 & 0 & 0 & 0 & 0
\end{array}\right]
\end{array}
$$

Another Duality Example

$$
T_{0}=\left[\begin{array}{cccccc|c}
1 & 4 & 2 & 1 & 0 & 0 & 11 \\
3 & 2 & 1 & 0 & 1 & 0 & 5 \\
4 & 2 & 2 & 0 & 0 & 1 & 8 \\
\hline 4 & 5 & 3 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Another Duality Example

$$
T_{0}=\left[\begin{array}{cccccc|c}
1 & 4 & 2 & 1 & 0 & 0 & 11 \\
3 & 2 & 1 & 0 & 1 & 0 & 5 \\
4 & 2 & 2 & 0 & 0 & 1 & 8 \\
\hline 4 & 5 & 3 & 0 & 0 & 0 & 0
\end{array}\right] \Rightarrow
$$

Another Duality Example

$$
\begin{aligned}
T_{0} & =\left[\begin{array}{cccccc|c}
1 & 4 & 2 & 1 & 0 & 0 & 11 \\
3 & 2 & 1 & 0 & 1 & 0 & 5 \\
4 & 2 & 2 & 0 & 0 & 1 & 8 \\
\hline 4 & 5 & 3 & 0 & 0 & 0 & 0
\end{array}\right] \Rightarrow \\
T_{\mathrm{opt}} & =\left[\begin{array}{cccccc|c}
-5 & 0 & 0 & 1 & -2 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 & \frac{-1}{2} & 1 \\
1 & 0 & 1 & 0 & -1 & 1 & 3 \\
\hline-4 & 0 & 0 & 0 & -2 & \frac{-1}{2} & -14
\end{array}\right]
\end{aligned}
$$

Another Duality Example

$$
\begin{gathered}
T_{0}=\left[\begin{array}{cccccc|c}
1 & 4 & 2 & 1 & 0 & 0 & 11 \\
3 & 2 & 1 & 0 & 1 & 0 & 5 \\
4 & 2 & 2 & 0 & 0 & 1 & 8 \\
\hline 4 & 5 & 3 & 0 & 0 & 0 & 0
\end{array}\right] \Rightarrow \\
T_{\mathrm{opt}}=\left[\begin{array}{cccccc|c}
-5 & 0 & 0 & 1 & -2 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 & \frac{-1}{2} & 1 \\
1 & 0 & 1 & 0 & -1 & 1 & 3 \\
\hline-4 & 0 & 0 & 0 & -2 & \frac{-1}{2} & -14
\end{array}\right] \\
x^{*}=(0,1,3), \quad y^{*}=(0,2,1 / 2), \quad z^{*}=14
\end{gathered}
$$

Another Duality Example

Check

$$
\begin{array}{clllll}
\mathcal{P} \quad \begin{array}{llll}
\max & 4 x_{1}+5 x_{2}+3 x_{3} & \mathcal{D} & \min \\
\text { s.t. } & x_{1}+4 x_{2}+2 x_{3} & 11 y_{1}+5 y_{2}+8 y_{3} & \\
& 3 x_{1}+2 x_{2}+x_{3} \quad \leq 5 & \text { s.t. } & y_{1}+3 y_{2}+4 y_{3} \\
& 4 y_{1}+2 x_{2}+2 x_{3} \leq 8 & & 4 y_{1}+2 y_{2}+2 y_{3} \\
& & & 2 y_{1}+y_{2}+2 y_{3} \\
& 0 \leq x_{1}, x_{2}, x_{3} & \geq 3 \\
& & & 0 \leq y_{1}, y_{2}, y_{3} \\
& x^{*}=(0,1,3), \quad y^{*}=(0,2,1 / 2), \quad z^{*}=14
\end{array} \\
& &
\end{array}
$$

Strong Duality

If we can now show that the simplex algorithm works, then we have an algorithm that simultaneously solves both the primal and dual problems.

Strong Duality

If we can now show that the simplex algorithm works, then we have an algorithm that simultaneously solves both the primal and dual problems.

Moreover, the optimal value in the primal and dual coincides giving equality in the weak duality inequality.

Strong Duality

If we can now show that the simplex algorithm works, then we have an algorithm that simultaneously solves both the primal and dual problems.

Moreover, the optimal value in the primal and dual coincides giving equality in the weak duality inequality.

We now focus on the details of the simplex algorithm to determine if and when it works.

More Tableau Terminology

The block structure formula for simplex tableaus.

$$
T_{k}=\left[\begin{array}{cc}
R & 0 \\
-y^{\top} & 1
\end{array}\right]\left[\begin{array}{rcc|c}
0 & A & l & b \\
-1 & c^{\top} & 0 & 0
\end{array}\right]=\left[\begin{array}{ccc|c}
0 & R A & R & R b \\
-1 & c^{\top}-y^{\top} A & -y^{\top} & -y^{\top} b
\end{array}\right]
$$

T_{k} is primal feasible if $R b \geq 0$.
T_{k} is dual feasible if $0 \leq y$ and $A^{T} y \geq c$.
T_{k} is optimal if it is both primal and dual feasible in which case $\left(x^{*}, y\right)$ is a Primal-Dual optimal pair where x^{*} is the BFS associated with T_{k}. Moreover, the optimal value of the Primal equals that of the Dual.

