Linear Programming

Lecture 7: Does the Simplex Algorithm Work?

(1) Does the Simples Algorithm Work?
(2) Choosing Entering and Leaving Variables
(3) Unbounded LPs
(4) Degeneracy
(5) Overcoming Degeneracy
(6) Cycling
(7) The Basis-Dictionary Correspondence
(8) Bland's Rule for Pivoting

What Can Go Wrong with Simplex Algorithm?

Initialization:

What Can Go Wrong with Simplex Algorithm?

Initialization: The simplex algorithm pivots between feasible dictionaries (equivalently, feasible tableaus). The pivoting process moves us from one BFS to another BFS having a greater objective value.

What Can Go Wrong with Simplex Algorithm?

Initialization: The simplex algorithm pivots between feasible dictionaries (equivalently, feasible tableaus). The pivoting process moves us from one BFS to another BFS having a greater objective value.

Hence, in order to pivot, we need an initial feasible dictionary.

What Can Go Wrong with Simplex Algorithm?

Initialization: The simplex algorithm pivots between feasible dictionaries (equivalently, feasible tableaus). The pivoting process moves us from one BFS to another BFS having a greater objective value.

Hence, in order to pivot, we need an initial feasible dictionary.

How do we obtain the first feasible dictionary?

What Can Go Wrong with Simplex Algorithm?

Iteration:

What Can Go Wrong with Simplex Algorithm?

Iteration: Can we always choose variables to enter and leave the basis in an unambiguous way?

What Can Go Wrong with Simplex Algorithm?

Iteration: Can we always choose variables to enter and leave the basis in an unambiguous way?

Can there be multiple choices or no choice?

What Can Go Wrong with Simplex Algorithm?

Iteration: Can we always choose variables to enter and leave the basis in an unambiguous way?

Can there be multiple choices or no choice?

Are there ambiguities in the choice of these variables, and if so, can they be satisfactorily?

What Can Go Wrong with Simplex Algorithm?

Termination:

What Can Go Wrong with Simplex Algorithm?

Termination: Does the simplex algorithm terminate after a finite number of pivots?

What Can Go Wrong with Simplex Algorithm?

Termination: Does the simplex algorithm terminate after a finite number of pivots?

Does it terminate at a solution when a solution exists?

What Can Go Wrong with Simplex Algorithm?

Termination: Does the simplex algorithm terminate after a finite number of pivots?

Does it terminate at a solution when a solution exists?

Does it terminate for unbounded problems?

What Can Go Wrong with Simplex Algorithm?

Termination: Does the simplex algorithm terminate after a finite number of pivots?

Does it terminate at a solution when a solution exists?

Does it terminate for unbounded problems?

Can it stall, or can it go on pivoting forever without ever solving the problem?

Choosing the Entering Variable

Assume we are given a feasible dictionary:

$$
\begin{aligned}
x_{i} & =\widehat{b}_{i}-\sum_{j \in N} \widehat{a}_{i j} x_{j} \\
z & =\widehat{z}+\sum_{j \in N} \widehat{c}_{j} x_{j},
\end{aligned}
$$

where $\widehat{b}_{i} \geq 0, i \in B$.

Choosing the Entering Variable

Assume we are given a feasible dictionary:

$$
\begin{aligned}
x_{i} & =\widehat{b}_{i}-\sum_{j \in N} \widehat{a}_{i j} x_{j} \\
z & =\widehat{z}+\sum_{j \in N} \widehat{c}_{j} x_{j},
\end{aligned}
$$

where $\widehat{b}_{i} \geq 0, i \in B$.

Entering Variable:

Choosing the Entering Variable

Assume we are given a feasible dictionary:

$$
\begin{align*}
x_{i} & =\widehat{b}_{i}-\sum_{j \in N} \widehat{a}_{i j} x_{j} \\
z & =\widehat{z}+\sum_{j \in N} \widehat{c}_{j} x_{j}, \tag{B}
\end{align*}
$$

where $\widehat{b}_{i} \geq 0, i \in B$.

Entering Variable:
A nonbasic variable $x_{j_{0}}, j_{0} \in N$ can enter the basis if $\widehat{c}_{j_{0}}>0$.

Choosing the Entering Variable

Assume we are given a feasible dictionary:

$$
\begin{align*}
x_{i} & =\widehat{b}_{i}-\sum_{j \in N} \widehat{a}_{i j} x_{j} \\
z & =\widehat{z}+\sum_{j \in N} \widehat{c}_{j} x_{j}, \tag{B}
\end{align*}
$$

where $\widehat{b}_{i} \geq 0, i \in B$.

Entering Variable:
A nonbasic variable $x_{j_{0}}, j_{0} \in N$ can enter the basis if $\widehat{c}_{j_{0}}>0$.

There may be many such nonbasic variables, but all of them have the potential to increase the value of the objective variable z.

Choosing the Leaving Variable

$$
\begin{aligned}
x_{i} & =\widehat{b}_{i}-\sum_{j \in N} \widehat{a}_{i j} x_{j} \quad i \in B \\
z & =\widehat{z}+\sum_{j \in N} \widehat{c}_{j} x_{j}
\end{aligned}
$$

Suppose $x_{j_{0}}, j_{0} \in N$ is the entering variable.

Choosing the Leaving Variable

$$
\begin{aligned}
x_{i} & =\widehat{b}_{i}-\sum_{j \in N} \widehat{a}_{i j} x_{j} \quad i \in B \\
z & =\widehat{z}+\sum_{j \in N} \widehat{c}_{j} x_{j}
\end{aligned}
$$

Suppose $x_{j_{0}}, j_{0} \in N$ is the entering variable.
The leaving variable is that basic variable whose non-negativity places the greatest restriction on increasing the value of the entering variable $x_{j_{0}}$.

Choosing the Leaving Variable

$$
\begin{aligned}
x_{i} & =\widehat{b}_{i}-\sum_{j \in N} \widehat{a}_{i j} x_{j} \quad i \in B \\
z & =\widehat{z}+\sum_{j \in N} \widehat{c}_{j} x_{j}
\end{aligned}
$$

Suppose $x_{j_{0}}, j_{0} \in N$ is the entering variable.
The leaving variable is that basic variable whose non-negativity places the greatest restriction on increasing the value of the entering variable $x_{j_{0}}$.

The leaving variable attains the minimum value among the ratios

$$
\frac{\widehat{b}_{i}}{\widehat{a}_{i j_{0}}} \quad \text { for } \quad \widehat{a}_{i j_{0}}>0 \quad i \in B
$$

Choosing the Leaving Variable

$$
\begin{aligned}
x_{i} & =\widehat{b}_{i}-\sum_{j \in N} \widehat{a}_{i j} x_{j} \quad i \in B \\
z & =\widehat{z}+\sum_{j \in N} \widehat{c}_{j} x_{j}
\end{aligned}
$$

Suppose $x_{j_{0}}, j_{0} \in N$ is the entering variable.
The leaving variable is that basic variable whose non-negativity places the greatest restriction on increasing the value of the entering variable $x_{j_{0}}$.

The leaving variable attains the minimum value among the ratios

$$
\frac{\widehat{b}_{i}}{\widehat{a}_{i j_{0}}} \quad \text { for } \quad \widehat{a}_{i j_{0}}>0 \quad i \in B
$$

If $x_{i_{0}}, i_{0} \in B$ is the leaving variable, then

$$
\frac{\widehat{b}_{i_{0}}}{\widehat{a}_{i_{0 j} j_{0}}}=\min \left\{\frac{\widehat{b}_{i}}{\widehat{a}_{i_{j 0}}}: i \in B, \widehat{a}_{i j_{0}}>0\right\} .
$$

Hazards in Choosing the Leaving Variable

$$
\begin{aligned}
x_{i} & =\widehat{b}_{i}-\sum_{j \in N} \widehat{a}_{i j} x_{j} \quad i \in B \\
z & =\widehat{z}+\sum_{j \in N} \widehat{c}_{j} x_{j},
\end{aligned}
$$

Hazards in Choosing the Leaving Variable

$$
\begin{aligned}
x_{i} & =\widehat{b}_{i}-\sum_{j \in N} \widehat{a}_{i j} x_{j} \quad i \in B \\
z & =\widehat{z}+\sum_{j \in N} \widehat{c}_{j} x_{j}
\end{aligned}
$$

Two potential problems:

Hazards in Choosing the Leaving Variable

$$
\begin{aligned}
x_{i} & =\widehat{b}_{i}-\sum_{j \in N} \widehat{a}_{i j} x_{j} \quad i \in B \\
z & =\widehat{z}+\sum_{j \in N} \widehat{c}_{j} x_{j}
\end{aligned}
$$

Two potential problems:
(i) There is no $i \in B$ for which $\widehat{a}_{i_{j}}>0$.

Hazards in Choosing the Leaving Variable

$$
\begin{aligned}
x_{i} & =\widehat{b}_{i}-\sum_{j \in N} \widehat{a}_{i j} x_{j} \quad i \in B \\
z & =\widehat{z}+\sum_{j \in N} \widehat{c}_{j} x_{j}
\end{aligned}
$$

Two potential problems:
(i) There is no $i \in B$ for which $\widehat{a}_{i_{j 0}}>0$.
(ii) There is more than one $i_{0} \in B$ for which

$$
\frac{\widehat{b}_{i_{0}}}{\widehat{a}_{i_{i j} j_{0}}}=\min \left\{\frac{\widehat{b}_{i}}{\widehat{a}_{i j_{0}}}: i \in B, \widehat{a}_{i j_{0}}>0\right\} .
$$

Hazards in Choosing the Leaving Variable

$$
\begin{aligned}
x_{i} & =\widehat{b}_{i}-\sum_{j \in N} \widehat{a}_{i j} x_{j} \quad i \in B \\
z & =\widehat{z}+\sum_{j \in N} \widehat{c}_{j} x_{j}
\end{aligned}
$$

Two potential problems:
(i) There is no $i \in B$ for which $\widehat{a}_{i_{j 0}}>0$.
(ii) There is more than one $i_{0} \in B$ for which

$$
\frac{\widehat{b}_{i_{0}}}{\widehat{a}_{i_{j_{0}}}}=\min \left\{\frac{\widehat{b}_{i}}{\widehat{a}_{i_{j 0}}}: i \in B, \widehat{a}_{i_{j o}}>0\right\} .
$$

If (i) occurs, then we can increase the value of the entering variable $x_{j_{0}}$, as much as we want without violating feasibility.

Hazards in Choosing the Leaving Variable

$$
\begin{aligned}
x_{i} & =\widehat{b}_{i}-\sum_{j \in N} \widehat{a}_{i j} x_{j} \quad i \in B \\
z & =\widehat{z}+\sum_{j \in N} \widehat{c}_{j} x_{j}
\end{aligned}
$$

Two potential problems:
(i) There is no $i \in B$ for which $\widehat{a}_{i_{j 0}}>0$.
(ii) There is more than one $i_{0} \in B$ for which

$$
\frac{\widehat{b}_{i_{0}}}{\widehat{a}_{i_{j_{j}}}}=\min \left\{\frac{\widehat{b}_{i}}{\widehat{a}_{i j_{0}}}: i \in B, \widehat{a}_{i j_{0}}>0\right\} .
$$

If (i) occurs, then we can increase the value of the entering variable $x_{j_{0}}$, as much as we want without violating feasibility.
That is, we can increase the value of z as much as we want.

Hazards in Choosing the Leaving Variable

$$
\begin{aligned}
x_{i} & =\widehat{b}_{i}-\sum_{j \in N} \widehat{a}_{i j} x_{j} \quad i \in B \\
z & =\widehat{z}+\sum_{j \in N} \widehat{c}_{j} x_{j}
\end{aligned}
$$

Two potential problems:
(i) There is no $i \in B$ for which $\widehat{a}_{i_{j 0}}>0$.
(ii) There is more than one $i_{0} \in B$ for which

$$
\frac{\widehat{b}_{i_{0}}}{\widehat{a}_{i_{j_{0}}}}=\min \left\{\frac{\widehat{b}_{i}}{\widehat{a}_{i_{j 0}}}: i \in B, \widehat{a}_{i_{j o}}>0\right\} .
$$

If (i) occurs, then we can increase the value of the entering variable $x_{j_{0}}$, as much as we want without violating feasibility.
That is, we can increase the value of z as much as we want. Hence the LP is unbounded.

Unbounded LPs

Fact: If there exists $j_{0} \in N$ in the dictionary D_{B} for which $\widehat{c}_{j_{0}}>0$ and $\widehat{a}_{i_{j_{0}}} \leq 0$ for all $i \in B$, then the LP

$$
\begin{array}{ll}
\operatorname{maximize} & c^{\top} x \\
\text { subject to } & A x \leq b, 0 \leq x
\end{array}
$$

is unbounded, i.e., the optimal value is $+\infty$.

Unbounded LPs

$$
\begin{array}{rll}
\operatorname{maximize} & x_{1}+x_{2}+x_{3} & \\
\text { subject to } & 3 x_{1}+x_{2}-2 x_{3} \leq 5 \\
& 4 x_{1}+3 x_{2} & \leq 7 \\
& 0 \leq x_{1}, x_{2}, x_{3} &
\end{array}
$$

Unbounded LPs

$$
\begin{array}{rcccc}
\text { maximize } & x_{1} & +x_{2} & +x_{3} \\
\text { subject to } & 3 x_{1} & +x_{2} & -2 x_{3} & \leq \\
& 4 x_{1} & +3 x_{2} & & \\
& 0 \leq x_{1}, x_{2}, x_{3} & \\
7
\end{array}
$$

Hazards in Choosing the Leaving Variable

$$
\begin{aligned}
x_{i} & =\widehat{b}_{i}-\sum_{j \in N} \widehat{a}_{i j} x_{j} \\
z & =\widehat{z}+\sum_{j \in N} \widehat{c}_{j} x_{j},
\end{aligned}
$$

Two potential problems:
(i) There is no $i \in B$ for which $\widehat{a}_{i_{j 0}}>0$.
(ii) There is more than one $i_{0} \in B$ for which

$$
\frac{\widehat{b}_{i_{0}}}{\widehat{a}_{i_{0 j} j_{0}}}=\min \left\{\frac{\widehat{b}_{i}}{\widehat{a}_{i_{j}}}: i \in B, \widehat{a}_{i_{j}}>0\right\} .
$$

Hazards in Choosing the Leaving Variable

$$
\begin{aligned}
x_{i} & =\widehat{b}_{i}-\sum_{j \in N} \widehat{a}_{i j} x_{j} \quad i \in B \\
z & =\widehat{z}+\sum_{j \in N} \widehat{c}_{j} x_{j},
\end{aligned}
$$

Two potential problems:
(i) There is no $i \in B$ for which $\widehat{a}_{i_{j 0}}>0$.
(ii) There is more than one $i_{0} \in B$ for which

$$
\frac{\widehat{b}_{i_{0}}}{\widehat{a}_{i_{0 j} j_{0}}}=\min \left\{\frac{\widehat{b}_{i}}{\widehat{a}_{i_{j}}}: i \in B, \widehat{a}_{i_{j}}>0\right\} .
$$

(ii) is VERY BAD for the simplex algorithm!

Hazards in Choosing the Leaving Variable

$$
\begin{aligned}
x_{i} & =\widehat{b}_{i}-\sum_{j \in N} \widehat{a}_{i j} x_{j} \\
z & =\widehat{z}+\sum_{j \in N} \widehat{c}_{j} x_{j},
\end{aligned}
$$

Two potential problems:
(i) There is no $i \in B$ for which $\widehat{a}_{i_{j}}>0$.
(ii) There is more than one $i_{0} \in B$ for which

$$
\frac{\widehat{b}_{i_{0}}}{\widehat{a}_{i_{0 j} j_{0}}}=\min \left\{\frac{\widehat{b}_{i}}{\widehat{a}_{i_{j}}}: i \in B, \widehat{a}_{i_{j}}>0\right\} .
$$

(ii) is VERY BAD for the simplex algorithm!

We show why by example.

Example

$$
\begin{array}{lr}
\operatorname{maximize} & 2 x_{1}-x_{2}+8 x_{3} \\
\text { subject to } & 2 x_{1}-4 x_{2}+6 x_{3} \leq 3 \\
-x_{1}+3 x_{2}+4 x_{3} \leq 2 \\
2 x_{3} \leq 1 \\
& 0 \leq x_{1}, x_{2}, x_{3}
\end{array}
$$

Example

$$
\begin{array}{lr}
\text { maximize } & 2 x_{1}-x_{2}+8 x_{3} \\
\text { subject to } & 2 x_{1}-4 x_{2}+6 x_{3} \leq 3 \\
-x_{1}+3 x_{2}+4 x_{3} \leq 2 \\
2 x_{3} \leq 1 \\
& 0 \leq x_{1}, x_{2}, x_{3}
\end{array}
$$

Example

$x=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$	2 -1 0	-4 3 0	6 4 (2)	0 0	0 1 0	0 0 1	3 2 1	Note that any one of these rows could serve as the pivot row!
$z=0$	2	-1	8	0	0	0	0	
$x=\left(\begin{array}{c} 0 \\ 0 \\ \frac{1}{2} \end{array}\right)$	1	-4 3 0	0	0 0	0	-3 -2 $\frac{1}{2}$	0	Note that by pivoting on this tableau we do not change the objective value
$z=4$	2	-1	0	0	0	-4	-4	

Example

$x=\left(\begin{array}{c}0 \\ 0 \\ \frac{1}{2}\end{array}\right)$	(2) -1 0	-4 3 0	0 0 1	0 0	0 1 0	-3 -2 $\frac{1}{2}$	0 0 $\frac{1}{2}$	Note that by pivoting on this tableau we do not change the objective value
$z=4$	2	-1	0	0	0	-4	-4	
$x=\left(\begin{array}{c}0 \\ 0 \\ \frac{1}{2}\end{array}\right)$	0 0	-2 (1) 0	0 0 1	0	0 1 0	$-\frac{3}{2}$ $-\frac{7}{2}$ $\frac{1}{2}$	0 $\frac{1}{2}$	Note that we have not changed the point identified by this tableau
$z=4$	0	3	0	-1	0	-1	-4	

Example

$x=\left(\begin{array}{c}0 \\ 0 \\ \frac{1}{2}\end{array}\right)$	0	-2 (1) 0	0 0 1	$\frac{1}{2}$ $\frac{1}{2}$ 0	0 1 0	$\begin{gathered} -\frac{3}{2} \\ -\frac{7}{2} \\ \frac{1}{2} \\ \hline \end{gathered}$	0 0 $\frac{1}{2}$	Note that we have not changed the point identified by this tableau
$z=4$	0	3	0	-1	0	-1	-4	
$\left(\begin{array}{l} 0 \end{array}\right)$	1	0	0	$\frac{3}{2}$	2		0	Again no change.
$x=0$	0	1	0	$\frac{1}{2}$	1		0	
$\binom{1}{\frac{1}{2}}$	0	0	1	0	0	(1)	$\frac{1}{2}$	
$z=4$	0	0	0	$-\frac{5}{2}$	-3	$\frac{19}{2}$	-4	

Example

$x=\left(\begin{array}{c}0 \\ 0 \\ \frac{1}{2}\end{array}\right)$	1 0 0	$\begin{aligned} & 0 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & \frac{3}{2} \\ & \frac{1}{2} \\ & 0 \\ & \hline \end{aligned}$	2 1 0	$\begin{gathered} -\frac{17}{2} \\ -\frac{7}{2} \\ \left(\frac{1}{2}\right. \\ \hline \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & \frac{1}{2} \\ & \hline \end{aligned}$	Again no change.
$z=4$	0	0	0	$-\frac{5}{2}$	-3	$\frac{19}{2}$	-4	
$x=\left(\begin{array}{c} \frac{17}{2} \\ \frac{7}{2} \\ 0 \end{array}\right)$	1 0 0	0 1 0	17 7 2	$\frac{3}{2}$ $\frac{1}{2}$ 0	2 1 0	$\begin{aligned} & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & \frac{17}{2} \\ & \frac{7}{2} \\ & 1 \end{aligned}$	Finally, we break out to optimality.
$z=\frac{27}{2}$	0	0	-19	$-\frac{5}{2}$	-3	0	$-\frac{27}{2}$	

Degeneracy

Observations:

Degeneracy

Observations:
(1) If on a given pivot, there is more than one choice of variable to leave the basis, then the subsequent tableau will set one or more of the basic variables equal to zero in the associated basic feasible solution.

Degeneracy

Observations:
(1) If on a given pivot, there is more than one choice of variable to leave the basis, then the subsequent tableau will set one or more of the basic variables equal to zero in the associated basic feasible solution.
A dictionary in which one or more of the basic variables is set to zero in the associated basic feasible solution is called a "degenerate dictionary".

Degeneracy

Observations:
(1) If on a given pivot, there is more than one choice of variable to leave the basis, then the subsequent tableau will set one or more of the basic variables equal to zero in the associated basic feasible solution.
A dictionary in which one or more of the basic variables is set to zero in the associated basic feasible solution is called a "degenerate dictionary". Correspondingly, a tableau in which one or more of the basic variables is set to zero in the associated basic feasible solution is called a "degenerate tableau".

Degeneracy

Observations:
(1) If on a given pivot, there is more than one choice of variable to leave the basis, then the subsequent tableau will set one or more of the basic variables equal to zero in the associated basic feasible solution.
A dictionary in which one or more of the basic variables is set to zero in the associated basic feasible solution is called a "degenerate dictionary". Correspondingly, a tableau in which one or more of the basic variables is set to zero in the associated basic feasible solution is called a "degenerate tableau".
(2) It is possible that a pivot on a degenerate dictionary (or tableau) does not change the associated basic feasible solution and the value of the objective variable z.

Degeneracy

Observations:
(1) If on a given pivot, there is more than one choice of variable to leave the basis, then the subsequent tableau will set one or more of the basic variables equal to zero in the associated basic feasible solution.
A dictionary in which one or more of the basic variables is set to zero in the associated basic feasible solution is called a "degenerate dictionary". Correspondingly, a tableau in which one or more of the basic variables is set to zero in the associated basic feasible solution is called a "degenerate tableau".
(2) It is possible that a pivot on a degenerate dictionary (or tableau) does not change the associated basic feasible solution and the value of the objective variable z.
Such a pivot is called a "degenerate pivot".

Degeneracy

Observation (2) is particularly troublesome since it opens the door to the possibility of an infinite sequence of degenerate pivots never terminating with optimality.

Degeneracy

Observation (2) is particularly troublesome since it opens the door to the possibility of an infinite sequence of degenerate pivots never terminating with optimality.

Unfortunately, this can occur leading to the failure of the method. An example of the phenomenon is given in the text.

Degeneracy

Observation (2) is particularly troublesome since it opens the door to the possibility of an infinite sequence of degenerate pivots never terminating with optimality.

Unfortunately, this can occur leading to the failure of the method. An example of the phenomenon is given in the text.

Our goal is to understand how such a pathological situation can occur and then to devise methods to overcome the problem.

Cycling

Assume the algorithm is operating with iron clad pivoting rules.

Cycling

Assume the algorithm is operating with iron clad pivoting rules. That is, non-optimal feasible dictionaries have unique pivots.

Cycling

Assume the algorithm is operating with iron clad pivoting rules. That is, non-optimal feasible dictionaries have unique pivots.

Example:

Cycling

Assume the algorithm is operating with iron clad pivoting rules. That is, non-optimal feasible dictionaries have unique pivots.

Example:

$$
\begin{align*}
x_{i} & =\widehat{b}_{i}-\sum_{j \in N} \widehat{a}_{i j} x_{j} \quad i \in B \\
z & =\widehat{z}+\sum_{j \in N} \widehat{c}_{j} x_{j}, \tag{B}
\end{align*}
$$

Cycling

Largest-Coefficient Largest-Subscript Rule

Cycling

Largest-Coefficient Largest-Subscript Rule

- Choice of Entering Variable: Among all those variables x_{j} with $j \in N$ such that $\widehat{c}_{j}=\max \left\{\widehat{c}_{k}: k \in N\right\}>0$ choose $x_{j_{0}}$ so that j_{0} is largest.

Cycling

Largest-Coefficient Largest-Subscript Rule

- Choice of Entering Variable: Among all those variables x_{j} with $j \in N$ such that $\widehat{c}_{j}=\max \left\{\widehat{c}_{k}: k \in N\right\}>0$ choose $x_{j_{0}}$ so that j_{0} is largest.
- Choice of Leaving Variable: Among all those variables x_{i} with $i \in B$ such that $\frac{\hat{b}_{i}}{\widehat{a}_{i_{0}}}=\min \left\{\frac{\widehat{b}_{k}}{\hat{a}_{k_{0}}}: k \in B, \widehat{a}_{k j 0}>0\right\}$ choose $x_{i 0}$ so that i_{0} is largest.

How Many Possible Bases?

How many possible ways are there to choose a set of basic indices?

How Many Possible Bases?

How many possible ways are there to choose a set of basic indices?

Since every basis must contain m variables and there are only $n+m$ variables altogether, the total number of possible sets of basic indices equals the number of possible ways to choose m distinct elements from a collection of $n+m$ objects.

How Many Possible Bases?

How many possible ways are there to choose a set of basic indices?

Since every basis must contain m variables and there are only $n+m$ variables altogether, the total number of possible sets of basic indices equals the number of possible ways to choose m distinct elements from a collection of $n+m$ objects.

$$
\binom{n+m}{m}=\frac{(n+m)!}{m!n!} .
$$

Cycling

$$
\text { infinite pivot sequence } \Rightarrow \text { infinite dictionary sequence. }
$$

Cycling

$$
\text { infinite pivot sequence } \Rightarrow \text { infinite dictionary sequence. }
$$

At least one dictionary, say D_{1}, has a basis B appearing twice.

Cycling

$$
\text { infinite pivot sequence } \Rightarrow \text { infinite dictionary sequence. }
$$

At least one dictionary, say D_{1}, has a basis B appearing twice. Suppose B is also the basis for D_{N+1}.

Cycling

infinite pivot sequence \Rightarrow infinite dictionary sequence.

At least one dictionary, say D_{1}, has a basis B appearing twice. Suppose B is also the basis for D_{N+1}.
Let

$$
\ldots D_{1}, \ldots, D_{N}, D_{N+1}, D_{N+2}, D_{N+2}, \ldots
$$

be the sequence of pivots where D_{1} and D_{N+1} have the same basis.

Cycling

$$
\text { infinite pivot sequence } \Rightarrow \text { infinite dictionary sequence. }
$$

At least one dictionary, say D_{1}, has a basis B appearing twice. Suppose B is also the basis for D_{N+1}.
Let

$$
\ldots D_{1}, \ldots, D_{N}, D_{N+1}, D_{N+2}, D_{N+2}, \ldots
$$

be the sequence of pivots where D_{1} and D_{N+1} have the same basis. If each basis is associated with a unique dictionary, then $D_{1}=D_{N+1}$.

Cycling

infinite pivot sequence \Rightarrow infinite dictionary sequence.

At least one dictionary, say D_{1}, has a basis B appearing twice. Suppose B is also the basis for D_{N+1}.
Let

$$
\ldots D_{1}, \ldots, D_{N}, D_{N+1}, D_{N+2}, D_{N+2}, \ldots
$$

be the sequence of pivots where D_{1} and D_{N+1} have the same basis. If each basis is associated with a unique dictionary, then $D_{1}=D_{N+1}$. But then,

$$
D_{2}=D_{N+2}, D_{3}=D_{N+3}, \ldots, D_{1}=D_{2 N}, D_{2}=D_{2 N+2}, \ldots
$$

Cycling

infinite pivot sequence \Rightarrow infinite dictionary sequence.

At least one dictionary, say D_{1}, has a basis B appearing twice. Suppose B is also the basis for D_{N+1}.
Let

$$
\ldots D_{1}, \ldots, D_{N}, D_{N+1}, D_{N+2}, D_{N+2}, \ldots
$$

be the sequence of pivots where D_{1} and D_{N+1} have the same basis. If each basis is associated with a unique dictionary, then $D_{1}=D_{N+1}$. But then,

$$
D_{2}=D_{N+2}, \quad D_{3}=D_{N+3}, \ldots, D_{1}=D_{2 N}, D_{2}=D_{2 N+2}, \ldots
$$

That is, the same sequence of dictionaries appear over and over again. If this occurs we say that the sequence of dictionaries cycles.

The Basis-Dictionary Correspondence

Fact : Every basis uniquely determines its associated dictionary.

Corollary:

The simplex algorithm fails to terminate if and only if it cycles. The simplex algorithms can only cycle between degenerate dictionaries (or tableaus) with each dictionary (or tableau) in the cycle being associated with the same basic feasible solution and objective value.

Proof

We show each basis yields a unique dictionary.

Proof

We show each basis yields a unique dictionary.

$$
\begin{align*}
x_{i} & =\widehat{b}_{i}-\sum_{j \in N} \widehat{a}_{i j} x_{j}, \quad i \in B \tag{1}\\
z & =\widehat{z}_{i}+\sum_{j \in N} \widehat{c}_{j} x_{j}
\end{align*}
$$

and

$$
\begin{align*}
x_{i} & =b_{i}^{*}-\sum_{j \in N} a_{i j}^{*} x_{j}, \quad i \in B \tag{2}\\
z & =z^{*}+\sum_{j \in N} c_{j}^{*} x_{j}
\end{align*}
$$

Two dictionaries with the same basis B.

Proof

We show each basis yields a unique dictionary.

$$
\begin{align*}
x_{i} & =\widehat{b}_{i}-\sum_{j \in N} \widehat{a}_{i j} x_{j}, \quad i \in B \tag{1}\\
z & =\widehat{z}_{i}+\sum_{j \in N} \widehat{c}_{j} x_{j}
\end{align*}
$$

and

$$
\begin{align*}
x_{i} & =b_{i}^{*}-\sum_{j \in N} a_{i j}^{*} x_{j}, \quad i \in B \tag{2}\\
z & =z^{*}+\sum_{j \in N} c_{j}^{*} x_{j}
\end{align*}
$$

Two dictionaries with the same basis B. Show all coefficients are identical.

Proof

$$
\begin{aligned}
& \left(D_{1}\right) \\
x_{i} & =\widehat{b}_{i}-\sum_{j \in N} \widehat{a}_{i j} x_{j}, \quad i \in B \quad \begin{aligned}
x_{i} & =b_{i}^{*}-\sum_{j \in N} a_{i j}^{*} x_{j}, \quad i \in B \\
z & =\widehat{z}_{i}+\sum_{j \in N} \widehat{c}_{j} x_{j}
\end{aligned} \quad z=z^{*}+\sum_{j \in N} c_{j}^{*} x_{j}
\end{aligned}
$$

D_{1} and D_{2} have identical solution sets.

Proof

$$
\begin{aligned}
&\left(D_{1}\right) \\
& x_{i}=\widehat{b}_{i}-\sum_{j \in N} \widehat{a}_{i j} x_{j}, \quad i \in B \quad \begin{aligned}
x_{i} & =b_{i}^{*}-\sum_{j \in N} a_{i j}^{*} x_{j}, \quad i \in B \\
z & =\widehat{z}_{i}+\sum_{j \in N} \widehat{c}_{j} x_{j}
\end{aligned} \quad z=z^{*}+\sum_{j \in N} c_{j}^{*} x_{j}
\end{aligned}
$$

D_{1} and D_{2} have identical solution sets.
Let $j_{0} \in N$ and set $x_{j_{0}}=t$ and $x_{j}=0$ for $j \in N, j \neq j_{0}$.
Then

$$
\begin{aligned}
\widehat{b}_{i}-\widehat{a}_{i j_{0}} t & =x_{i}=b_{i}^{*}-a_{i j_{0}}^{*} t \quad \text { for } i \in B \\
\widehat{z}+\widehat{c}_{j_{0}} t & =z=z^{*}+c_{j_{0}}^{*} t
\end{aligned}
$$

Setting $t=0$, we have

$$
\widehat{b}_{i}=b_{i}^{*} \quad i \in B \quad \text { and } \quad \widehat{z}=z^{*}
$$

Then, setting $t=1$, we have

$$
\widehat{a}_{i j_{0}}=a_{i j_{0}}^{*} \quad \text { for } i \in B .
$$

Proof

$$
\begin{aligned}
& \left(D_{1}\right) \\
x_{i} & =\widehat{b}_{i}-\sum_{j \in N} \widehat{a}_{i j} x_{j}, \quad i \in B \quad \begin{aligned}
x_{i} & =b_{i}^{*}-\sum_{j \in N} a_{i j}^{*} x_{j}, \quad i \in B \\
z & =\widehat{z}_{i}+\sum_{j \in N} \widehat{c}_{j} x_{j}
\end{aligned} \quad z=z^{*}+\sum_{j \in N} c_{j}^{*} x_{j}
\end{aligned}
$$

D_{1} and D_{2} have identical solution sets.
Let $j_{0} \in N$ and set $x_{j_{0}}=t$ and $x_{j}=0$ for $j \in N, j \neq j_{0}$.
Then

$$
\begin{aligned}
\widehat{b}_{i}-\widehat{a}_{i j_{0}} t & =x_{i}=b_{i}^{*}-a_{i j_{0}}^{*} t \quad \text { for } i \in B \\
\widehat{z}+\widehat{c}_{j_{0}} t & =z=z^{*}+c_{j_{0}}^{*} t
\end{aligned}
$$

Setting $t=0$, we have

$$
\widehat{b}_{i}=b_{i}^{*} \quad i \in B \quad \text { and } \quad \widehat{z}=z^{*}
$$

Then, setting $t=1$, we have

$$
\widehat{a}_{i j_{0}}=a_{i j_{0}}^{*} \quad \text { for } i \in B
$$

Repeating for all $j \in N$.

Degeneracy and Cycling

We have established that the simplex algorithm can only fail to terminate if it cycles, and that it can only cycle in the presence of degeneracy. In order to assure that the simplex algorithm successfully terminates we need to develop a pivoting rule that avoids cycling.

Degeneracy and Cycling

We have established that the simplex algorithm can only fail to terminate if it cycles, and that it can only cycle in the presence of degeneracy. In order to assure that the simplex algorithm successfully terminates we need to develop a pivoting rule that avoids cycling.

There are many anti-cycling pivoting rules. We present the smallest subscript rule, also known as Bland's Rule.

Bland's Rule

$$
\begin{array}{rlr}
x_{i} & =\widehat{b}_{i}-\sum_{j \in N} \widehat{a}_{i j} x_{j} & i \in B \tag{B}\\
z & =\widehat{z}+\sum_{j \in N} \widehat{c}_{j} x_{j} . &
\end{array}
$$

Bland's Rule

$$
\begin{array}{rlr}
x_{i} & =\widehat{b}_{i}-\sum_{j \in N} \widehat{a}_{i j} x_{j} & i \in B \tag{B}\\
z & =\widehat{z}+\sum_{j \in N} \widehat{c}_{j} x_{j} . &
\end{array}
$$

Choice of entering variable: $x_{j_{0}}$ for $j_{0} \in N$ is the entering variable if $\widehat{c}_{j_{0}}>0$ and $j_{0} \leq j$ whenever $\widehat{c}_{j}>0$.

Bland's Rule

$$
\begin{array}{rlrl}
x_{i} & =\widehat{b}_{i}-\sum_{j \in N} \widehat{a}_{i j} x_{j} & i \in B \tag{B}\\
z & =\widehat{z}+\sum_{j \in N} \widehat{c}_{j} x_{j}
\end{array}
$$

Choice of entering variable: $x_{j_{0}}$ for $j_{0} \in N$ is the entering variable if $\widehat{c}_{j_{0}}>0$ and $j_{0} \leq j$ whenever $\widehat{c}_{j}>0$.
Choice of leaving variable: $x_{i 0}$ for $i_{0} \in B$ is the leaving variable if

$$
\frac{\widehat{b}_{i_{0}}}{\widehat{a}_{i_{0} j_{0}}}=\min \left\{\frac{\widehat{b}_{i}}{\widehat{a}_{i j_{0}}}: i \in B, \widehat{a}_{i j_{0}}>0\right\}
$$

and

$$
i_{0} \leq i \text { whenever } \frac{\widehat{b}_{i_{0}}}{\widehat{a}_{i_{0} j_{0}}}=\frac{\widehat{b}_{i}}{\widehat{a}_{i j_{0}}} \quad i \in B
$$

Bland's Rule

Theorem: [R.G. Bland (1977)]

The simplex algorithm terminates as long as the choice of variable to enter or leave the basis is made according to the smallest subscript rule.

Bland's Rule

Theorem: [R.G. Bland (1977)]

The simplex algorithm terminates as long as the choice of variable to enter or leave the basis is made according to the smallest subscript rule.

We abbreviate the Bland's rule to SSR (smallest subscript rule).

Proof

Prove Bland's rule prevents cycling.

Proof

Prove Bland's rule prevents cycling.
Assume to the contrary that a cycle exists:

$$
D_{0}, D_{1}, \ldots, D_{N}=D_{0} .
$$

Proof

Prove Bland's rule prevents cycling.
Assume to the contrary that a cycle exists:

$$
D_{0}, D_{1}, \ldots, D_{N}=D_{0} .
$$

Since all the pivots in the cycle are degenerate, the minimum ratio is zero in each pivot, and so each dictionary in the cycle D_{0}, \ldots, D_{N} identifies the same BFS.

Proof

Prove Bland's rule prevents cycling.
Assume to the contrary that a cycle exists:

$$
D_{0}, D_{1}, \ldots, D_{N}=D_{0}
$$

Since all the pivots in the cycle are degenerate, the minimum ratio is zero in each pivot, and so each dictionary in the cycle D_{0}, \ldots, D_{N} identifies the same BFS.

If a variable enters (leaves) the basis in one of the dictionaries D_{0}, \ldots, D_{N}, then it must depart (return) from (to) the basis in another of these dictionaries.

Proof

Prove Bland's rule prevents cycling.
Assume to the contrary that a cycle exists:

$$
D_{0}, D_{1}, \ldots, D_{N}=D_{0}
$$

Since all the pivots in the cycle are degenerate, the minimum ratio is zero in each pivot, and so each dictionary in the cycle D_{0}, \ldots, D_{N} identifies the same BFS.

If a variable enters (leaves) the basis in one of the dictionaries D_{0}, \ldots, D_{N}, then it must depart (return) from (to) the basis in another of these dictionaries.

We call the variables that leave the basis in any of the dictionaries D_{0}, \ldots, D_{N} fickle since they move in and out of the basis.

Proof

Prove Bland's rule prevents cycling.
Assume to the contrary that a cycle exists:

$$
D_{0}, D_{1}, \ldots, D_{N}=D_{0}
$$

Since all the pivots in the cycle are degenerate, the minimum ratio is zero in each pivot, and so each dictionary in the cycle D_{0}, \ldots, D_{N} identifies the same BFS.

If a variable enters (leaves) the basis in one of the dictionaries D_{0}, \ldots, D_{N}, then it must depart (return) from (to) the basis in another of these dictionaries.

We call the variables that leave the basis in any of the dictionaries D_{0}, \ldots, D_{N} fickle since they move in and out of the basis.

Denote the set of fickle variables by \mathcal{F}.

Proof

Prove Bland's rule prevents cycling.
Assume to the contrary that a cycle exists:

$$
D_{0}, D_{1}, \ldots, D_{N}=D_{0}
$$

Since all the pivots in the cycle are degenerate, the minimum ratio is zero in each pivot, and so each dictionary in the cycle D_{0}, \ldots, D_{N} identifies the same BFS.

If a variable enters (leaves) the basis in one of the dictionaries D_{0}, \ldots, D_{N}, then it must depart (return) from (to) the basis in another of these dictionaries.

We call the variables that leave the basis in any of the dictionaries D_{0}, \ldots, D_{N} fickle since they move in and out of the basis.

Denote the set of fickle variables by \mathcal{F}.
All fickle variables must take the value zero in the BFS associated with this cycle since they take the value zero when they are not in the basis.

Proof

Let ℓ be the largest subscript in \mathcal{F}, and let

$$
\begin{aligned}
D \quad x_{i} & =b_{i}-\sum_{j \notin B} a_{i j} x_{j}, \quad i \in B \\
z & =v+\sum_{j \notin B} c_{j} x_{j}
\end{aligned}
$$

be a dictionary in the cycle where x_{ℓ} is leaving the basis and let x_{e} denote the entering variable: x_{ℓ} leaves D and x_{e} enters.

Proof

Let ℓ be the largest subscript in \mathcal{F}, and let

$$
\begin{aligned}
D \quad x_{i} & =b_{i}-\sum_{j \notin B} a_{i j} x_{j}, \quad i \in B \\
z & =v+\sum_{j \notin B} c_{j} x_{j}
\end{aligned}
$$

be a dictionary in the cycle where x_{ℓ} is leaving the basis and let x_{e} denote the entering variable: x_{ℓ} leaves D and x_{e} enters.

Since x_{e} is also fickle, $e<\ell(\ell$ is largest in $\mathcal{F}), c_{e}>0$, and $a_{\ell e}>0$.

Proof

Let ℓ be the largest subscript in \mathcal{F}, and let

$$
\begin{aligned}
D \quad x_{i} & =b_{i}-\sum_{j \notin B} a_{i j} x_{j}, \quad i \in B \\
z & =v+\sum_{j \notin B} c_{j} x_{j}
\end{aligned}
$$

be a dictionary in the cycle where x_{ℓ} is leaving the basis and let x_{e} denote the entering variable: x_{ℓ} leaves D and x_{e} enters.

Since x_{e} is also fickle, $e<\ell(\ell$ is largest in $\mathcal{F}), c_{e}>0$, and $a_{\ell e}>0$.

Let D^{*} be a dictionary in the cycle with x_{ℓ} entering the basis.

Proof

Let ℓ be the largest subscript in \mathcal{F}, and let

$$
\begin{aligned}
D \quad x_{i} & =b_{i}-\sum_{j \notin B} a_{i j} x_{j}, \quad i \in B \\
z & =v+\sum_{j \notin B} c_{j} x_{j}
\end{aligned}
$$

be a dictionary in the cycle where x_{ℓ} is leaving the basis and let x_{e} denote the entering variable: x_{ℓ} leaves D and x_{e} enters.

Since x_{e} is also fickle, $e<\ell(\ell$ is largest in $\mathcal{F}), c_{e}>0$, and $a_{\ell e}>0$.

Let D^{*} be a dictionary in the cycle with x_{ℓ} entering the basis.
Since each dictionary in the cycle identifies the same BFS, the objective value v stays constant throughout the cycle.

Proof

Since each dictionary in the cycle identifies the same BFS, the objective value v stays constant throughout the cycle.

Proof

Since each dictionary in the cycle identifies the same BFS, the objective value v stays constant throughout the cycle.

Write the objective row of D^{*} (x_{ℓ} entering) as

$$
z=v+\sum_{j=1}^{m+n} c_{j}^{*} x_{j},
$$

where $c_{j}^{*}=0$ if x_{j} is basic in D^{*}. Note, $c_{j}^{*} \leq 0 \forall j \in \mathcal{F} \backslash\{\ell\}$ and $c_{\ell}^{*}>0$.

Proof

Since each dictionary in the cycle identifies the same BFS, the objective value v stays constant throughout the cycle.

Write the objective row of D^{*} (x_{ℓ} entering) as

$$
z=v+\sum_{j=1}^{m+n} c_{j}^{*} x_{j},
$$

where $c_{j}^{*}=0$ if x_{j} is basic in D^{*}. Note, $c_{j}^{*} \leq 0 \forall j \in \mathcal{F} \backslash\{\ell\}$ and $c_{\ell}^{*}>0$. Since the solution sets to D and D^{*} coincide, the solution to D obtained by setting $x_{e}=t, x_{j}=0(j \notin B, j \neq e)$ giving

$$
x_{i}=b_{i}-a_{i e} t(i \in B) \text { and } z=v+c_{e} t
$$

must satisfy D^{*}.

Proof

Since each dictionary in the cycle identifies the same BFS, the objective value v stays constant throughout the cycle.

Write the objective row of D^{*} (x_{ℓ} entering) as

$$
z=v+\sum_{j=1}^{m+n} c_{j}^{*} x_{j},
$$

where $c_{j}^{*}=0$ if x_{j} is basic in D^{*}. Note, $c_{j}^{*} \leq 0 \forall j \in \mathcal{F} \backslash\{\ell\}$ and $c_{\ell}^{*}>0$. Since the solution sets to D and D^{*} coincide, the solution to D obtained by setting $x_{e}=t, x_{j}=0(j \notin B, j \neq e)$ giving

$$
x_{i}=b_{i}-a_{i e} t(i \in B) \text { and } z=v+c_{e} t
$$

must satisfy D^{*}.
Hence $\quad v+c_{e} t=v+c_{e}^{*} t+\sum_{i \in B} c_{i}^{*}\left(b_{i}-a_{i e} t\right) \quad$ for all t.

Proof

$$
v+c_{e} t=v+c_{e}^{*} t+\sum_{i \in B} c_{i}^{*}\left(b_{i}-a_{i e} t\right) \quad \text { for all } t
$$

Proof

$$
v+c_{e} t=v+c_{e}^{*} t+\sum_{i \in B} c_{i}^{*}\left(b_{i}-a_{i e} t\right) \quad \text { for all } t
$$

Grouping terms gives

$$
\left(c_{e}-c_{e}^{*}+\sum_{i \in B} c_{i}^{*} a_{i e}\right) t=\sum_{i \in B} c_{i}^{*} b_{i} \quad \text { for all } t
$$

Proof

$$
v+c_{e} t=v+c_{e}^{*} t+\sum_{i \in B} c_{i}^{*}\left(b_{i}-a_{i e} t\right) \quad \text { for all } t
$$

Grouping terms gives

$$
\left(c_{e}-c_{e}^{*}+\sum_{i \in B} c_{i}^{*} a_{i e}\right) t=\sum_{i \in B} c_{i}^{*} b_{i} \quad \text { for all } t
$$

Since the right hand side is constant, it must be 0 as is the coefficient on the left:

$$
c_{e}-c_{e}^{*}=-\sum_{i \in B} c_{i}^{*} a_{i e}
$$

Proof

$$
c_{e}-c_{e}^{*}=-\sum_{i \in B} c_{i}^{*} a_{i e}
$$

Proof

$$
\begin{gathered}
c_{e}-c_{e}^{*}=-\sum_{i \in B} c_{i}^{*} a_{i e} \\
x_{e} \text { enters in } D \Rightarrow c_{e}>0
\end{gathered}
$$

Proof

$$
\begin{gathered}
c_{e}-c_{e}^{*}=-\sum_{i \in B} c_{i}^{*} a_{i e} \\
x_{e} \text { enters in } D \Rightarrow c_{e}>0
\end{gathered}
$$

x_{ℓ} enters in D^{*} and $e<\ell \Rightarrow c_{e}^{*} \leq 0$ by the SSR

Proof

$$
\begin{gathered}
c_{e}-c_{e}^{*}=-\sum_{i \in B} c_{i}^{*} a_{i e} \\
x_{e} \text { enters in } D \Rightarrow c_{e}>0
\end{gathered}
$$

x_{ℓ} enters in D^{*} and $e<\ell \Rightarrow c_{e}^{*} \leq 0$ by the SSR
Therefore, $c_{e}-c_{e}^{*}>0$.

Proof

$$
\begin{gathered}
c_{e}-c_{e}^{*}=-\sum_{i \in B} c_{i}^{*} a_{i e} \\
x_{e} \text { enters in } D \Rightarrow c_{e}>0
\end{gathered}
$$

$$
x_{\ell} \text { enters in } D^{*} \text { and } e<\ell \Rightarrow c_{e}^{*} \leq 0 \text { by the SSR }
$$

Therefore, $c_{e}-c_{e}^{*}>0$.

Consequently, $\sum_{i \in B} c_{i}^{*} a_{i e}<0$, so for some $s \in B$,

$$
c_{s}^{*} a_{s e}<0
$$

Proof

for some $s \in B, \quad c_{s}^{*} a_{s e}<0$.

Proof

for some $s \in B, \quad c_{s}^{*} a_{s e}<0$.

Since $s \in B, x_{s}$ is basic in D, and since $c_{s}^{*} \neq 0, x_{s}$ is nonbasic in D^{*}, so $x_{s} \in \mathcal{F}$ which implies that $s \leq \ell$ (since ℓ is largest).

Proof

for some $s \in B, \quad c_{s}^{*} a_{s e}<0$.

Since $s \in B, x_{s}$ is basic in D, and since $c_{s}^{*} \neq 0, x_{s}$ is nonbasic in D^{*}, so $x_{s} \in \mathcal{F}$ which implies that $s \leq \ell$ (since ℓ is largest).

We claim that $s<\ell$.

Proof

$$
s \in B \quad c_{s}^{*} a_{s e}<0 \quad x_{s} \text { not basic in } D^{*}
$$

Show $s<\ell$.

Proof

$$
s \in B \quad c_{s}^{*} a_{s e}<0 \quad x_{s} \text { not basic in } D^{*}
$$

Show $s<\ell$.
x_{ℓ} leaves in D with x_{e} entering, so $a_{\ell e}>0$.

Proof

$$
s \in B \quad c_{s}^{*} a_{s e}<0 \quad x_{s} \text { not basic in } D^{*}
$$

Show $s<\ell$.
x_{ℓ} leaves in D with x_{e} entering, so $a_{\ell e}>0$.
x_{ℓ} enters in D^{*}, so $c_{\ell}^{*}>0$.

Proof

$$
s \in B \quad c_{s}^{*} a_{s e}<0 \quad x_{s} \text { not basic in } D^{*}
$$

Show $s<\ell$.
x_{ℓ} leaves in D with x_{e} entering, so $a_{\ell e}>0$.
x_{ℓ} enters in D^{*}, so $c_{\ell}^{*}>0$.

Consequently, $c_{\ell}^{*} a_{\ell e}>0$, so $s<\ell$.

Proof

Since $s<\ell, x_{s}$ cannot be a candidate to enter the basis in D^{*} by SSR, that is, $c_{s}^{*}<0$.

Proof

Since $s<\ell, x_{s}$ cannot be a candidate to enter the basis in D^{*} by SSR, that is, $c_{s}^{*}<0$.

But then $a_{s e}>0$, since $c_{s}^{*} a_{s e}<0$.

Proof

Since $s<\ell, x_{s}$ cannot be a candidate to enter the basis in D^{*} by SSR, that is, $c_{s}^{*}<0$.

But then $a_{s e}>0$, since $c_{s}^{*} a_{s e}<0$.
$x_{s} \in \mathcal{F}$ and $s \in B$, so the value of x_{s} in the BFS is zero, $\left(b_{s}=0\right)$.

Proof

Since $s<\ell, x_{s}$ cannot be a candidate to enter the basis in D^{*} by SSR, that is, $c_{s}^{*}<0$.

But then $a_{s e}>0$, since $c_{s}^{*} a_{s e}<0$.
$x_{s} \in \mathcal{F}$ and $s \in B$, so the value of x_{s} in the BFS is zero, $\left(b_{s}=0\right)$.

Since $b_{s}=0$ and $a_{s e}>0$, we have $\frac{b_{s}}{a_{s e}}=0$ which is the minimum ration in D. That is, x_{s} is a candidate for leaving in D.

Proof

Since $s<\ell, x_{s}$ cannot be a candidate to enter the basis in D^{*} by SSR, that is, $c_{s}^{*}<0$.

But then $a_{s e}>0$, since $c_{s}^{*} a_{s e}<0$.
$x_{s} \in \mathcal{F}$ and $s \in B$, so the value of x_{s} in the BFS is zero, $\left(b_{s}=0\right)$.

Since $b_{s}=0$ and $a_{s e}>0$, we have $\frac{b_{s}}{a_{s e}}=0$ which is the minimum ration in D. That is, x_{s} is a candidate for leaving in D.

But x_{ℓ} leaves in D with $s<\ell$.

Proof

Since $s<\ell, x_{s}$ cannot be a candidate to enter the basis in D^{*} by SSR, that is, $c_{s}^{*}<0$.

But then $a_{s e}>0$, since $c_{s}^{*} a_{s e}<0$.
$x_{s} \in \mathcal{F}$ and $s \in B$, so the value of x_{s} in the BFS is zero, $\left(b_{s}=0\right)$.

Since $b_{s}=0$ and $a_{s e}>0$, we have $\frac{b_{s}}{a_{s e}}=0$ which is the minimum ration in D. That is, x_{s} is a candidate for leaving in D.

But x_{ℓ} leaves in D with $s<\ell$.

This contradicts the SSR, so no cycle can exist.

