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What Can Go Wrong with Simplex Algorithm?

Initialization:

The simplex algorithm pivots between feasible dictionaries
(equivalently, feasible tableaus). The pivoting process moves us from one BFS to
another BFS having a greater objective value.

Hence, in order to pivot, we need an initial feasible dictionary.

How do we obtain the first feasible dictionary?
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What Can Go Wrong with Simplex Algorithm?

Iteration:

Can we always choose variables to enter and leave the basis in an
unambiguous way?

Can there be multiple choices or no choice?

Are there ambiguities in the choice of these variables, and if so, can they be
satisfactorily?
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What Can Go Wrong with Simplex Algorithm?

Termination:

Does the simplex algorithm terminate after a finite number of
pivots?

Does it terminate at a solution when a solution exists?

Does it terminate for unbounded problems?

Can it stall, or can it go on pivoting forever without ever solving the problem?
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Choosing the Entering Variable

Assume we are given a feasible dictionary:

xi = b̂i −
∑
j∈N

âijxj i ∈ B

z = ẑ +
∑
j∈N

ĉjxj ,

(DB)

where b̂i ≥ 0, i ∈ B.

Entering Variable:
A nonbasic variable xj0 , j0 ∈ N can enter the basis if ĉj0 > 0.

There may be many such nonbasic variables, but all of them have the potential to
increase the value of the objective variable z .
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There may be many such nonbasic variables, but all of them have the potential to
increase the value of the objective variable z .

Lecture 7: Does the Simplex Algorithm Work? Linear Programming 6 / 36



Choosing the Leaving Variable

xi = b̂i −
∑
j∈N

âijxj i ∈ B

z = ẑ +
∑
j∈N

ĉjxj ,

Suppose xj0 , j0 ∈ N is the entering variable.

The leaving variable is that basic variable whose non-negativity places the greatest
restriction on increasing the value of the entering variable xj0 .

The leaving variable attains the minimum value among the ratios

b̂i
âij0

for âij0 > 0 i ∈ B.

If xi0 , i0 ∈ B is the leaving variable, then

b̂i0
âi0j0

= min

{
b̂i
âij0

: i ∈ B, âij0 > 0

}
.
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∑
j∈N
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∑
j∈N
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Hazards in Choosing the Leaving Variable

xi = b̂i −
∑
j∈N

âijxj i ∈ B

z = ẑ +
∑
j∈N

ĉjxj ,

Two potential problems:

(i) There is no i ∈ B for which âij0 > 0.

(ii) There is more than one i0 ∈ B for which

b̂i0
âi0j0

= min

{
b̂i
âij0

: i ∈ B, âij0 > 0

}
.

If (i) occurs, then we can increase the value of the entering variable xj0 , as much
as we want without violating feasibility.
That is, we can increase the value of z as much as we want.
Hence the LP is unbounded.
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ĉjxj ,

Two potential problems:

(i) There is no i ∈ B for which âij0 > 0.
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}
.

If (i) occurs, then we can increase the value of the entering variable xj0 , as much
as we want without violating feasibility.

That is, we can increase the value of z as much as we want.
Hence the LP is unbounded.

Lecture 7: Does the Simplex Algorithm Work? Linear Programming 8 / 36



Hazards in Choosing the Leaving Variable

xi = b̂i −
∑
j∈N
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Unbounded LPs

Fact: If there exists j0 ∈ N in the dictionary DB for which ĉj0 > 0 and âij0 ≤ 0 for
all i ∈ B, then the LP

maximize cT x
subject to Ax ≤ b, 0 ≤ x

is unbounded, i.e., the optimal value is +∞.
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Unbounded LPs

maximize x1 +x2 +x3

subject to 3x1 +x2 −2x3 ≤ 5

4x1 +3x2 ≤ 7
0 ≤ x1, x2, x3

 3 1 −2 1 0 0 5
4 3 0 0 1 0 7
1 1 1 0 0 0 0


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Hazards in Choosing the Leaving Variable

xi = b̂i −
∑
j∈N
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ĉjxj ,
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b̂i0
âi0j0

= min
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.

(ii) is VERY BAD for the simplex algorithm!
We show why by example.
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Example

maximize 2x1 − x2 + 8x3
subject to 2x1 − 4x2 + 6x3 ≤ 3

−x1 + 3x2 + 4x3 ≤ 2
2x3 ≤ 1

0 ≤ x1, x2, x3

x =


0

0

0


2

−1

0

−4

3

0

6

4

2©

1

0

0

0

1

0

0

0

1

3

2

1

Note that any one
of these rows
could serve as the
pivot row!

z = 0 2 −1 8 0 0 0 0

Lecture 7: Does the Simplex Algorithm Work? Linear Programming 12 / 36



Example

maximize 2x1 − x2 + 8x3
subject to 2x1 − 4x2 + 6x3 ≤ 3

−x1 + 3x2 + 4x3 ≤ 2
2x3 ≤ 1

0 ≤ x1, x2, x3

x =


0

0

0


2

−1

0

−4

3

0

6

4

2©

1

0

0

0

1

0

0

0

1

3

2

1

Note that any one
of these rows
could serve as the
pivot row!

z = 0 2 −1 8 0 0 0 0

Lecture 7: Does the Simplex Algorithm Work? Linear Programming 12 / 36



Example
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0
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3

0

6
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0

0

0
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3

2

1

Note that any one
of these rows
could serve as the
pivot row!

z = 0 2 −1 8 0 0 0 0

x =


0

0

1
2


2©

−1

0

−4

3

0

0

0

1

1

0

0

0

1

0

−3

−2

1
2

0

0

1
2

Note that by
pivoting on this
tableau we do not
change the
objective value

z = 4 2 −1 0 0 0 −4 −4
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2

1
2

0

0

1
2

Note that we have
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point identified by
this tableau
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1

0

0

0

1

0
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3
2

1
2

0

2

1

0

− 17
2

− 7
2

1
2©

0

0

1
2

Again no change.

z = 4 0 0 0 − 5
2
−3 19

2
−4
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Example
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0
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1
2
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1

0

0

0

1

0

0
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3
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2

0

2

1
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2
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2

1
2©

0

0

1
2

Again no change.

z = 4 0 0 0 − 5
2
−3 19

2
−4

x =


17
2

7
2

0


1

0

0

0

1

0

17

7

2

3
2

1
2

0

2

1

0

0

0

1

17
2

7
2

1

Finally, we break
out to optimality.

z = 27
2

0 0 -19 − 5
2
−3 0 − 27

2
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Degeneracy

Observations:

(1) If on a given pivot, there is more than one choice of variable to leave the
basis, then the subsequent tableau will set one or more of the basic variables
equal to zero in the associated basic feasible solution.

A dictionary in which one or more of the basic variables is set to zero in the
associated basic feasible solution is called a “degenerate dictionary”.
Correspondingly, a tableau in which one or more of the basic variables is set to
zero in the associated basic feasible solution is called a “degenerate tableau”.

(2) It is possible that a pivot on a degenerate dictionary (or tableau) does not
change the associated basic feasible solution and the value of the objective
variable z .

Such a pivot is called a “degenerate pivot”.
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Degeneracy

Observation (2) is particularly troublesome since it opens the door to the
possibility of an infinite sequence of degenerate pivots never terminating with
optimality.

Unfortunately, this can occur leading to the failure of the method. An example of
the phenomenon is given in the text.

Our goal is to understand how such a pathological situation can occur and then to
devise methods to overcome the problem.
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Cycling

Assume the algorithm is operating with iron clad pivoting rules.

That is, non-optimal feasible dictionaries have unique pivots.

Example:

xi = b̂i −
∑
j∈N

âijxj i ∈ B

z = ẑ +
∑
j∈N

ĉjxj ,
(DB)
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Cycling

Largest-Coefficient Largest-Subscript Rule

Choice of Entering Variable: Among all those variables xj with j ∈ N such
that ĉj = max{ĉk : k ∈ N} > 0 choose xj0 so that j0 is largest.

Choice of Leaving Variable: Among all those variables xi with i ∈ B such

that b̂i
âij0

= min
{

b̂k
âkj0

: k ∈ B, âkj0 > 0
}

choose xi0 so that i0 is largest.
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How Many Possible Bases?

How many possible ways are there to choose a set of basic indices?

Since every basis must contain m variables and there are only n + m variables
altogether, the total number of possible sets of basic indices equals the number of
possible ways to choose m distinct elements from a collection of n + m objects.

(
n + m
m

)
=

(n + m)!

m!n!
.
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Cycling

infinite pivot sequence ⇒ infinite dictionary sequence.

At least one dictionary, say D1, has a basis B appearing twice.
Suppose B is also the basis for DN+1.
Let

. . .D1, . . . ,DN ,DN+1,DN+2,DN+2, . . .

be the sequence of pivots where D1 and DN+1 have the same basis.
If each basis is associated with a unique dictionary, then D1 = DN+1. But then,

D2 = DN+2, D3 = DN+3, . . . , D1 = D2N , D2 = D2N+2, . . .

That is, the same sequence of dictionaries appear over and over again. If this
occurs we say that the sequence of dictionaries cycles.
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The Basis-Dictionary Correspondence

Fact : Every basis uniquely determines its associated dictionary.

Corollary:
The simplex algorithm fails to terminate if and only if it cycles. The simplex
algorithms can only cycle between degenerate dictionaries (or tableaus) with each
dictionary (or tableau) in the cycle being associated with the same basic feasible
solution and objective value.
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Proof

We show each basis yields a unique dictionary.

xi = b̂i −
∑

j∈N âijxj , i ∈ B

z = ẑi +
∑

j∈N ĉjxj
(D1)

and
xi = b∗i −

∑
j∈N a∗ijxj , i ∈ B

z = z∗ +
∑

j∈N c∗j xj
(D2)

Two dictionaries with the same basis B.
Show all coefficients are identical.
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Proof

(D1) (D2)

xi = b̂i −
∑

j∈N âijxj , i ∈ B

z = ẑi +
∑

j∈N ĉjxj

xi = b∗i −
∑

j∈N a∗ijxj , i ∈ B

z = z∗ +
∑

j∈N c∗j xj

D1 and D2 have identical solution sets.

Let j0 ∈ N and set xj0 = t and xj = 0 for j ∈ N, j 6= j0.
Then

b̂i − âij0t = xi = b∗i − a∗ij0t for i ∈ B

ẑ + ĉj0t = z = z∗ + c∗j0t.

Setting t = 0, we have

b̂i = b∗i i ∈ B and ẑ = z∗.

Then, setting t = 1, we have

âij0 = a∗ij0 for i ∈ B.

Repeating for all j ∈ N.
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Then, setting t = 1, we have
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Degeneracy and Cycling

We have established that the simplex algorithm can only fail to terminate if it
cycles, and that it can only cycle in the presence of degeneracy. In order to assure
that the simplex algorithm successfully terminates we need to develop a pivoting
rule that avoids cycling.

There are many anti-cycling pivoting rules. We present the smallest subscript rule,
also known as Bland’s Rule.
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Bland’s Rule

xi = b̂i −
∑

j∈N âijxj i ∈ B

z = ẑ +
∑

j∈N ĉjxj .
(DB)

Choice of entering variable: xj0 for j0 ∈ N is the entering variable if ĉj0 > 0
and j0 ≤ j whenever ĉj > 0.

Choice of leaving variable: xi0 for i0 ∈ B is the leaving variable if

b̂i0
âi0j0

= min

{
b̂i
âij0

: i ∈ B, âij0 > 0

}

and

i0 ≤ i whenever
b̂i0
âi0j0

=
b̂i
âij0

i ∈ B.
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âi0j0

= min

{
b̂i
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âij0

: i ∈ B, âij0 > 0
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Bland’s Rule

Theorem: [R.G. Bland (1977)]
The simplex algorithm terminates as long as the choice of variable to enter or
leave the basis is made according to the smallest subscript rule.

We abbreviate the Bland’s rule to SSR (smallest subscript rule).
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Proof

Prove Bland’s rule prevents cycling.

Assume to the contrary that a cycle exists:

D0,D1, . . . ,DN = D0 .

Since all the pivots in the cycle are degenerate, the minimum ratio is zero in each
pivot, and so each dictionary in the cycle D0, . . . ,DN identifies the same BFS.

If a variable enters (leaves) the basis in one of the dictionaries D0, . . . ,DN , then it
must depart (return) from (to) the basis in another of these dictionaries.

We call the variables that leave the basis in any of the dictionaries D0, . . . ,DN

fickle since they move in and out of the basis.

Denote the set of fickle variables by F .

All fickle variables must take the value zero in the BFS associated with this cycle
since they take the value zero when they are not in the basis.
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Proof

Let ` be the largest subscript in F , and let

D xi = bi −
∑
j /∈B

aijxj , i ∈ B

z = v +
∑
j /∈B

cjxj

be a dictionary in the cycle where x` is leaving the basis and let xe denote the
entering variable: x` leaves D and xe enters.

Since xe is also fickle, e < ` (` is largest in F), ce > 0, and a`e > 0.

Let D∗ be a dictionary in the cycle with x` entering the basis.
Since each dictionary in the cycle identifies the same BFS, the objective value v
stays constant throughout the cycle.
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Proof

Since each dictionary in the cycle identifies the same BFS, the objective value v
stays constant throughout the cycle.

Write the objective row of D∗ (x` entering) as

z = v +
m+n∑
j=1

c∗j xj ,

where c∗j = 0 if xj is basic in D∗. Note, c∗j ≤ 0 ∀ j ∈ F \ {`} and c∗` > 0.
Since the solution sets to D and D∗ coincide, the solution to D obtained by
setting xe = t, xj = 0 (j /∈ B, j 6= e) giving

xi = bi − aiet (i ∈ B) and z = v + cet

must satisfy D∗.

Hence v + cet = v + c∗e t +
∑

i∈B c∗i (bi − aiet) for all t.
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Proof

v + cet = v + c∗e t +
∑
i∈B

c∗i (bi − aiet) for all t.

Grouping terms gives(
ce − c∗e +

∑
i∈B

c∗i aie

)
t =

∑
i∈B

c∗i bi for all t.

Since the right hand side is constant, it must be 0 as is the coefficient on the left:

ce − c∗e = −
∑
i∈B

c∗i aie .
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Proof

ce − c∗e = −
∑
i∈B

c∗i aie

xe enters in D ⇒ ce > 0

x` enters in D∗ and e < ` ⇒ c∗e ≤ 0 by the SSR

Therefore, ce − c∗e > 0.

Consequently,
∑

i∈B c∗i aie < 0, so for some s ∈ B,

c∗s ase < 0 .
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Proof

for some s ∈ B, c∗s ase < 0.

Since s ∈ B, xs is basic in D, and since c∗s 6= 0, xs is nonbasic in D∗, so xs ∈ F
which implies that s ≤ ` (since ` is largest).

We claim that s < `.
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Proof

s ∈ B c∗s ase < 0 xs not basic in D∗

Show s < `.

x` leaves in D with xe entering, so a`e > 0.

x` enters in D∗, so c∗` > 0.

Consequently, c∗` a`e > 0, so s < `.
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Proof

Since s < `, xs cannot be a candidate to enter the basis in D∗ by SSR, that is,
c∗s < 0.

But then ase > 0, since c∗s ase < 0.

xs ∈ F and s ∈ B, so the value of xs in the BFS is zero, (bs = 0).

Since bs = 0 and ase > 0, we have bs
ase

= 0 which is the minimum ration in D.
That is, xs is a candidate for leaving in D.

But x` leaves in D with s < `.

This contradicts the SSR, so no cycle can exist.
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