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Initialization

We have shown that if we are given a feasible dictionary (tableau) for an LP, then
the simplex algorithm will terminate finitely if it is employed with a anti-cycling
rule.

The anti-cycling rule need only be applied on degenerate pivots, since cycling can
only occur in the presence of degeneracy.

The simplex algorithm will terminate in one of two ways:

The LP is determined to be unbounded.

An optimal BFS is found.

We now address the question of how to determine an initial feasible dictionary
(tableau).
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The Auxiliary Problem

P maximize cT x
subject tp Ax ≤ b, 0 ≤ x .

Consider an auxiliary LP of the form

Q minimize x0
subject to Ax − x01 ≤ b, 0 ≤ x0, x .

where 1 ∈ Rm is the vector of all ones.
The ith row of the system of inequalities Ax − x01 ≤ b is

ai1x1 + ai2x2 + . . . + ainxn ≤ bi + x0 .

In block matrix form we write[
−1 A

]( x0
x

)
≤ b .
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The Auxiliary Problem

Q minimize x0
subject to Ax − x01 ≤ b, 0 ≤ x0, x .

If the optimal value in the auxiliary problem is zero, then at the optimal solution
(x̃0, x̃) we have x̃0 = 0.

Plugging into Ax − x01 ≤ b, we get Ax̃ ≤ b, i.e. x̃ is feasible for P.

On the other hand, if x̂ is feasible for P, then (x̂0, x̂) with x̂0 = 0 is feasible for Q,
so (x̂0, x̂) is optimal for Q.
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The Auxiliary Problem

P maximize cT x
subject tp Ax ≤ b,

0 ≤ x

Q minimize x0
subject to Ax − x01 ≤ b,

0 ≤ x0, x

P is feasible ⇔ the optimal value in Q is zero.

P is infeasible ⇔ the optimal value in Q is positive.
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Two Phase Simplex Algorithm

The auxiliary problem Q is also called the Phase I problem since solving it is the
first phase of a two phase process of solving general LPs.

In Phase I we solve the auxiliary problem to obtain an initial feasible tableau for
P, and in Phase II we solve the original LP starting with the feasible tableau
provided in Phase I.
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Initializing the Auxiliary Problem

Q minimize x0
subject to Ax − x01 ≤ b, 0 ≤ x0, x .

Problem: The initial dictionary for Q is infeasible!

Solution: Set x0 = −min{bi : i = 0, . . . , n} with b0 = 0,
then b + x01 ≥ 0 since

min{bi + x0 : i = 1, . . . ,m} = min{bi : i = 1, . . . ,m}+ x0

= min{bi : i = 1, . . . ,m} −min{bi : i = 0, . . . ,m} ≥ 0.

Hence, x0 = −min{bi : i = 0, . . . ,m} and x = 0 is feasible for Q.
It is also a BFS for Q.
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Initializing the Auxiliary Problem

Q minimize x0
subject to Ax − x01 ≤ b, 0 ≤ x0, x .

The initial dictionary for Q is

xn+i = bi + x0 −
m∑
j=1

aijxj

z = −x0.

Let i0 be such that
bi0 = min{bi : i = 0, 1, . . . ,m).

If i0 = 0, the LP has feasible origin and so the initial dictionary is optimal.

Lecture 8: Initialization and the Two Phase Simplex Algorithm (Math Dept, University of Washington)Math 407A: Linear Optimization 9 / 27



Initializing the Auxiliary Problem

Q minimize x0
subject to Ax − x01 ≤ b, 0 ≤ x0, x .

The initial dictionary for Q is

xn+i = bi + x0 −
m∑
j=1

aijxj

z = −x0.

Let i0 be such that
bi0 = min{bi : i = 0, 1, . . . ,m).

If i0 = 0, the LP has feasible origin and so the initial dictionary is optimal.

Lecture 8: Initialization and the Two Phase Simplex Algorithm (Math Dept, University of Washington)Math 407A: Linear Optimization 9 / 27



Initializing the Auxiliary Problem

Q minimize x0
subject to Ax − x01 ≤ b, 0 ≤ x0, x .

The initial dictionary for Q is

xn+i = bi + x0 −
m∑
j=1

aijxj

z = −x0.

Let i0 be such that
bi0 = min{bi : i = 0, 1, . . . ,m).

If i0 = 0, the LP has feasible origin and so the initial dictionary is optimal.

Lecture 8: Initialization and the Two Phase Simplex Algorithm (Math Dept, University of Washington)Math 407A: Linear Optimization 9 / 27



Initializing the Auxiliary Problem

Q minimize x0
subject to Ax − x01 ≤ b, 0 ≤ x0, x .

The initial dictionary for Q is

xn+i = bi + x0 −
m∑
j=1

aijxj

z = −x0.

Let i0 be such that
bi0 = min{bi : i = 0, 1, . . . ,m).

If i0 = 0,

the LP has feasible origin and so the initial dictionary is optimal.

Lecture 8: Initialization and the Two Phase Simplex Algorithm (Math Dept, University of Washington)Math 407A: Linear Optimization 9 / 27



Initializing the Auxiliary Problem

Q minimize x0
subject to Ax − x01 ≤ b, 0 ≤ x0, x .

The initial dictionary for Q is

xn+i = bi + x0 −
m∑
j=1

aijxj

z = −x0.

Let i0 be such that
bi0 = min{bi : i = 0, 1, . . . ,m).

If i0 = 0, the LP has feasible origin and so the initial dictionary is optimal.

Lecture 8: Initialization and the Two Phase Simplex Algorithm (Math Dept, University of Washington)Math 407A: Linear Optimization 9 / 27



Initializing the Auxiliary Problem

If i0 > 0, then pivot on this row bringing x0 into the basis yielding

x0 = −bi0 + xn+i0 +
m∑
j=1

ai0jxj

xn+i = bi − bi0 + xn+i0 −
m∑
j=1

(aij − ai0j)xj , i 6= i0

z = bi0 − xn+i0 −
m∑
j=1

ai0jxj .

This dictionary is feasible for Q.
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Initializing the Auxiliary Problem: Example

max x1 − x2 + x3

s.t. 2x1 − x2 + 2x3 ≤ 4

2x1 − 3x2 + x3 ≤ −5

−x1 + x2 − 2x3 ≤ −1

0 ≤ x1, x2, x3 .

max −x0
s.t. −x0 + 2x1 − x2 + 2x3 ≤ 4

−x0 + 2x1 − 3x2 + x3 ≤ −5

−x0 − x1 + x2 − 2x3 ≤ −1

0 ≤ x0, x1, x2, x3 .
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First Pivot

x0

−1 2 −1 2 1 0 0 4

−1 2 −3 1 0 1 0 -5

−1 −1 1 −2 0 0 1 −1

z 0 1 −1 1 0 0 0 0

w −1 0 0 0 0 0 0 0

0 0 2 1 1 −1 0 9

1 −2 3 −1 0 −1 0 5

0 −3 4© −3 0 −1 1 4

z 0 1 −1 1 0 0 0 0

w 0 −2 3 −1 0 −1 0 5
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Second Pivot
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Auxiliary Problem Solution
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Third Pivot
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Phase II
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Phase II: Solution
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with optimal value z = .6.
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Steps for Phase I of the Two Phase Simplex Algorithm

We assume bi0 = min{bi : i = 1, . . . ,m} < 0.

1 Form the standard initial tableau:

[
0 A I b
−1 c 0 0

]
.

2 Border the initial tableau:

 −1 0 A I b
0 −1 c 0 0
−1 0 0 0 0

.

3 In the first pivot, the pivot row is the i0 row and the pivot column is the first
column (the x0 column).

4 Apply simplex algorithm on the w row until optimality.

5 If optimal value is positive, stop the original LP is not feasible.

6 If the optimal value is zero, extract feasible tableau for the original problem
and pivot to optimality.
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Example: Two Phase Simplex Algorithm

Use the two phase simplex method to solve the following LP:

maximize 3x1 + x2
subject to x1 − x2 ≤ −1

−x1 − x2 ≤ −3
2x1 + x2 ≤ 4

0 ≤ x1, x2

Hint: A complete solution is possible in 3 pivots.
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