Math 407A: Linear Optimization

Lecture 8: Initialization and the Two Phase Simplex Algorithm

Math Dept, University of Washington

(1) Initialization
(2) The Auxilliary Problem
(3) The Two Phase Simplex Algorithm

Initialization

We have shown that if we are given a feasible dictionary (tableau) for an LP, then the simplex algorithm will terminate finitely if it is employed with a anti-cycling rule.

Initialization

We have shown that if we are given a feasible dictionary (tableau) for an LP, then the simplex algorithm will terminate finitely if it is employed with a anti-cycling rule.

The anti-cycling rule need only be applied on degenerate pivots, since cycling can only occur in the presence of degeneracy.

Initialization

We have shown that if we are given a feasible dictionary (tableau) for an LP, then the simplex algorithm will terminate finitely if it is employed with a anti-cycling rule.

The anti-cycling rule need only be applied on degenerate pivots, since cycling can only occur in the presence of degeneracy.

The simplex algorithm will terminate in one of two ways:

Initialization

We have shown that if we are given a feasible dictionary (tableau) for an LP, then the simplex algorithm will terminate finitely if it is employed with a anti-cycling rule.

The anti-cycling rule need only be applied on degenerate pivots, since cycling can only occur in the presence of degeneracy.

The simplex algorithm will terminate in one of two ways:

- The LP is determined to be unbounded.

Initialization

We have shown that if we are given a feasible dictionary (tableau) for an LP, then the simplex algorithm will terminate finitely if it is employed with a anti-cycling rule.

The anti-cycling rule need only be applied on degenerate pivots, since cycling can only occur in the presence of degeneracy.

The simplex algorithm will terminate in one of two ways:

- The LP is determined to be unbounded.
- An optimal BFS is found.

Initialization

We have shown that if we are given a feasible dictionary (tableau) for an LP, then the simplex algorithm will terminate finitely if it is employed with a anti-cycling rule.

The anti-cycling rule need only be applied on degenerate pivots, since cycling can only occur in the presence of degeneracy.

The simplex algorithm will terminate in one of two ways:

- The LP is determined to be unbounded.
- An optimal BFS is found.

We now address the question of how to determine an initial feasible dictionary (tableau).

The Auxiliary Problem

\mathcal{P} maximize $c^{\top} x$
subject tp $A x \leq b, \quad 0 \leq x$.

The Auxiliary Problem

$$
\begin{array}{ll}
\mathcal{P} \quad \begin{array}{ll}
\text { maximize } & c^{T} x \\
& \text { subject tp }
\end{array} \quad A x \leq b, \quad 0 \leq x
\end{array}
$$

Consider an auxiliary LP of the form

$$
\begin{array}{ll}
\mathcal{Q} & \underset{\text { subject to }}{\operatorname{minimize}} \\
x_{0} \\
A x-x_{0} \mathbf{1} \leq b, \quad 0 \leq x_{0}, x .
\end{array}
$$

where $\mathbf{1} \in \mathbb{R}^{m}$ is the vector of all ones.

The Auxiliary Problem

$$
\begin{array}{lll}
\mathcal{P} \quad & \text { maximize } & c^{\top} x \\
& \text { subject tp } & A x \leq b, \quad 0 \leq x
\end{array}
$$

Consider an auxiliary LP of the form

$$
\begin{array}{ll}
\mathcal{Q} & \underset{\text { subject to }}{\operatorname{minimize}} \\
x_{0} \\
A x-x_{0} \mathbf{1} \leq b, \quad 0 \leq x_{0}, x .
\end{array}
$$

where $\mathbf{1} \in \mathbb{R}^{m}$ is the vector of all ones.
The $\mathrm{i}^{\text {th }}$ row of the system of inequalities $A x-x_{0} \mathbf{1} \leq b$ is

$$
a_{i 1} x_{1}+a_{i 2} x_{2}+\ldots+a_{i n} x_{n} \leq b_{i}+x_{0}
$$

The Auxiliary Problem

$$
\begin{aligned}
& \mathcal{P} \text { maximize } c^{T} x \\
& \text { subject tp } A x \leq b, \quad 0 \leq x .
\end{aligned}
$$

Consider an auxiliary LP of the form

$$
\begin{array}{ll}
\mathcal{Q} & \underset{\text { subject to }}{\operatorname{minimize}} \\
x_{0} \\
A x-x_{0} \mathbf{1} \leq b, \quad 0 \leq x_{0}, x .
\end{array}
$$

where $\mathbf{1} \in \mathbb{R}^{m}$ is the vector of all ones.
The $\mathrm{i}^{\text {th }}$ row of the system of inequalities $A x-x_{0} \mathbf{1} \leq b$ is

$$
a_{i 1} x_{1}+a_{i 2} x_{2}+\ldots+a_{i n} x_{n} \leq b_{i}+x_{0} .
$$

In block matrix form we write

$$
\left[\begin{array}{ll}
-\mathbf{1} & A
\end{array}\right]\binom{x_{0}}{x} \leq b
$$

The Auxiliary Problem

$$
\begin{array}{ll}
\mathcal{Q} & \underset{\text { subject to }}{\operatorname{minimize}} \\
x_{0} \\
A x-x_{0} \mathbf{1} \leq b, \quad 0 \leq x_{0}, x .
\end{array}
$$

The Auxiliary Problem

$$
\begin{array}{lll}
\mathcal{Q} & \begin{array}{l}
\text { minimize } \\
\text { subject to }
\end{array} & x_{0} \\
& A x-x_{0} \mathbf{1} \leq b, \quad 0 \leq x_{0}, x
\end{array}
$$

If the optimal value in the auxiliary problem is zero, then at the optimal solution $\left(\tilde{x}_{0}, \tilde{x}\right)$ we have $\tilde{x}_{0}=0$.

The Auxiliary Problem

If the optimal value in the auxiliary problem is zero, then at the optimal solution $\left(\tilde{x}_{0}, \tilde{x}\right)$ we have $\tilde{x}_{0}=0$.

Plugging into $A x-x_{0} \mathbf{1} \leq b$, we get $A \tilde{x} \leq b$, i.e. \tilde{x} is feasible for \mathcal{P}.

The Auxiliary Problem

$$
\begin{array}{lll}
\mathcal{Q} & \begin{array}{l}
\text { minimize } \\
\\
\text { subject to }
\end{array} & x_{0} \\
& A x-x_{0} \mathbf{1} \leq b, \quad 0 \leq x_{0}, x
\end{array}
$$

If the optimal value in the auxiliary problem is zero, then at the optimal solution $\left(\tilde{x}_{0}, \tilde{x}\right)$ we have $\tilde{x}_{0}=0$.

Plugging into $A x-x_{0} \mathbf{1} \leq b$, we get $A \tilde{x} \leq b$, i.e. \tilde{x} is feasible for \mathcal{P}.

On the other hand, if \hat{x} is feasible for \mathcal{P}, then $\left(\hat{x}_{0}, \hat{x}\right)$ with $\hat{x}_{0}=0$ is feasible for \mathcal{Q}, so $\left(\hat{x}_{0}, \hat{x}\right)$ is optimal for \mathcal{Q}.

The Auxiliary Problem

$\begin{array}{lll}\mathcal{P} \quad \underset{ }{\operatorname{maximize}} & c^{T} x \\ \text { subject tp } & A x \leq b, \\ & 0 \leq x\end{array}$
$\begin{array}{ll}\mathcal{Q} \underset{ }{\operatorname{minimize}} & x_{0} \\ \text { subject to } & A x-x_{0} \mathbf{1} \leq b, \\ & 0 \leq x_{0}, x\end{array}$

The Auxiliary Problem

- \mathcal{P} is feasible \Leftrightarrow the optimal value in \mathcal{Q} is zero.

The Auxiliary Problem

- \mathcal{P} is feasible \Leftrightarrow the optimal value in \mathcal{Q} is zero.
- \mathcal{P} is infeasible \Leftrightarrow the optimal value in \mathcal{Q} is positive.

Two Phase Simplex Algorithm

The auxiliary problem \mathcal{Q} is also called the Phase I problem since solving it is the first phase of a two phase process of solving general LPs.

Two Phase Simplex Algorithm

The auxiliary problem \mathcal{Q} is also called the Phase I problem since solving it is the first phase of a two phase process of solving general LPs.

In Phase I we solve the auxiliary problem to obtain an initial feasible tableau for \mathcal{P}, and in Phase II we solve the original LP starting with the feasible tableau provided in Phase I.

Initializing the Auxiliary Problem

$$
\begin{array}{ll}
\mathcal{Q} & \underset{\text { subject to }}{\operatorname{minimize}} \\
& x_{0} \\
\text { sub }-x_{0} \mathbf{1} \leq b, \quad 0 \leq x_{0}, x .
\end{array}
$$

Initializing the Auxiliary Problem

$$
\begin{array}{ll}
\mathcal{Q} & \underset{\text { subject to }}{\operatorname{minimize}} \\
& x_{0} \\
\text { sub }-x_{0} \mathbf{1} \leq b, \quad 0 \leq x_{0}, x .
\end{array}
$$

Problem: The initial dictionary for \mathcal{Q} is infeasible!

Initializing the Auxiliary Problem

$$
\begin{array}{lll}
\mathcal{Q} & \begin{array}{l}
\text { minimize } \\
\text { subject to }
\end{array} & x_{0} \\
A x-x_{0} \mathbf{1} \leq b, \quad 0 \leq x_{0}, x .
\end{array}
$$

Problem: The initial dictionary for \mathcal{Q} is infeasible!
Solution: Set $x_{0}=-\min \left\{b_{i}: i=0, \ldots, n\right\}$ with $b_{0}=0$, then $b+x_{0} \mathbf{1} \geq 0$ since

$$
\begin{gathered}
\min \left\{b_{i}+x_{0}: i=1, \ldots, m\right\}=\min \left\{b_{i}: i=1, \ldots, m\right\}+x_{0} \\
=\min \left\{b_{i}: i=1, \ldots, m\right\}-\min \left\{b_{i}: i=0, \ldots, m\right\} \geq 0 .
\end{gathered}
$$

Initializing the Auxiliary Problem

$$
\begin{array}{ll}
\mathcal{Q} & \underset{\text { subject to }}{\operatorname{minimize}} \\
\text { subje } & x_{0} \\
A x-x_{0} & \leq b, \quad 0 \leq x_{0}, x .
\end{array}
$$

Problem: The initial dictionary for \mathcal{Q} is infeasible!
Solution: Set $x_{0}=-\min \left\{b_{i}: i=0, \ldots, n\right\}$ with $b_{0}=0$, then $b+x_{0} \mathbf{1} \geq 0$ since

$$
\begin{gathered}
\min \left\{b_{i}+x_{0}: i=1, \ldots, m\right\}=\min \left\{b_{i}: i=1, \ldots, m\right\}+x_{0} \\
=\min \left\{b_{i}: i=1, \ldots, m\right\}-\min \left\{b_{i}: i=0, \ldots, m\right\} \geq 0
\end{gathered}
$$

Hence, $x_{0}=-\min \left\{b_{i}: i=0, \ldots, m\right\}$ and $x=0$ is feasible for \mathcal{Q}.

Initializing the Auxiliary Problem

$$
\begin{array}{ll}
\mathcal{Q} & \underset{\text { subject to }}{\operatorname{minimize}} \\
x_{0} \\
\text { subj }-x_{0} \mathbf{1} \leq b, \quad 0 \leq x_{0}, x .
\end{array}
$$

Problem: The initial dictionary for \mathcal{Q} is infeasible!
Solution: Set $x_{0}=-\min \left\{b_{i}: i=0, \ldots, n\right\}$ with $b_{0}=0$, then $b+x_{0} \mathbf{1} \geq 0$ since

$$
\begin{gathered}
\min \left\{b_{i}+x_{0}: i=1, \ldots, m\right\}=\min \left\{b_{i}: i=1, \ldots, m\right\}+x_{0} \\
=\min \left\{b_{i}: i=1, \ldots, m\right\}-\min \left\{b_{i}: i=0, \ldots, m\right\} \geq 0 .
\end{gathered}
$$

Hence, $x_{0}=-\min \left\{b_{i}: i=0, \ldots, m\right\}$ and $x=0$ is feasible for \mathcal{Q}.
It is also a BFS for \mathcal{Q}.

Initializing the Auxiliary Problem

$\mathcal{Q} \quad \begin{array}{ll}\operatorname{minimize} & x_{0} \\ \text { subject to } & A x-x_{0} 1 \leq b, \quad 0 \leq x_{0}, x .\end{array}$

Initializing the Auxiliary Problem

$\begin{array}{lll}\mathcal{Q} & \operatorname{minimize} & x_{0} \\ \text { subject to } & A x-x_{0} \mathbf{1} \leq b, \quad 0 \leq x_{0}, x .\end{array}$
The initial dictionary for \mathcal{Q} is

$$
\begin{aligned}
x_{n+i} & =b_{i}+x_{0}-\sum_{j=1}^{m} a_{i j} x_{j} \\
z & =-x_{0} .
\end{aligned}
$$

Initializing the Auxiliary Problem

\mathcal{Q} minimize x_{0}
subject to $\quad A x-x_{0} \mathbf{1} \leq b, \quad 0 \leq x_{0}, x$.
The initial dictionary for \mathcal{Q} is

$$
\begin{aligned}
x_{n+i} & =b_{i}+x_{0}-\sum_{j=1}^{m} a_{i j} x_{j} \\
z & =-x_{0} .
\end{aligned}
$$

Let i_{0} be such that

$$
b_{i_{0}}=\min \left\{b_{i}: i=0,1, \ldots, m\right)
$$

Initializing the Auxiliary Problem

\mathcal{Q} minimize x_{0}
subject to $A x-x_{0} \mathbf{1} \leq b, \quad 0 \leq x_{0}, x$.
The initial dictionary for \mathcal{Q} is

$$
\begin{aligned}
x_{n+i} & =b_{i}+x_{0}-\sum_{j=1}^{m} a_{i j} x_{j} \\
z & =-x_{0} .
\end{aligned}
$$

Let i_{0} be such that

$$
b_{i_{0}}=\min \left\{b_{i}: i=0,1, \ldots, m\right)
$$

If $i_{0}=0$,

Initializing the Auxiliary Problem

\mathcal{Q} minimize x_{0}
subject to $\quad A x-x_{0} \mathbf{1} \leq b, \quad 0 \leq x_{0}, x$.
The initial dictionary for \mathcal{Q} is

$$
\begin{aligned}
x_{n+i} & =b_{i}+x_{0}-\sum_{j=1}^{m} a_{i j} x_{j} \\
z & =-x_{0} .
\end{aligned}
$$

Let i_{0} be such that

$$
b_{i_{0}}=\min \left\{b_{i}: i=0,1, \ldots, m\right)
$$

If $i_{0}=0$, the LP has feasible origin and so the initial dictionary is optimal.

Initializing the Auxiliary Problem

If $i_{0}>0$, then pivot on this row bringing x_{0} into the basis yielding

$$
\begin{aligned}
x_{0} & =-b_{i_{0}}+x_{n+i_{0}}+\sum_{j=1}^{m} a_{i_{0 j} j} x_{j} \\
x_{n+i} & =b_{i}-b_{i_{0}}+x_{n+i_{0}}-\sum_{j=1}^{m}\left(a_{i j}-a_{i 0 j}\right) x_{j}, \quad i \neq i_{0} \\
z & =b_{i_{0}}-x_{n+i_{0}}-\sum_{j=1}^{m} a_{i_{0 j} j} x_{j} .
\end{aligned}
$$

Initializing the Auxiliary Problem

If $i_{0}>0$, then pivot on this row bringing x_{0} into the basis yielding

$$
\begin{aligned}
x_{0} & =-b_{i_{0}}+x_{n+i_{0}}+\sum_{j=1}^{m} a_{i_{0} j} x_{j} \\
x_{n+i} & =b_{i}-b_{i_{0}}+x_{n+i_{0}}-\sum_{j=1}^{m}\left(a_{i j}-a_{i_{0} j}\right) x_{j}, \quad i \neq i_{0} \\
z & =b_{i_{0}}-x_{n+i_{0}}-\sum_{j=1}^{m} a_{i_{0} j} x_{j}
\end{aligned}
$$

This dictionary is feasible for \mathcal{Q}.

Initializing the Auxiliary Problem: Example

$$
\begin{array}{lrl}
\max & x_{1} & -x_{2}+x_{3} \\
\text { s.t. } & 2 x_{1} & -x_{2}+2 x_{3} \leq \\
& 2 x_{1} & -3 x_{2}+x_{3} \leq-5 \\
& -x_{1} & +x_{2}-2 x_{3} \leq-1 \\
& 0 \leq x_{1}, x_{2}, x_{3} .
\end{array}
$$

Initializing the Auxiliary Problem: Example

$$
\begin{array}{rrrrrr}
\max & x_{1} & -x_{2} & +x_{3} \\
\text { s.t. } & 2 x_{1} & - & x_{2} & +2 x_{3} & \leq
\end{array}
$$

Example

$$
\begin{array}{ll}
\max & -x_{0} \\
\text { s.t. } & -x_{0}+2 x_{1}-x_{2}+2 x_{3} \leq 4 \\
& -x_{0}+2 x_{1}-3 x_{2}+x_{3} \leq-5 \\
& -x_{0}-x_{1}+x_{2}-2 x_{3} \leq-1 \\
& 0 \leq x_{0}, x_{1}, x_{2}, x_{3} .
\end{array}
$$

Example

$$
\max \quad-x_{0}
$$

s.t. $-x_{0}+2 x_{1}-x_{2}+2 x_{3} \leq 4$

$$
-x_{0}+2 x_{1}-3 x_{2}+x_{3} \leq-5
$$

$$
-x_{0}-x_{1}+x_{2}-2 x_{3} \leq-1
$$

$$
0 \leq x_{0}, x_{1}, x_{2}, x_{3}
$$

$$
\begin{array}{rrrrrrr|r}
-1 & 2 & -1 & 2 & 1 & 0 & 0 & 4 \\
-1 & 2 & -3 & 1 & 0 & 1 & 0 & -5 \\
-1 & -1 & 1 & -2 & 0 & 0 & 1 & -1 \\
\hline-1 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

First Pivot

	x_{0}							
	-1	2	-1	2	1	0	0	4
	-1	2	-3	1	0	1	0	-5
	z	0	1	-1	1	0	0	0
	-1	-1	1	-2	0	0	1	-1

First Pivot

-1	2	-1	2	1	0	0	4	
-1	2	-3	1	0	1	0	-5	most negative
-1	-1	1	-2	0	0	1	-1	
0	1	-1	1	0	0	0	0	
-1	0	0	0	0	0	0	0	

First Pivot

First Pivot

	-1	2	-1	2	1	0	0	4
	-1	2	-3	1	0	1	0	-5
	-1	-1	1	-2	0	0	1	-1
z	0	1	-1	1	0	0	0	0
w	-1	0	0	0	0	0	0	0
	0	0	2	1	1	-1	0	9
	1	-2	3	-1	0	-1	0	5
	0	-3	(4)	-3	0	-1	1	4
z	0	1	-1	1	0	0	0	0
w	0	-2	3	-1	0	-1	0	5

Second Pivot

	0	0	2	1	1	-1	0	9
	1	-2	3	-1	0	-1	0	5
	0	-3	(4)	-3	0	-1	1	4
z	0	1	-1	1	0	0	0	0
w	0	-2	3	-1	0	-1	0	5

Second Pivot

	0	0	2	1	1	-1	0	9
	1	-2	3	-1	0	-1	0	5
	0	-3	(4)	-3	0	-1	1	4
z	0	1	-1	1	0	0	0	0
w	0	-2	3	-1	0	-1	0	5
	0	$\frac{3}{2}$	0	$\frac{5}{2}$	1	$-\frac{1}{2}$	$-\frac{1}{2}$	7
	1	$\frac{1}{4}$	0	$\frac{5}{4}$	0	$-\frac{1}{4}$	$-\frac{3}{4}$	2
	0	$-\frac{3}{4}$	1	$-\frac{3}{4}$	0	$-\frac{1}{4}$	$\frac{1}{4}$	1
z	0	$\frac{1}{4}$	0	$\frac{1}{4}$	0	$-\frac{1}{4}$	$\frac{1}{4}$	1
w	0	$\frac{1}{4}$	0	$\frac{5}{4}$	0	$-\frac{1}{4}$	$-\frac{3}{4}$	2

Second Pivot

	0	0	2	1	1	-1	0	9
	1	-2	3	-1	0	-1	0	5
	0	-3	(4)	-3	0	-1	1	4
z	0	1	-1	1	0	0	0	0
w	0	-2	3	-1	0	-1	0	5
	0	$\frac{3}{2}$	0	$\frac{5}{2}$	1	$-\frac{1}{2}$	$-\frac{1}{2}$	7
	1	$\frac{1}{4}$	0	(5)	0	$-\frac{1}{4}$	$-\frac{3}{4}$	2
	0	$-\frac{3}{4}$	1	$-\frac{3}{4}$	0	$-\frac{1}{4}$	$\frac{1}{4}$	1
z	0	$\frac{1}{4}$	0	$\frac{1}{4}$	0	$-\frac{1}{4}$	$\frac{1}{4}$	1
w	0	$\frac{1}{4}$	0	$\frac{5}{4}$	0	$-\frac{1}{4}$	$-\frac{3}{4}$	2

Third Pivot

	0	$\frac{3}{2}$	0	5	1	$-\frac{1}{2}$	$-\frac{1}{2}$	7
	1	$\frac{1}{4}$	0	($\frac{5}{4}$)	0	$-\frac{1}{4}$	$-\frac{3}{4}$	2
	0	$-\frac{3}{4}$	1	$-\frac{3}{4}$	0	$-\frac{1}{4}$	$\frac{1}{4}$	1
z	0	$\frac{1}{4}$	0	$\frac{1}{4}$	0	$-\frac{1}{4}$	$\frac{1}{4}$	1
w	0	$\frac{1}{4}$	0	$\frac{5}{4}$	0	$-\frac{1}{4}$	$-\frac{3}{4}$	2
	-2	1	0	0	1	0	1	3
	$\frac{4}{5}$	$\frac{1}{5}$	0	1	0	$-\frac{1}{5}$	$-\frac{3}{5}$	$\frac{8}{5}$
	$\frac{3}{5}$	$-\frac{3}{5}$	1	0	0	$-\frac{2}{5}$	$-\frac{1}{5}$	$\frac{11}{5}$
z	$-\frac{1}{5}$	$\frac{4}{20}$	0	0	0	$-\frac{4}{20}$	$\frac{8}{20}$	$\frac{3}{5}$
w	-1	0	0	0	0	0	0	0

Third Pivot

	0	$\frac{3}{2}$	0	$\frac{5}{2}$	1	$-\frac{1}{2}$	$-\frac{1}{2}$	7	
	1	$\frac{1}{4}$	0	($\frac{5}{4}$)	0	$-\frac{1}{4}$	$-\frac{3}{4}$	2	
	0	$-\frac{3}{4}$	1	$-\frac{3}{4}$	0	$-\frac{1}{4}$	$\frac{1}{4}$	1	
z	0	$\frac{1}{4}$	0	$\frac{1}{4}$	0	$-\frac{1}{4}$	$\frac{1}{4}$	1	
w	0	$\frac{1}{4}$	0	$\frac{5}{4}$	0	$-\frac{1}{4}$	$-\frac{3}{4}$	2	
	-2	1	0	0	1	0	1	3	Auxiliary
	$\frac{4}{5}$	$\frac{1}{5}$	0	1	0	$-\frac{1}{5}$	$-\frac{3}{5}$	$\frac{8}{5}$	problem
	$\frac{3}{5}$	$-\frac{3}{5}$	1	0	0	$-\frac{2}{5}$	$-\frac{1}{5}$	$\frac{11}{5}$	solved.
z	$-\frac{1}{5}$	$\frac{4}{20}$	0	0	0	$-\frac{4}{20}$	$\frac{8}{20}$	$\frac{3}{5}$	
w	-1	0	0	0	0	0	0	0	

Auxiliary Problem Solution

Extract Initial Feasible Tableau

Third Pivot

	-2	1	0	0	1	0	1	3	Extract
	$\frac{4}{5}$	$\frac{1}{5}$	0	1	0	$-\frac{1}{5}$	$-\frac{3}{5}$	$\frac{8}{5}$	initial.
	$\frac{3}{5}$	$-\frac{3}{5}$	1	0	0	$-\frac{2}{5}$	$-\frac{1}{5}$	$\frac{11}{5}$	feasible
z	$-\frac{1}{5}$	$\frac{4}{20}$	0	0	0	$-\frac{4}{20}$	$\frac{8}{20}$	$\frac{3}{5}$	tableau
w	-1	0	0	0	0	0	0	0	
	-2	1	0	0	1	0	1	3	
	$\frac{4}{5}$	$\frac{1}{5}$	0	1	0	$-\frac{1}{5}$	$-\frac{3}{5}$	$\frac{8}{5}$	
	$\frac{3}{5}$	$-\frac{3}{5}$	1	0	0	$-\frac{2}{5}$	$-\frac{1}{5}$	$\frac{11}{5}$	
z	$-\frac{1}{5}$	$\frac{4}{20}$	0	0	0	$-\frac{4}{20}$	$\frac{8}{20}$	$\frac{3}{5}$	
w	-1	0	0	0	0	0	0	0	

Phase II

1	0	0	1	0	(1)	3
$\frac{1}{5}$	0	1	0	$-\frac{1}{5}$	$-\frac{3}{5}$	$\frac{8}{5}$
$-\frac{3}{5}$	1	0	0	$-\frac{2}{5}$	$-\frac{1}{5}$	$\frac{11}{5}$
$\frac{1}{5}$	0	0	0	$-\frac{1}{5}$	$\frac{2}{5}$	$\frac{3}{5}$
1	0	0	1	0	1	3
$\frac{4}{5}$	0	1	$\frac{3}{5}$	$-\frac{1}{5}$	0	$\frac{17}{5}$
$-\frac{2}{5}$	1	0	$\frac{1}{5}$	0	0	$\frac{14}{5}$
$-\frac{1}{5}$	0	0	$-\frac{2}{5}$	$-\frac{1}{5}$	0	$-\frac{3}{5}$

Phase II: Solution

1	0	0	1	0	1	3
$\frac{4}{5}$	0	1	$\frac{3}{5}$	$-\frac{1}{5}$	0	$\frac{17}{5}$
$-\frac{2}{5}$	1	0	$\frac{1}{5}$	0	0	$\frac{14}{5}$
$-\frac{1}{5}$	0	0	$-\frac{2}{5}$	$-\frac{1}{5}$	0	$-\frac{3}{5}$

Phase II: Solution

1	0	0	1	0	1	3
$\frac{4}{5}$	0	1	$\frac{3}{5}$	$-\frac{1}{5}$	0	$\frac{17}{5}$
$-\frac{2}{5}$	1	0	$\frac{1}{5}$	0	0	$\frac{14}{5}$
$-\frac{1}{5}$	0	0	$-\frac{2}{5}$	$-\frac{1}{5}$	0	$-\frac{3}{5}$

Optimal primal and dual solutions are

Phase II: Solution

1	0	0	1	0	1	3
$\frac{4}{5}$	0	1	$\frac{3}{5}$	$-\frac{1}{5}$	0	$\frac{17}{5}$
$-\frac{2}{5}$	1	0	$\frac{1}{5}$	0	0	$\frac{14}{5}$
$-\frac{1}{5}$	0	0	$-\frac{2}{5}$	$-\frac{1}{5}$	0	$-\frac{3}{5}$

Optimal primal and dual solutions are

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
0 \\
2.8 \\
3.4
\end{array}\right)
$$

Phase II: Solution

1	0	0	1	0	1	3
$\frac{4}{5}$	0	1	$\frac{3}{5}$	$-\frac{1}{5}$	0	$\frac{17}{5}$
$-\frac{2}{5}$	1	0	$\frac{1}{5}$	0	0	$\frac{14}{5}$
$-\frac{1}{5}$	0	0	$-\frac{2}{5}$	$-\frac{1}{5}$	0	$-\frac{3}{5}$

Optimal primal and dual solutions are

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
0 \\
2.8 \\
3.4
\end{array}\right) \quad\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\left(\begin{array}{c}
0.4 \\
0.2 \\
0
\end{array}\right)
$$

Phase II: Solution

1	0	0	1	0	1	3
$\frac{4}{5}$	0	1	$\frac{3}{5}$	$-\frac{1}{5}$	0	$\frac{17}{5}$
$-\frac{2}{5}$	1	0	$\frac{1}{5}$	0	0	$\frac{14}{5}$
$-\frac{1}{5}$	0	0	$-\frac{2}{5}$	$-\frac{1}{5}$	0	$-\frac{3}{5}$

Optimal primal and dual solutions are

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
0 \\
2.8 \\
3.4
\end{array}\right) \quad\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\left(\begin{array}{c}
0.4 \\
0.2 \\
0
\end{array}\right)
$$

with optimal value $z=.6$.

Steps for Phase I of the Two Phase Simplex Algorithm

We assume $b_{i_{0}}=\min \left\{b_{i}: i=1, \ldots, m\right\}<0$.
(1) Form the standard initial tableau: $\left[\begin{array}{ccc|c}0 & A & I & b \\ \hline-1 & c & 0 & 0\end{array}\right]$.
(2) Border the initial tableau:

$$
\left[\begin{array}{cccc|c}
-\mathbf{1} & 0 & A & l & b \\
\hline 0 & -1 & c & 0 & 0 \\
-1 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

(3) In the first pivot, the pivot row is the i_{0} row and the pivot column is the first column (the x_{0} column).
(- Apply simplex algorithm on the w row until optimality.
(- If optimal value is positive, stop the original LP is not feasible.
(0) If the optimal value is zero, extract feasible tableau for the original problem and pivot to optimality.

Example: Two Phase Simplex Algorithm

Use the two phase simplex method to solve the following LP:

maximize	$3 x_{1}$	+	x_{2}		
subject to	x_{1}	-	x_{2}	\leq	-1
	$-x_{1}$	-	x_{2}	\leq	-3
	$2 x_{1}$	+	x_{2}	\leq	4
		0	\leq	x_{1},	x_{2}

Hint: A complete solution is possible in 3 pivots.

