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Dictionaries for LPs in Standard Form

P : maximize cT x

subject to Ax ≤ b

[∑n
j=1 aijxj ≤ bi , i = 1, . . . ,m

]

0 ≤ x ,

where c ∈ Rn, b ∈ Rm, A ∈ Rm×n

The initial dictionary:

slack variables xn+i := bi −
n∑

j=1

aijxj i = 1, 2, . . . ,m

(DI )

objective z :=
n∑

j=1

cjxj
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General Dictionaries

A dictionary for P is any system of the form

xi = b̂i −
∑
j∈N

âijxj i ∈ B (DB)

z = ẑ +
∑
j∈N

ĉjxj

where B and N are index sets partitioning {1, . . . , n +m} and satisfying

(1) B contains m elements and N contains n elements,

(2) B ∩ N = ∅
(3) B ∪ N = {1, 2, . . . , n +m},

and such that the systems (DI ) and (DB) have identical solution sets.
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Properties of Dictionaries

xi = b̂i −
∑
j∈N

âijxj i ∈ B (DB)

z = ẑ +
∑
j∈N

ĉjxj

B ∼basic variables N ∼nonbasic variables

Basic solution identified by the dictionary is

xi = b̂i i ∈ B

xj = 0 j ∈ N.

Dictionary is feasible if 0 ≤ b̂i for i ∈ B.

If feasible, then the basic solution is a basic feasible solution (BFS).

A feasible dictionary is optimal if ĉj ≤ 0 j ∈ N.
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The Simplex Algorithm via Matrix Multiplication

We have already seen that Gaussian elimination can be performed by matrix
multiplication.

How does this look in the context of the simplex algorithm?

First recall that Is×s −α−1a 0
0 α−1 0
0 −α−1b It×t

  a
α
b

 =

 a− a
α−1α
−b + b

 =

 0
1
0

 .

The elimination matrix and its inverse.

G =

 Is×s −α−1a 0
0 α−1 0
0 −α−1b It×t

 G−1 =

 I a 0
0 α 0
0 b I
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The Simplex Algorithm via Matrix Multiplication

The elimination matrices also have the following important property. Is×s −α−1a 0
0 α−1 0
0 −α−1b It×t

 x
0
y

 =

 x
0
y



We call these matrices Gauss-Jordan elimination or pivot matrices.
These matices perform precisely the operations required in order to execute a
simplex pivot.
Each simplex pivot can be realized as left multiplication of the simplex tableau by
the appropriate Gaussian-Jordan pivot matrix.
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The Simplex Algorithm via Matrix Multiplication
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The Simplex Algorithm via Matrix Multiplication

G2G1
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A I b

cT 0 0
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The Simplex Algorithm via Matrix Multiplication
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The Block Structure of the Simplex Algorithm

Let T0 be the initial tableau:

T0 =

[
0 A I b
−1 cT 0 0

]
.

Let Tk denote the tableau after k pivots:

Tk =

[
0 Â R b̂
−1 ĉT −yT ẑ

]

Tk is obtained from T0 by multiplying it on the left by a product of Gaussian
pivot matrices G := GkGk−1 · · ·G1:

GT0 = Tk ,

where G is invertible (G−1 = G−1
1 G−1

2 · · ·G
−1
k ).
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The Block Structure of the Simplex Algorithm

Let’s investigate the structure of Tk by examining the consequence of this product
in terms of the block structure of T0 and Tk .

T0 =

[
0 A I b
−1 cT 0 0

]
Tk =

[
0 Â R b̂
−1 ĉT −yT ẑ

]
Here we use the fact that the first column of the simplex tableau remains
unchanged by pivoting.

First we must decompose G into a block structure that is conformal to that of T0:

G =

[
M u
vT β

]
,

where M ∈ Rm×m, u, v ∈ Rm, and β ∈ R.
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0 A I b
−1 cT 0 0

]
Tk =

[
0 Â R b̂
−1 ĉT −yT ẑ

]
Here we use the fact that the first column of the simplex tableau remains
unchanged by pivoting.

First we must decompose G into a block structure that is conformal to that of T0:

G =

[
M u
vT β

]
,
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Block Structure and Matrix Multiplication

[
0 Â R b̂
−1 ĉT −yT ẑ

]
= Tk

= GT0

=

[
M u
vT β

] [
0 A I b
−1 cT 0 0

]

=

[
−u MA + ucT M Mb
−β vTA + βcT vT vTb

]
.
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−1 ĉT −yT ẑ
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Block Structure and Matrix Multiplication

[
0 Â R b̂
−1 ĉT −yT ẑ

]
=

[
−u MA + ucT M Mb
−β vTA + βcT vT vTb

]

Equating terms on the left and right gives

u = 0 β = 1

M = R and v = −y .

Therefore,

Tk =

[
R 0
−yT 1

] [
0 A I b
−1 cT 0 0

]
=

[
0 RA R Rb
−1 cT− yTA −yT −yTb

]
,

where the matrix R is necessarily invertible. (R ∼record matrix)
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]
=

[
−u MA + ucT M Mb
−β vTA + βcT vT vTb

]
Equating terms on the left and right gives

u = 0 β = 1

M = R and v = −y .

Therefore,

Tk =

[
R 0
−yT 1

] [
0 A I b
−1 cT 0 0

]
=

[
0 RA R Rb
−1 cT− yTA −yT −yTb

]
,

where the matrix R is necessarily invertible. (R ∼record matrix)

Lecture 6: The Simplex Algorithm Language, Notation, and Linear AlgebraLinear Programming 14 / 23



The Block Structure of an Optimal Tableau

Tk =

[
R 0
−yT 1

] [
0 A I b
−1 cT 0 0

]
=

[
0 RA R Rb
−1 cT− yTA −yT −yTb

]
We say that Tk is an optimal tableau if the simplex algorithm terminates at this
tableau.

That is, Tk is an optimal tableau if and only if

it is feasible: 0 ≤ Rb, and

the z-row has non-positive entries:

c − ATy ≤ 0 or equivalently ATy ≥ c

−y ≤ 0 or equivalently 0 ≤ y .

In this case the optimal value = z = bTy .
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The Block Structure of an Optimal Tableau

[
0 RA R Rb
−1 cT− yTA −yT −yTb

]

with
0 ≤ Rb, ATy ≥ c , 0 ≤ y , cTx∗ = z = bTy ,

where x∗ is the optimal solution to

P max cTx
s.t. Ax ≤ b

0 ≤ x

D min bTy
s.t. ATy ≥ c

0 ≤ y

WEAK DUALITY THM. ⇒ Y SOLVES D !!!
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Optimal Tableaus Yield Optimal Solutions

P max cTx
s.t. Ax ≤ b

0 ≤ x

D min bTy
s.t. ATy ≥ c

0 ≤ y

Theorem:[Optimal Tableau Theorem]
If the simplex tableau [

0 RA R Rb
−1 cT− yTA −yT −yTb

]
is optimal for P, i.e. if x∗ is the associated BFS and

0 ≤ Rb, ATy ≥ c , 0 ≤ y , cTx∗ = z = bTy ,

then x∗ is an optimal solution to P and y is an optimal solution to D.
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Plastic Cup Factory Reprised

P maximize 25B + 20C
subject to 20B + 12C ≤ 1800

1
15
B + 1

15
C ≤ 8

0 ≤ B,C

D minimize 1800R + 8L
subject to 20R + 1

15
L ≥ 25

12R + 1
15
L ≥ 20

0 ≤ R, L 20 12 1 0 1800
1
15

1
15 0 1 8

25 20 0 0 0

 ⇒
 1 0 1/8 −75/2 45

0 1 −1/8 75/2 75
0 0 −5/8 −375/2 −2625


(B,C )∗ = (45, 75), (R, L)∗ =

(
5

8
,

375

2

)
, z∗ = 2625
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Another Duality Example

P max 4x1 + 5x2 + 3x3
s.t. x1 + 4x2 + 2x3 ≤ 11

3x1 + 2x2 + x3 ≤ 5
4x1 + 2x2 + 2x3 ≤ 8
0 ≤ x1, x2, x3

D min 11y1 + 5y2 + 8y3
s.t. y1 + 3y2 + 4y3 ≥ 4

4y1 + 2y2 + 2y3 ≥ 5
2y1 + y2 + 2y3 ≥ 3
0 ≤ y1, y2, y3

T0 =


1 4 2 1 0 0 11
3 2 1 0 1 0 5
4 2 2 0 0 1 8
4 5 3 0 0 0 0
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Another Duality Example

T0 =


1 4 2 1 0 0 11
3 2 1 0 1 0 5
4 2 2 0 0 1 8

4 5 3 0 0 0 0



⇒

Topt =


−5 0 0 1 −2 0 1
1 1 0 0 1 −1

2
1

1 0 1 0 −1 1 3

−4 0 0 0 −2 −1
2
−14



x∗ = (0, 1, 3), y∗ = (0, 2, 1/2), z∗ = 14
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Another Duality Example

Check

P max 4x1 + 5x2 + 3x3
s.t. x1 + 4x2 + 2x3 ≤ 11

3x1 + 2x2 + x3 ≤ 5
4x1 + 2x2 + 2x3 ≤ 8
0 ≤ x1, x2, x3

D min 11y1 + 5y2 + 8y3
s.t. y1 + 3y2 + 4y3 ≥ 4

4y1 + 2y2 + 2y3 ≥ 5
2y1 + y2 + 2y3 ≥ 3
0 ≤ y1, y2, y3

x∗ = (0, 1, 3), y∗ = (0, 2, 1/2), z∗ = 14
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Strong Duality

If we can now show that the simplex algorithm works, then we have an algorithm
that simultaneously solves both the primal and dual problems.

Moreover, the optimal value in the primal and dual coincides giving equality in the
weak duality inequality.

We now focus on the details of the simplex algorithm to determine if and when it
works.
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More Tableau Terminology

The block structure formula for simplex tableaus.

Tk =

[
R 0
−yT 1

] [
0 A I b
−1 cT 0 0

]
=

[
0 RA R Rb
−1 cT− yTA −yT −yTb

]
Tk is primal feasible if Rb ≥ 0.

Tk is dual feasible if 0 ≤ y and AT y ≥ c .

Tk is optimal if it is both primal and dual feasible in which case (x∗, y) is a
Primal-Dual optimal pair where x∗ is the BFS associated with Tk .
Moreover, the optimal value of the Primal equals that of the Dual.
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