
MATH 408 FINAL EXAM GUIDE

Due to the current COVID-19 pandemic, the final exam will be a take home final. In addition, your final
course grade will be computed in a manner that deviates from the description given in the course syllabus.
The final exam is now worth 20% of your grade and the midterm exam is worth 45% of your grade:

quiz 350 + midterm 450 + final 200 = 1000 points.

No person-to-person contact is permitted for either retrieving or submitting the final exam.

I will email all students a PDF of the final exam at 10am on Sunday morning March 15.
A PDF, scan, or photocopy of your worked exam is to be emailed back to me by 10am
on Monday March 16.

The exam will be composed of 3 sections:
I Quadratic Optimization and Least Squares
II Optimality Conditions
III Convex Optimization
The number of questions and points for each section varies with an emphasis on Section III Convex Opti-
mization since this is the material we studied most intensively since the midterm exam. A more detailed
description of the material you will be tested on in each area is given below. This will be followed by sample
questions for each area. The number of sample questions greatly exceeds the number of questions on the
exam.

I Quadratic Optimization and Least Squares

The questions for this section are of three types: theory, linear algebra and computation. Theory
questions refer to the basic theorems and properties of quadratic optimization and linear least squares
problems. In particular, you should know how quadratic optimization and linear least squares problems
are related, when they differ, when they are the same, and when solutions exist, what is the structure
of the solutions sets, and when are solutions unique. The linear algebra questions refer to the linear
algebraic properties of the objective functions and the matrix factorizations associated with computing
solutions. The computational questions require you to compute the solution set to concrete problems
of this type which includes quadratic optimization problems with affine constraints.

II Optimality Conditions

These question relate to first- and second-order optimality conditions for both constrained and uncon-
strained problems with particular emphasis on NLP problems in the constrained case. You will need to
know what a tangent cone is and be able to compute one (under the assumption of regularity). You will
not need to work with constraints qualifications other than to know that they imply regularity. You will
be asked to to answer questions on the theory (statements of theorems), testing optimality, computing
solutions, and computing KKT points.

III Convex Optimization

For these questions you will need to know the definitions of convex functions and sets and be able to
show that a given function or set is convex. You will need to know the optimality conditions for convex
optimization problems especially for convex NLP. You will need to be able to compute KKT points.
You will also need to know the rudiments of Lagrangian duality and how to compute the Lagrangian
dual for simple problems.



Sample Questions
I Quadratic Optimization and Least Squares

These questions were taken from the midterm guide whose solutions were provided.)

II Optimality Conditions

1. State the first- and second-order conditions for optimality for the following three problems:

(a) Linear least squares: minx∈Rn
1
2 ‖Ax− b‖

2
2, where A ∈ Rm×n and b ∈ Rm.

Solution

First-order necessary and sufficient condition: x̄ is a global (local) solution if and only if AT (Ax̄−
b) = 0. Moreover, such an x̄ always exists.

(b) Quadratic Optimization: minx∈Rn
1
2x

TQx+ gTx, where Q ∈ Rn×n is symmetric and g ∈ Rn.

Solution

First-order: If x̄ is a local solution, then Qx̄+ g = 0.

Second-order: (Necessary) If x̄ is a local solution, then Qx̄+ g = 0 and Q ∈ Sn+.

(Sufficient) If Qx̄+ g = 0 and Q ∈ Sn++, then there is α > 0, such that f(x) ≥ f(x̄) + α ‖x− x̄‖22,
where f(x) = 1

2x
TQx+ gTx.

(c) Quadratic Optimization with Affine Constraints: minx∈Rn

{
1
2x

TQx+ gTx |Ax = b
}

, where Q ∈
Rn×n is symmetric, A ∈ Rm×n, g ∈ Rn, and b ∈ Rm.

Solution

First-order: If x̄ is a local solution, then there is a vector ȳ ∈ Rm such that (x̄, ȳ) solve the linear
system [

Q AT

A 0

](
x
y

)
=

(
−g
b

)
.

Second-order: (Necessary) Q is psd on Null (A), i.e., zTQz ≥ 0 for all z ∈ Null (A).

(Sufficient) Q is pd on Null (A), i.e., zTQz > 0 for all z ∈ Null (A) \ {0}.

2. Consider the nonlinear programming (NLP) problem

min
x∈Ω

f(x), (♠)

where
Ω := {x : ci(x) ≤ 0, i = 1, . . . , s, ci(x) = 0, i = s+ 1, . . . ,m}. (♣)

(a) State the first-order optimally conditions for NLP.

Solution

If x̄ is a local solution to NLP, then there exists ȳ ∈ Rm such that
(i) x̄ ∈ Ω (primal feasibility)
(ii) 0 ≤ ȳi, i = 1, 2, . . . , s, (dual feasibility)
(iii) ȳici(x̄) = 0, i = 1, 2, . . . , s, (complementarity)
(iv) 0 = ∇xL(x̄, ȳ), (stationarity of the Lagrangian)
where L(x, y) := f(x) + 〈y, c(x)〉 is the Lagrangian for NLP.

(b) What does it mean for (x̄, ȳ) ∈ R,×Rm to be KKT pair for NLP?

Solution: (x̄, ȳ) satisfy (i)-(iv) above.



3. A critical point of a function f : Rn → R is any point x at which ∇f(x) = 0. Compute all of the critical
points of the following functions. Classify the critical points as local/global minima/maxima/saddle
points. If no critical point exists, explain why.

(a) f(x) = x2
1 − 4x1 + 2x2

2 + 7

Solution: This function is fully separable, f(x) = f1(x1) + f2(x2), where f1(x1) = x2
1 − 4x1 and

f2(x2) = 2x2
2 + 7. Hence we need only optimize f1 and f2 separately.

f ′1(x1) = 2x1 − 4, f”1(x1) = 2, f ′2(x2) = 4x2, f”2(x2) = 4 .

Hence the unique critical point of f1 is x1 = 2 which is a global minimizer since f1 is a parabola
with positive curvature. Similarly, the unique global minimizer of f2 is x2 = 0. Therefore, the
unique global minimizer of f is (x1, x2) = (2, 1), and f has no other critical points.

(b) f(x) = exp(−‖x‖2)

Solution: Write f as

f(x) = e−x
2
1e−x

2
2 · · · e−x2n =

n∏
j=1

e−x
2
j ,

then it is easily seen that
∂f

∂xk
(x) = −2xkf(x), j = 1, 2, . . . , n.

Hence
∇f(x) = −2f(x)x and ∇2f(x) = 2f(x)

[
2xxT − I

]
.

An expression of the form xyT (x, y ∈ Rn), as appears above, is called the outer product of x and
y. It is an n× n matrix whose ijth entry is xiyj . In particular, we have xT y = trace(xyT ).

Clearly, x = 0 is the unique critical point of f and this critical point is a local maximum of f
since the Hessian of f at the origin is −2I which is negative definite. Indeed, the origin is a global
maximizer since f(0) = 1 which is the largest possible value of eξ for ξ < 0.

(c) f(x) = x2
1 − 2x1x2 + 1

3x
3
2 − 8x2

Solution:

∇f(x) =

[
2(x1 − x2)
x2

2 − 2x1 − 8

]
and ∇2f(x) =

[
2 −2
−2 2x2

]
.

Compute the critical points by setting ∇f(x) = 0. Setting ∂f(x)/∂x1 = 0 gives x1 = x2. Plug this
into the equation ∂f(x)/∂x2 = 0 to get 0 = x2

2 − 2x2 − 8 = (x2 − 4)(x2 + 2). This gives 2 critical
points (

x1

x2

)
=

(
4
4

)
,

(
−2
−2

)
,

with

∇2f(4, 4) =

[
2 −2
−2 8

]
and ∇2f(−2,−2) =

[
2 −2
−2 −4

]
.

It is easily shown that ∇2f(4, 4) is positive definite and that ∇2f(−2,−2) has one positive and one
negative eigenvalue. Hence (4, 4) is a local minimizer and (−2,−2) is a saddle point. There are no
global maximizers or minimizers since f(0, x2) = 1

3x
3
2 − 8x2 which goes to +∞ as x2 ↑ +∞ and

goes to −∞ as x2 ↓ −∞.



(d) f(x) = (2x1 − x2)2 + (x2 − x3)2 + (x3 − 1)2

Solution: Since f is a sum of squares, the smallest value f can take is zero. Hence any point x̄
at which f(x̄) = 0 is necessarily a global minimizer. To make f(x) = 0 each of the three squared
terms in f must be zero. From the third term we get x3 = 1. The second term gives x2 = x3 = 1,
and the first term gives 2x1 = x2 = 1 so x2 = 1/2. Consequently, (x1, x2, x3) = (1/2, 1, 1) is the
unique global minimizer of f .

Note that the function f is a convex function since we can write it in the form of a linear least
squares objective:

f(x) = ‖Ax− b‖22 , where b =

 0
0
1

 and A =

 2 −1 0
0 1 −1
0 0 1

 .
Hence (x1, x2, x3) = (1/2, 1, 1) is also the unique critical point.

(e) f(x) = x4
1 + 16x1x2 + x4

2

Solution:

∇f(x) =

(
4x3

1 + 16x2

4x3
2 + 16x1

)
∇2f(x) =

[
12x2

1 16
16 12x2

2

]
Hence x is a critical point if

0 = 4x3
1 + 16x2

0 = 4x3
2 + 16x1 .

Multiply the first equation by x1 and the second by x2 and subtract to get the equation

0 = 4[x4
1 − x4

2] = 4(x2
1 + x2

2)(x1 + x2)(x1 − x2).

This implies that either x1 = x2 or x1 = −x2. Plug this information into the first equation above
to get

0 = 4x3
1 ± 16x1 = 4x1(x2

1 ± 4).

Therefore, the only possible critical points are(
x1

x2

)
=

(
0
0

)
,

(
2
2

)
,

(
2
−2

)
,

(
−2
2

)
,

(
−2
−2

)
.

Since the gradient must be zero, x1 and x2 must have opposite sign. Plugging these vectors into
the gradient, we see that only(

x1

x2

)
=

(
0
0

)
,

(
2
−2

)
,

(
−2
2

)
,

are critical points. Plugging these into the Hessian, we see that x = 0 is a saddle point (the
eigenvalues of∇2f(0) are ±16), and the other two critical points are local minimizers. Furthermore,
f is coercive since

f(x) = x4
1 + 16x1x2 + x4

2

≥ x4
1 − 16|x1| |x2|+ x4

2

≥

{
x4

1 − 16|x1|2 + x4
2 if |x1| ≥ |x2|,

x4
1 − 16|x2|2 + x4

2 if |x2| ≥ |x1|,

f is coercive (i.e. the right hand side of this inequality necessarily diverges to +∞ as ‖x‖ goes to
infinity). Hence the critical points (x1, x2) = (2,−2), (−2, 2) are global minimizers.



(f) f(x) = (1− x1)2 +
∑n−1

j=1 10j(xj − x2
j+1)2 (The Rosenbrock function)

Solution: Again, f is a sum of squares so any point at which the function takes the value zero is
necessarily a global minimizer. The first term indicates that we should take x1 = 1. The second
term requires x2 = ±x1 = ±1. The third term has x2 = x2

3, so x2 ≥ 0 implying that x2 = 1.
Moreover, x3 = ±1. Continuing in this way we get 1 = x1 = x2 = · · · = xn−1 and xn = ±1,
so that there are two global minimizers. There is only one other critical point for this function:
x1 = 1/11, 0 = x2 = x2, . . . , xn. One can show that it is a saddle point.

(g) f(x1, x2) := x2
1 + 2x2x2 + x2

2 − 8x1 − 8x2

Solution: f(x1, x2) := (x1 + x2)2 − 8(x1 + x2) = z2 − 8z, where z := x1 + x2. As a func-
tion of z, f̂(z) := z2 − 8z has f̂ ′(z) = 2z − 8 and has a global minimizer at z = 4. Hence,
{(x1, x2) |x1 + x2 = 4} is the set of critical points for f and all critical points are global minimiz-
ers.

4. Compute the KKT points for the following problems.

Solution: Since all of these problems are convex, any KKT point is a global solution. In general, the
solution procedure has the following steps:

Step 1 Consider the geometry of the problem and observe any obvious solution. In particular, if
the global unconstrained optimal solution for the objective lies in the feasible region, then it is
necessarily the solution to the constrained problem with all multipliers equal to zero.

Step 2 Write the equation for the Lagrangian L(x, y). Two helpful tricks.

(a) I often separate the constraints into two groups, equalities and inequalities, writing a dual
variable for each group, say y = (u, v) where the u’s are for the inequalities (u ≥ 0) and the
v’s are for the equalities (free).

(b) Sometimes it is very useful to introduce a new primal variable for a complicated structure in
the objective and then add the definition of the new variable as an equality constraint. For
example, if the objective contains a composite term of the form h(Ax − b), then one almost
always defines a new variable w = Ax − b adding this equation to the constraints, and then
replace h(Ax − b) by h(w). Always use this trick for terms of the form 1

2 ‖Ax− b‖
2
2 or, more

generally, for any term of the form ‖Ax− b‖ regardless of the norm involved.

Step 3 Write 0 = ∇xL(x, y). That is, take the derivative with respect to all of the primal variables.
The goal here is to locate the minima of L with respect to the primal variables.

Step 4 Use the full set of KKT conditions to compute KKT points and the multipliers. In this process,
one needs to either make an educated guess as to the activities at the solution (which inequality
constraints are active), or to run through all possible cases of actives and non-actives. This step is
the hard step and requires multiple tricks and years of experience. I will only give “easy” problems.
But you will still struggle with them as they are still very hard for the beginner.

(a) min
{

1
2 ‖x‖

2
2

∣∣aTx ≤ α} where a ∈ Rn \ {0} and α ∈ R.

Solution: There are two cases to consider; α ≥ 0 and α < 0. For α ≥ 0, 0 ∈
{
x
∣∣aTx ≤ α} so

x̄ = 0 is the solution and ȳ = 0 is an associated KKT multiplier. For α < 0, the Lagrangian is
L(x, y) = 1

2 ‖x‖
2
2 + y(aTx − α) and at the solution x̄ the constraint aTx ≤ α is active. Therefore

the KKT pair solves the system
0 = x+ ya = ∇xL(x, y)

α = aTx.



Hence x = −ya. Plugging this into the second equation gives α = −y ‖a‖22 or y = −α/ ‖a‖22 > 0.
Therefore the KKT pair is (x̄, ȳ) = ( α

‖a‖22
a, − α

‖a‖22
).

(b) min
{

1
2 ‖x‖2

∣∣aTx ≤ α} where a ∈ Rn \ {0} and α ∈ R.

Solution: The solution and the two cases are the same as in the previous problem only the
multiplier changes in the second case. For α ≥ 0, the solution is x̄ = 0 since 0 ∈

{
x
∣∣aTx ≤ α}.

In this case the multiplier is zero. Next assume that α < 0 and the Lagrangian is L(x, y) =
1
2 ‖x‖2 + y(aTx − α) with ‖x‖2 differentiable at the solution since it cannot be zero. Again the
constraint is active at the solution. Hence the KKT conditions are

0 =
1

2

x

‖x‖2
+ ya = ∇L(x, y)

α = aTx.

Consequently, x = µa for some µ ≤ 0 so that α = µ ‖a‖22, or µ = α/ ‖a‖22 and x̄ = α
‖a‖22

a < 0.

Therefore,
−a
‖a‖2

=
x̄

‖x̄‖2
= −2ȳa,

so ȳ = 1/(2 ‖a‖2).

(c) min
{

1
2 ‖x‖

2
2

∣∣aTx = α, bTx ≤ β
}

where a, b ∈ Rn \ {0} with a and b linearly independent and

α, β ∈ R.

Solution: The Lagrangian is L(x, λ, µ) = 1
2 ‖x‖

2
2+λ(aTx−α)+µ(bTx−β), and the KKT conditions

are
α = aTx

β ≥ bTx
0 ≤ µ
0 = µ(bTx− β)

0 = x+ λa+ µb.

We consider the cases bTx = β and bTx < β separately, computing KKT points for each case. First
suppose bTx = β at the solution. This yields the equations

0 = x+ λa+ µb

α = aTx

β = bTx.

By multiplying the first equation through by a and then b we get the two equations 0 = α+λ ‖a‖22+
µaT b and 0 = β + λaT b+ µ ‖b‖22. Since a and b are linearly independent ‖a‖2 ‖b‖2 > |aT b| so that
this system has the unique solution given by(

λ̂
µ̂

)
=

1

‖a‖22 ‖b‖
2
2 − 〈a, b〉

2

(
β 〈a, b〉 − α ‖b‖22
α 〈a, b〉 − β ‖a‖22

)
. (1)

For this solution to yield multipliers for the problem, we must have 0 ≤ µ̂ = α 〈a, b〉 − β ‖a‖22. If
this is not the case, the inequality β ≥ bTx must be inactive (or perhaps active, but not “binding”,
i.e., “binding= active with positive multiplier”, “non-binding = multiplier is zero”), in which case



µ = 0. In this case λ = −α/ ‖a‖22 and x̄ = α
‖a‖22

a as was seen in part (a) above. Putting this all

together, we have

x̄λ̄
µ̄

 =




α
‖a‖22

a

−α
‖a‖22
0

 , if α 〈a,b〉‖a‖22
< β,

−(λ̂a+ µ̂b)

λ̂

µ̂

 , otherwise,

(2)

where λ̂ and µ̂ are given in (1). Notice that in the case α 〈a,b〉‖a‖22
< β we have bT x̄ = α

‖a‖22
bTa < β as

required.

(d) min
{

1
2 ‖x‖

2
2 |〈a, x〉 ≤ α, 〈b, x〉 ≤ β

}
where a, b ∈ Rn \ {0} with a and b linearly independent and

α, β ∈ R.

Solution: The solution to this problem is embedded in the solutions to the previous problems.
First observe that if both α ≥ 0 and β ≥ 0, then x̄ = 0 solves the problem and the mulitpliers
both take the value zero. So we now assume that at least one of α and β is negative. We now run
through the various cases. Let x̄ denote the solution, and let λ̄ ≥ 0 and µ̄ ≥ 0 be the multipliers
for the constraints 〈a, x〉 ≤ α and 〈b, x〉 ≤ β, respectively.

Case 1: 〈a, x̄〉 < α and 〈b, x̄〉 < β. Complementarity implies that both multipliers must be zero.
In this case the solution must be x̄ = 0 which can only occur if both 0 ≤ α and 0 ≤ β, and so
x̄ = 0, λ̄ = 0, and µ̄ = 0.

Case 2: 〈a, x̄〉 = α and 〈b, x̄〉 = β. If both constraints are active, then the multipliers are given
by (1) above and x̄ is given by (2). Since both multipliers are non-negative, we have at least
one of α and β is negative and

β 〈a, b〉 ≥ α ‖b‖22 (3)

α 〈a, b〉 ≥ β ‖a‖22 (4)

λ̄ = (β 〈a, b〉 − α ‖b‖22)/(‖a‖22 ‖b‖
2
2 − 〈a, b〉

2) (5)

µ̄ = (α 〈a, b〉 − β ‖a‖22)/(‖a‖22 ‖b‖
2
2 − 〈a, b〉

2) (6)

x̄ = −(λ̄a+ µ̄b). (7)

To use this solution, first check that (3) and (4) are satisfied. If they are, then the solution is
given by (5)-(7).

Case 3: 〈a, x̄〉 = α and 〈b, x̄〉 < β. By the previous problem, at least one of α and β is negative
and

β ‖a‖22 > α 〈a, b〉 (8)

α ‖b‖22 ≤ β 〈a, b〉 (9)

λ̄ = −α/ ‖a‖22 (in particular, α < 0) (10)

µ̄ = 0 (11)

x̄ = (α/ ‖a‖22)a. (12)

To use this solution, first check that (8) and (9) are satisfied. If they are, then the solution is
given by (10)-(12).



Case 4: 〈a, x̄〉 < α and 〈b, x̄〉 = β. Here we just interchange the roles of the inequalities in the
previous case to obtain the following: at least one of α and β is negative and

β ‖a‖22 ≤ α 〈a, b〉
α ‖b‖22 > β 〈a, b〉

λ̄ = 0

µ̄ = −β/ ‖b‖22 (in particular, β < 0)

x̄ = (β/ ‖b‖22)b.

(e) min
{

1
2x

THx
∣∣eTx = 1 and rTx = µ

}
where H ∈ Sn++, e := (1, 1, . . . , 1)T ∈ Rn is the vector of

all ones, e and r ∈ Rn are linearly independent, and µ ∈ R.

Solution: Since H is positive definite and, by hypotheses, A =

[
eT

rT

]
has full rank, there is a unique

solution-multiplier pair

(
x̄
ȳ

)
obtained as the solution to the system

[
H AT

A 0

](
x
y

)
=

(
−g
b

)
, or

equivalently,

Hx+ ey1 + ry2 = 0

eTx = 1

rTx = µ.

Consequently, x = −H−1(ey1 + ry2), and so

1 = eTx = −eTH−1(ey1 + ry2) = −eTH−1e y1 − eTH−1r y2

µ = rTx = −rTH−1(ey1 + ry2) = −rTH−1e y1 − rTH−1r y2.

That is, (
1
µ

)
= −

[
eTH−1e eTH−1r
eTH−1r rTH−1r

](
y1

y2

)
.

Therefore, (
y1

y2

)
= −

[
eTH−1e eTH−1r
eTH−1r rTH−1r

]−1(
1
µ

)
,

where [
eTH−1e eTH−1r
eTH−1r rTH−1r

]−1

=
1

eTH−1e rTH−1r − (eTH−1r)2

[
rTH−1r −eTH−1r
−eTH−1r eTH−1e

]
.

Note that the Cauchy-Schwarz inequality tells us that

eTH−1e rTH−1r − (eTH−1r)2 ≥ 0. (13)

Consequently (
y1

y2

)
=

1

eTH−1e rTH−1r − (eTH−1r)2

[
−rTH−1r eTH−1r
eTH−1r −eTH−1e

](
1
µ

)
=

1

eTH−1e rTH−1r − (eTH−1r)2

(
µeTH−1r − rTH−1r
eTH−1r − µeTH−1e

)
,



which gives

x = −H−1(ey1 + ry2) = −H−1
[
e r

](y1

y2

)
= H−1

[
e r

] [eTH−1e eTH−1r
eTH−1r rTH−1r

]−1(
1
µ

)
=

1

eTH−1e rTH−1r − (eTH−1r)2
H−1

[
e r

]( rTH−1r − µeTH−1r
−eTH−1r + µeTH−1e

)
=

1

eTH−1e rTH−1r − (eTH−1r)2

[
H−1e H−1r

]( rTH−1r − µeTH−1r
−eTH−1r + µeTH−1e

)
.

(f) min
{

1
2x

THx
∣∣eTx = 1 and rTx ≥ µ

}
where H ∈ Sn++, e := (1, 1, . . . , 1)T ∈ Rn is the vector of

all ones, e and r ∈ Rn are linearly independent, and µ ∈ R.

Solution: Let x̄ denote the solution, and let ȳ1 ≥ 0 and ȳ2 ≥ 0 be the multipliers for the constraints
〈e, x〉 = 1 and 〈r, x〉 ≥ µ, respectively.

There are only two cases to consider: (i) 〈r, x̄〉 = µ or (ii) 〈r, x̄〉 > µ. If (i) occurs, then we are in
the situation described in part (e). The difference from (e) is that the constraint in this problem is
rTx ≥ µ which must now be written as −rTx ≤ −µ in order to interpret the sign condition on the
multiplier correctly as y2 ≥ 0. This requires us to replace (r, µ) in (e) by its negative (−r,−µ).

Case (i): From part (e) the we have

ȳ2 =
eTH−1(−r)− (−µ)eTH−1e

eTH−1e (−r)TH−1(−r)− (eTH−1(−r))2
=

µeTH−1e− eTH−1r

eTH−1e rTH−1r − (eTH−1r)2
.

Consequently, the inequality (13) tells us that Case (i) occurs if and only if µ ≥ eTH−1r
eTH−1e

. This

makes sense since the larger µ is the more likely the constraint rTx ≥ µ is active. In this case,

ȳ1 =
rTH−1r − µeTH−1r

eTH−1e rTH−1r − (eTH−1r)2

ȳ2 =
µeTH−1e− eTH−1r

eTH−1e rTH−1r − (eTH−1r)2

x̄ = H−1(ry2 − ey1).

Case (ii): This follows the same pattern, but now follow the pattern of Case (3) in part (d) above
with x̄ = −H−1y1e.

(g) min
{

4x2
1 + 4x1x2 + x2

2 − 8x1 − 4x2 |x1 + x2 ≤ 0, x1 − x2 ≤ 0
}

Solution: We have f(x) := 4x2
1 + 4x1x2 + x2

2 − 8x1 − 4x2 = (2x1 + x2)2 − 4(2x1 + x2) = z2 − 4z,
where z := 2x1 + x2. Considered as a function of z, f is convex with the unique global minimizer
of z̄ = 2. Consequently, (x̄1, x̄2) is a global minimizer of f if and only if 2x1 +x2 = 2. If we add the
two constraints we see that x1 ≤ 0 and rewriting them as x1 ≤ x2 ≤ −x1 tells us that x1 ≤ −|x2|.
The line 2x1 + x2 = 2 does not intersect this constraint region so the solution does not lie on this
line.

Since this is a convex optimization problem we need only locate a KKT point to obtain a global
minimizer. After graphing the constraint region and the line 2 = 2x1 + x2 we conjecture that the
solution is (x̄1, x̄2) = (0, 0). The KKT conditions yield the multipliers (ȳ1, ȳ2) = (14, 2).

III Convexity



1. Which of the following functions are convex? Which are strictly convex?

(a) f(x) = x2
1 − 4x1 + 2x2

2 + 7

Solution: ∇2f(x) =

[
1 0
0 2

]
which is positive definite, so f is strictly convex.

(b) f(x) = e−‖x‖
2

Solution: It was shown above that ∇2f(x) = 2f(x)
[
2xxT − I

]
. Therefore, if n > 1, there is

a u ∈ Rn is such that ‖u‖2 = 1 and 〈u, x〉 = 0 with uT∇2f(x)u = −2f(x) < 0. If n ≥ 1 and

0 < ‖x‖2 < 1, then xT∇2f(x)x = −2f(x) ‖x‖2 (1− ‖x‖22 ) < 0. So f is not convex.

(c) f(x) = x2
1 − 2x1x2 + 1

3x
3
2 − 8x2

Solution: ∇2f(0, 0) =

[
2 −2
−2 0

]
, so

(
1
1

)T
∇2f(0, 0)

(
1
1

)
= −2 < 0 which implies that f cannot

be convex.

(d) f(x) = (2x1 − x2)2 + (x2 − x3)2 + (x3 − 1)2

Solution: f(x) =

∥∥∥∥∥∥
2 −1 0

0 1 −1
0 0 1

−
 0

0
−1

∥∥∥∥∥∥
2

2

is a linear least squares function and so is convex.

Moreover, since Nul

2 −1 0
0 1 −1
0 0 1

 = {0}, it is strictly convex.

(e) f(x1, x2) := x2
1 + 2x2x2 + x2

2 − 8x1 − 8x2

Solution: Since ∇2f(x) = 2

(
1
1

)(
1 1

)
is positive semidefinite, f is convex. But f is not strictly

convex since ∇2f(x) is not positive definite.

(f) f(x1, x2) = ln(ex1 + ex2), where ln(µ) is the natural log of µ for µ > 0 and is +∞ for µ ≤ 0.

Solution: ∇2f(x) =

[
λ1 0
0 λ2

]
−
(
λ1

λ2

)(
λ1

λ2

)T
, where λ1 := ex1

ex1+ex2 ≤ 1 and λ2 =: ex2
ex1+ex2 ≤ 1.

Hence,(
α
β

)T
∇2f(x)

(
α
β

)
= λ1α

2 + λ2β
2 − (λ1α)2 − (λ2β)2 = λ1(1− λ1)α2 + λ2(1− λ2)β2 ≥ 0

with equality if and only if α = β = 0. Hence f is strictly convex.

2. Suppose f : Rn → R is a differentiable convex function and let Ω ⊂ Rn is a closed convex set. Use the
subdifferential inequality to show that x̄ is a global solution to the problem minx∈Ω f(x) if and only if
f ′(x̄;x− x̄) ≥ 0 for all x ∈ Ω.

Solution: The subdifferential inequality states that

f(x) ≥ f(x) + f ′(x̄;x− x̄) ∀ y ∈ Rn and x̄ ∈ dom (f).

Consequently, is x̄ ∈ Ω is such that f ′(x̄;x− x̄) ≥ 0 for all x ∈ Ω, then x̄ is necessarily a global minimizer
of f over Ω. Conversely, if x̄ is a global minimizer of f over Ω, then, for all x ∈ Ω, 0 ≤ t−1(f(x)− f(x̄))
for all t > 0 so that f ′(x̄;x− x̄) ≥ 0 for all x ∈ Ω.



3. Compute the Lagrangian dual to each of the following problems.

Solution: Since all of these problems are convex, they all have Lagrangian duals. In general, the
solution procedure has the following steps:

Step 1 Write the equation for the Lagrangian L(x, y). Two helpful tricks.

(a) It is often helpful separate the constraints into two groups, equalities and inequalities, writing
a dual variable for each group, say y = (u, v) where the u’s are for the inequalities (u ≥ 0) and
the v’s are for the equalities (free).

(b) Sometimes it is very useful to introduce new primal variables for complicated structures in the
objective and then add the definition of the new variables as equality constraints. For example,
if the objective contains a composite term of the form h(Ax− b), then set w = Ax− b adding
this equation to the constraints. Then replace h(Ax − b) by h(w). Always use this trick for
terms of the form 1

2 ‖Ax− b‖
2
2 or, more generally, for any term of the form ‖Ax− b‖ regardless

of the norm involved.

Step 2 The goal here is to obtain an expression for the dual objective ψ(y) := minx L(x, y). The first-
order conditions for this problem are 0 = ∇xL(x, y), where we take the derivative with respect to
all of the primal variables. These conditions identify the minima of L with respect to the primal
variables. Then use these conditions to eliminate the primal variables from L so the dual objective
can be written entirely in terms of the dual variables. This is the hard step. But keep going
until all primal variables are eliminated. This may require starting again in Step 1 by introducing
new primal variables that help simplify Step 2. (In a graduate course you learn about conjugate
duality also known as Fenchel-Rockafellar duality which both dramatically simplifies and extends
this technique to the non-differentiable setting. Terry Rockafellar is a UW emeritus Professor. He
is known as the Father of Convex Analysis. At 85 years of age he still backpacks and back-country
skis in the Cascade mountains with his pack dog. He also still publishes ground-breaking research
at a regular rate.)

Step 3 Write the dual problem. Then consider ways to simplify your expression for the dual by (i)
combining terms, (ii) eliminating variables, and (iii) partial optimization (a procedure I do not
expect student to perform in an introductory course).

(a) min
{

1
2 ‖x‖

2
2

∣∣aTx ≤ α} where a ∈ Rn \ {0} and α ∈ R.

Solution: The condition 0 = ∇xL(x, y) tells us that x = −ya. Hence the dual is the one dimen-
sional problem

max
{
−‖a‖

2
2

2 y2 − αy |0 ≤ y
}

, or min
{
‖a‖22

2 y2 + αy |0 ≤ y
}

whose obvious solution is

y = max{−α/ ‖a‖22 , 0}.

(b) min
{

1
2 ‖x‖

2
2

∣∣aTx = α, bTx ≤ β
}

where a, b ∈ Rn \ {0} with a and b linearly independent and

α, β ∈ R.

Solution: max
{
−1

2 ‖y1a+ y2b‖22 − αy1 − βy2 |0 ≤ y2

}
.

(c) min
{

1
2 ‖x‖

2
2

∣∣aTx ≤ α, bTx ≤ β} where a, b ∈ Rn \ {0} with a and b linearly independent and

α, β ∈ R.

Solution: max
{
−1

2 ‖y1a+ y2b‖22 − αy1 − βy2 |0 ≤ y1, 0 ≤ y2

}
.

(d) min
{

1
2x

THx
∣∣eTx = 1 and rTx = µ

}
where H ∈ Sn++, e := (1, 1, . . . , 1)T ∈ Rn is the vector of

all ones, e and r ∈ Rn are linearly independent, and µ ∈ R.

Solution: max−1
2(y1e + y2r)

TH−1(y1e + y2r)− y1 − y2µ.



(e) min
{

1
2x

THx
∣∣eTx = 1 and rTx ≥ µ

}
where H ∈ Sn++, e := (1, 1, . . . , 1)T ∈ Rn is the vector of

all ones, e and r ∈ Rn are linearly independent, and µ ∈ R.

Solution: max
{
−1

2(y1e− y2r)
TH−1(y1e− y2r)− y1 + y2µ |0 ≤ y2

}
.

(f) min
{

4x2
1 + 4x1x2 + x2

2 − 8x1 − 4x2 |x1 + x2 ≤ 0, x1 − x2 ≤ 0
}

Solution: Observe that 4x2
1 + 4x1x2 + x2

2 = z2 where z = 2x1 + x2. Hence we can rewrite this
problem as

min

{
1

2
z2 − 4z |z = 2x1 + x2, x1 + x2 ≤ 0, x1 − x2 ≤ 0

}
.

The Lagrangian is

L(z, x1, x2, y1, y2, y3) =
1

2
z2 − 4z + y1(2x1 + x2 − z) + y2(x1 + x2) + y3(x1 − x2),

where 0 ≤ y2, y3. The dual objective is ψ(y) = minx L(x, y). Due to convexity, the minimum is
attained for any x at which 0 = ∇xL(x, y). For this problem, 0 = ∇xL(x, y) if and only if

0 = z − 4− y1

0 = 2y1 + y2 + y3

0 = y1 + y2 − y3.

Plugging this information into L gives

ψ(y) =
1

2
(y1 + 4)2 − 4(y1 + 4)− y1(y1 + 4) = −1

2
(y1 + 4)2

Hence the dual is

minimize
1

2
(y1 + 4)2

subject to

[
2 1 1
1 1 −1

]y1

y2

y3

 =

(
0
0

)
0 ≤ y2, 0 ≤ y3.

(g) Let Q ∈ Sn++, c ∈ Rn, A ∈ Rm×n, and b ∈ Rm and compute the Lagrangian dual to the problem

P minimize 1
2x

TQx+ cTx
subject to Ax ≤ b, 0 ≤ x .

Solution: The Lagrangian is L(x, u, v) = 1
2x

TQx + cTx + uT (Ax − b) − vTx with 0 ≤ u, 0 ≤ v.
Stationarity of the Lagrangian gives

0 = ∇xL(x, u, v) = Qx+ c+ATu− v,

so that x̄ = −Q−1(c+ATu− v). Plugging this into L gives

L(x̄, u, v) =
1

2
(c+ATu− v)TQ−1(c+ATu− v)− (c+ATu− v)TQ−1(c+ATu− v)− bTu

= −
[

1

2
(c+ATu− v)TQ−1(c+ATu− v) + bTu

]
.

Hence the dual is

maximize −
[

1

2
(c+ATu− v)TQ−1(c+ATu− v) + bTu

]
subject to 0 ≤ u, 0 ≤ v.

Moreover, if (ū, v̄) solve the dual, then x̄ = −Q−1(c+AT ū− v̄) solves the primal.



4. Let A ∈ Rm×n and b ∈ Rm. Consider the optimization problem

P minimize 1
2 ‖Ax− b‖

2
2

subject to ‖x‖1 ≤ 1 .

(a) Show that this problem is equivalent to the problem

P̂
minimize(x,z,w)

1
2 ‖w‖

2
2

subject to Ax− b = w,
−z ≤ x ≤ z and eT z ≤ 1,

where e is the vector of all ones.

Solution:

Observe that {x| − z ≤ x ≤ z and eT z ≤ 1} = {x| ‖x‖1 ≤ 1}.
(b) What is the Lagrangian for P̂?

Solution:

L(w, x, z, y, u, v, λ) =
1

2
wTw + yT (Ax− b− w)− uT (x+ z) + vT (x− z) + λ(eT z − 1)

(c) Show that the Lagrangian dual for P̂ is the problem

D max −1

2
‖y‖22 − y

T b−
∥∥AT y∥∥∞ = − min

1

2
‖y − b‖22 +

∥∥AT y∥∥∞ − 1

2
‖b‖22 .

This is also the Lagrangian dual for P.

Solution:

L(w, x, z, y, u, v, λ) =
1

2
wTw + yT (Ax− b− w)− uT (x+ z) + vT (x− z) + λ(eT z − 1)

g(y, u, v, λ) = min
w,x,z

L(w, x, z, y, u, v, λ)

0 = ∇wL = w − y
0 = ∇xL = AT y − u+ v

0 = ∇zL = −u− v + λe,

hence g(y, u, v, λ) = −1
2y

T y − yT b− λ and the Lagrangian dual is

(D̃) max − 1

2
yT y − yT b− λ

s.t. AT y = u− v
λe = u+ v

λ ≥ 0, u ≥ 0, v ≥ 0.

Observe that

{(y, λ)|AT y = u−v, λe = u+v, u ≥ 0, v ≥ 0, λ ≥ 0} = {(y, λ)|AT y+λe ≥ 0,−AT y+λe ≥ 0, λ ≥ 0},

hence (D̃) is equivalent to

(D̃) max − 1

2
yT y − yT b− λ

s.t. − λe ≤ AT y ≤ λe

which is equivalent to D.



5. Consider the functions

f(x) =
1

2
xTQx− cTx

and

ft(x) =
1

2
xTQx− cTx+ tφ(x),

where t > 0, Q ∈ Sn+, c ∈ Rn, and φ : Rn → R ∪ {+∞} is given by

φ(x) =

{
−
∑n

i=1 lnxi , if xi > 0, i = 1, 2, . . . , n,
+∞ , otherwise.

(a) Show that φ is a convex function.

(b) Show that both f and ft are convex functions.

(c) Show that the solution to the problem min ft(x) always exists and is unique.

(d) Let {ti} be a decreasing sequence of positive real scalars with ti ↓ 0, and let xi be the solution to
the problem min fti(x). Show that if the sequence {xi} has a cluster point x̄, then x̄ must be a
solution to the problem min{f(x) : 0 ≤ x}.
Hint: Use the KKT conditions for the QP min{f(x) : 0 ≤ x}.

Solution

(a) ∇2φ(x) = diag(x)−2 which is positive definite on Rn++.

(b) ∇2f(x) = Q which is positive definite. The result follows from (a) and the fact that the sum of
two convex functions is convex.

(c) The sum of a symmetric positive definite and symmetric positive semi-definite matrix is symmetric
and positive definite. So ∇ft is everywhere positive definite which implies that ft is strictly convex.
Hence if a solution exists, it must be unique.

(d) For all i = 1, 2, . . . , we have 0 = ∇fti(xi) = Qxi − c − tidiag(xi)−1e, where e is the vector
of all ones. Without loss of generality we can assume that xi → x̄. Set v̄ := Qx̄ − c so that
tidiag(xi)−1e = Qxi − c→ v̄ ≥ 0. Observe that v̄T x̄ = limi tie

Tdiag(xi)−1xi = limi tin = 0. Hence
(x̄, v̄) is a KKT pair for the convex optimization problem min {f(x) |0 ≤ x} which implies that x̄
must be a solution to this problem.

6. Let Q ∈ Rn×n be symmetric and positive definite. Consider the optimization problem

P minimize 1
2x

TQx+ cTx
subject to ‖x‖∞ ≤ 1 .

(a) Show that this problem is equivalent to the problem

P̂ minimize 1
2x

TQx+ cTx
subject to −e ≤ x ≤ e ,

where e is the vector of all ones.

Solution:

{x| ‖x‖∞ ≤ 1} = {x| |xi| ≤ 1 ∀i = 1, · · · , n} = {x| − e ≤ x ≤ e}.
(b) What is the Lagrangian for P̂?

Solution:

L(x, u, v) =
1

2
xTQx+ cTx− uT (x+ e) + vT (x− e)



(c) Show that the Lagrangian dual for P̂ is the problem

D max −1

2
(y − c)TQ−1(y − c)− ‖y‖1 = − min

1

2
(y − c)TQ−1(y − c) + ‖y‖1 .

This is also the Lagrangian dual for P.

Solution:

g(u, v) = min
x
L(x, u, v) = min

x

1

2
xTQx+ cTx− uT (x+ e) + vT (x− e)

0 = ∇xL(x, u, v) = Qx+ c− u+ v

x = Q−1(u− v − c)

g(u, v) = −1

2
(u− v − c)TQ−1(u− v − c)− (u+ v)T e

then the Lagrangian dual of P̂ is

max
u≥0,v≥0

g(u, v) = −1

2
(u− v − c)TQ−1(u− v − c)− (u+ v)T e.

Set y = u− v, then we have

max
y,v≥0

g(y) = −1

2
(y − c)TQ−1(y − c)− ‖y‖1 − 2eT v,

it is easily seen that v = 0 when optimal, hence the dual becomes

max
y

g(y) = −1

2
(y − c)TQ−1(y − c)− ‖y‖1 .


