
5. LAGRANGE MULTIPLIERS

Optimality with respect to minimization over a set C ⊂ IRn has been approached up
to now in terms of the tangent cone TC(x̄) at a point x̄. While this has led to important
results, further progress depends on introducing, in tandem with tangent vectors, a notion
of normal vectors in a broader elaboration of variational geometry. Representations of
normal vectors to C relative to an explicit constraint representation for C will yield special
coefficients, called Lagrange multipliers, which not only serve in the statement of necessary
and sufficient conditions for a minimum but take on an intriguing life of their own.

Normal vectors: For a closed set C ⊂ IRn and a point x̄ ∈ C, a vector v is said to
be normal to C at x̄ in the regular sense (a “regular normal”) if v·w ≤ 0 for all
w ∈ TC(x̄). It is normal to C in the general sense (a “general normal,” or just a
“normal”) if it can be approximated by normals in the regular sense: there exist
vν → v and xν → x̄ such that vν is a regular normal to C at xν .

Interpretation of regular normals: The normal vectors v to C at x̄ in the regular sense,
apart from v = 0, are the vectors that make a right or obtuse angle with every
tangent vector w to C at x̄. It’s not hard to show that this holds if and only if

v·(x− x̄) ≤ o
(
|x− x̄|

)
for x ∈ C.

The definition of a regular normal vector v could therefore just as well be given
in terms of this inequality property.

Regular normals as general normals: Any normal vector v in the regular sense is in
particular a normal vector in the general sense. (Consider vν ≡ v and xν ≡ x̄).

Regularity of a set: The set C is called regular at x̄ (one of its points) if every
normal at x̄ in the general sense is in fact a normal at x̄ in the regular sense,
i.e., if the limit process in the definition doesn’t yield any more normals than are
already obtained by the angle condition in the definition or regular normals.

Example of irregularity: A heart-shaped set C fails to be regular at its “inward
corner point,” although it’s regular everywhere else.

Normal cone at a point: For a closed set C, the set of all vectors v that are normal
to C at a point x̄ ∈ C in the general sense is called the normal cone to C at x̄ and
is denoted by NC(x̄).

Basic properties: Always, NC(x̄) contains the vector 0. For every v ∈ NC(x̄) and
every λ > 0, the vector λv is again in NC(x̄). Thus, NC(x̄) is truly a “cone.”
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Extreme cases: If C = IRn, one has NC(x̄) = {0}. On the other hand, if C is a
one-element set {a} and x̄ = a, then NC(x̄) = IRn. In both cases, C is regular.

Limits of general normals: The cone NC(x̄) always closed, and a stronger property
even holds: if vν → v with vν ∈ NC(xν) and xν → x̄, then v ∈ NC(x̄).

Argument: This stems from the observation that the set of vector pairs (x, v) ∈
IRn× IRn such that v is a general normal to C at x is by definition the closure
of the set of pairs (x, v) such that v is a regular normal to C at x. Hence in
particular, it’s a closed set in IRn × IRn.

Normals to convex sets: A closed, convex set C ⊂ IRn is regular at every one of its
points x̄. The normal cone NC(x̄) consists of the vectors v such that

v·(x− x̄) ≤ 0 for all x ∈ C.

Proof. This follows from the earlier characterization of TC(x̄) in the convex case as
consisting of 0 and all vectors obtainable as limits of vectors w 6= 0 giving feasible
directions in C at x̄. From that characterization we have that v is a regular
normal at x̄ if and only if v·w ≤ 0 for all w giving feasible directions, which
because of convexity means that w is a positive multiple of a difference vectors
x − x̄ with x ∈ C, x 6= x̄. Thus, v is a regular normal if and only if it satisfies
v·(x− x̄) ≤ 0 for all x ∈ C.

To verify the regularity of C at x̄, consider a sequence of points xν → x̄ in C and
regular normals vν to C at these points xν , with vν converging to a vector v. Is
v again a regular normal to C at x̄? From what has already been demonstrated,
we know that for each ν we have vν·(x− xν) ≤ 0 for all x ∈ C. Taking the limit
in this inequality as ν → ∞ with x fixed, we get v·(x − x̄) ≤ 0. This being true
for an arbitrary choice of x ∈ C, we conclude, by the same criterion once more,
that v really is a regular normal to C at x̄.

Half-space property: This characterization of normals to a closed, convex set C has
the following geometric interpretation. A vector v 6= 0 belongs to NC(x̄) for such
a set C if and only if C is included in the closed half-space

{
x

∣∣ v·x ≤ v·x̄
}
, which

has x̄ on its boundary hyperplane and v as an outward pointing normal.

Normals to linear subspaces: For a subspace M of IRn, one has at every point x̄ ∈ M

that NM (x̄) = M⊥, the set of vectors v such that v·w = 0 for all w ∈ M . This is
immediate from the fact M is convex, using the characterization above.
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THEOREM 9 (basic normal cone condition for optimality). Consider the problem

of minimizing a function f0 of class C2 over a closed set C ⊂ IRn. Let x̄ ∈ C.

(a) (necessary). If x̄ is locally optimal, then −∇f0(x̄) ∈ NC(x̄).

(b) (sufficient). If −∇f0(x̄) ∈ NC(x̄) with C and f0 convex, then x̄ is globally optimal.

Proof. To prove (a), we’ll demonstrate that −∇f0(x̄) is actually a regular normal to C

at x̄: −∇f0(x̄)·w ≤ 0 for all w ∈ TC(x̄). This inequality is trivial when w = 0, so consider
any vector w 6= 0 in TC(x̄). By the definition of the tangent cone there must be a sequence
of points xν ∈ C along with scalars τν ↘0 such that the vectors wν = (xν− x̄)/τν converge
to w; her we can suppose xν 6= x̄ inasmuch as w 6= 0. Eventually f0(xν) ≥ f0(x̄) by the
local optimality of x̄. Then

0 ≤ f0(x̄ + τνwν)− f0(x̄)
τν

→ ∇f0(x̄)·w

by the differentiability of f0. This gives the desired inequality.

To prove (b) we simply note that in view of the description of normal cones to convex
sets given above, this is no more than a restatement of the sufficient condition of Theorem
7(b) in different notation.

Versatility of the normal cone condition: Although the condition −∇f0(x̄) ∈ NC(x̄)
says no more than the condition ∇f0(x̄)·w ≥ 0 for all w ∈ TC(x̄) that we worked
with earlier, and even a bit less if C isn’t regular at x̄, it has both conceptual and
technical advantages. The tangent cone condition refers to an apparently infinite
family inequalities being satisfied, which is cumbersome to think about, whereas the
normal cone condition focuses on membership in a certain cone NC(x̄) whose nature
for the common kinds of sets C might be ascertained in advance. A calculus of
normals can be built up for this purpose. The following are some initial examples.

Fermat’s rule as a special case: At any point x̄ lying in the interior of C, one has
NC(x̄) = {0}; there’s no normal other than the zero vector. Therefore, if f0 has a
local minimum relative to C at such a point, it’s necessary that

∇f0(x̄) = 0.

Argument: At an interior point x̄, every direction is a feasible direction, so that
TC(x̄) = IRn. Moreover, this holds at all points x in a neighborhood of x̄ too. At
all such points, therefore, the only regular normal is v = 0, and it follows from
the definition of NC(x̄) that NC(x̄) = {0}.
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Normals to boxes: If X = I1 × · · · × In for closed intervals Ij in IR, then X is regular
at any of its points x̄ = (x̄1, . . . , x̄n) (by virtue of closedness and convexity), and

NX(x̄) = NI1(x̄1)× · · · ×NIn
(x̄n), where

NIj (x̄j) =


(−∞, 0] if x̄j is the left endpoint (only) of Ij ,
[0,∞) if x̄j is the right endpoint (only) of Ij ,
[0, 0] if x̄j lies in the interior of Ij ,
(−∞,∞) if Ij is a one-point interval, consisting just of x̄j .

In other words, the condition z ∈ NX(x̄) for z = (z1, . . . , zn) constitutes a list of sign

restrictions on the coordinates of z. Depending on the mode in which x̄j fulfills the
constraint xj ∈ Ij , each zj is designated as nonpositive, nonnegative, zero, or free.

Normals to the nonnegative orthant: For x̄ = (x̄1, . . . x̄n) in the box IRn
+, the normal

vectors z = (z1, . . . , zn) are given by

z ∈ NIRn
+
(x̄) ⇐⇒

{
zj ≤ 0 for all j with x̄j = 0,
zj = 0 for all j with x̄j > 0.

Tangents from normals under regularity: When a closed set C is regular at x̄, the
geometric relationship between tangents and normals is actually symmetric:

NC(x̄) =
{
v

∣∣ v·w ≤ 0 for all w ∈ TC(x̄)
}
,

TC(x̄) =
{
w

∣∣ v·w ≤ 0 for all v ∈ NC(x̄)
}
.

Proof: We won’t really need this fact, but the relationship is so striking that it’s
worth supplying the proof, for the record. The first of the two equations here just
combines the definition of regular normals with the regularity assumption that
all normals are regular. It automatically entails the inclusion ⊂ for the two sets
in the second equation. The task therefore is to show that the opposite inclusion
⊃ holds as well. To accomplish this we fix any vector w̄ /∈ TC(x̄) and aim at
demonstrating the existence of a vector v̄ ∈ NC(x̄) such that v̄·w̄ > 0.

Replacing C by its intersection with some closed ball around x̄ if neces-
sary (which involves no loss of generality, since the generation of normal vec-
tors depends only on a neighborhood of x̄), we can suppose that C is com-
pact. Let B stand for some closed ball around w̄ that doesn’t meet TC(x̄)
(as exists because TC(x̄) is closed). The definition of TC(x̄), in conjunction
with having TC(x̄) ∩ D = ∅, implies the existence of an ε > 0 such that the
compact, convex set S =

{
x̄ + τw

∣∣ w ∈ B, τ ∈ [0, ε]
}

meets C only at x̄.

68



Consider any sequence εν ↘0 with εν < ε along with the compact, convex sets
Sν =

{
x̄ + τw

∣∣ w ∈ B, τ ∈ [εν , ε]
}
, which are disjoint from C.

The function h(x, u) = 1
2 |x − u|2 attains its minimum over the compact set

C×Sν at some point (xν , uν). In particular, x minimizes h(x, uν) with respect to
x ∈ C, so by Theorem 9 the vector −∇xh(xν , uν) = uν − xν belongs to NC(xν).
Likewise, the vector −∇hu(xν , uν) = xν − uν belongs to NSν (uν). Necessarily
xν 6= uν because C∩Sν = ∅, but xν → x̄ and uν → x̄ because the sets Sν increase
to S (the closure of their union), and C ∩ S = {x̄}.

Let vν = (uν−xν)/|uν−xν |, so |vν | = 1, vν ∈ NC(xν), −vν ∈ NSν (uν). The
sequence of vectors vν being bounded, it has a cluster point v̄, |v̄| = 1; without
loss of generality (by passing to a subsequence of necessary) we can suppose for
simplicity that vν → v̄. Along with the fact that vν ∈ NC(xν) and xν → x̄, this
implies that v̄ ∈ NC(x̄). Because −vν ∈ NSν (xν) and Sν is convex, we also have
−vν·[u− uν ] ≤ 0 for all u ∈ Sν . Since Sν increases to S while uν → x̄, we obtain
in the limit that −v̄·[u− x̄] ≤ 0 for all u ∈ S. Recalling the construction of S, we
note that among the vectors u ∈ S are all vectors of the form x̄+ εw with w ∈ B.
Further, B is the closed ball of a certain radius δ > 0 around w̄, so its elements
w have the form w̄ + δz with |z| ≤ 1. Plugging these expressions into the limiting
inequality that was obtained, we get −v̄·ε[w̄ + δz] ≤ 0 for all z with |z| ≤ 1. In
particular we can take z = −v̄ (since |v̄| = 1) and see that −v̄·w̄ + δ|v̄|2 ≤ 0. This
reveals that v̄·w̄ ≥ δ, so we have reached the desired conclusion that v̄·w̄ > 0.

Polar cones: When two cones in IRn are in this symmetric geometric relationship,
they are said to be polar to each other. Then, incidentally, they both must be
convex. Polarity of cones generalizes orthogonality of linear subspaces.

Determining normal vectors from constraint representations: To apply the op-
timality condition in Theorem 9 to the feasible set C in an optimization problem
having not just an abstract constraint but equations and inequalities on functions
f1(x), . . . , fm(x), it’s essential to determine in detail how NC(x̄) can be expressed in
such cases. We could try to work immediately with the form of constraint structure
exhibited in a problem (P) in conventional format, since that’s our ultimate target,
but it will be easier actually to work first in the more general setting in vector no-
tation, where the set C consists of all x satisfying x ∈ X and F (x) ∈ D. The main
case to keep in mind is the one where D is a box J1×· · ·×Jm, so that the condition
F (x) ∈ D means fi(x) ∈ Ji for i = 1, . . . ,m.
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THEOREM 10 (normals to sets with constraint structure). In IRn let

C =
{
x ∈ X

∣∣ F (x) ∈ D
}

for closed sets X ⊂ IRn, D ⊂ IRm, and a C1 mapping F : IRn → IRm, written component-

wise as F (x) =
(
f1(x), . . . , fm(x)

)
. Let x̄ be a point of C such that X is regular at x̄ and

D is regular at F (x̄) (as holds for instance when X and D are convex, and in particular

when they are boxes). Suppose the following assumption (called a constraint qualification)

is satisfied at x̄:{
the only vectors y = (y1, . . . , ym) ∈ ND

(
F (x̄)

)
and z ∈ NX(x̄) for which

y1∇f1(x̄) + · · ·+ ym∇fm(x̄) + z = 0 are the vectors y = (0, . . . , 0), z = 0.

Then C is regular at x̄, and the normal cone NC(x̄) consists of all vectors v of the form

y1∇f1(x̄) + · · ·+ ym∇fm(x̄) + z with y = (y1, . . . , ym) ∈ ND

(
F (x̄)

)
, z ∈ NX(x̄).

Note: When X = IRn in Theorem 10, or more generally whenever x̄ lies in the interior of
X, the normal cone NX(x̄) consists of just 0, so the z terms here drop out.

Proof. The justification of this theorem is furnished in its entirety, since this level of
result can’t be found yet in any textbook. The argument, although lengthy, is elementary
in that it only uses standard facts about sequences and continuity in combination with the
concepts introduced so far in this section. Of course C is a closed set (because D is closed
and F is in particular continuous), so the picture is right for speaking about tangent and
normal vectors to C.

It will help notation to write the gradient sums in the theorem in the Jacobian form
∇F (x̄)∗y. To understand this, recall that ∇F (x̄) is by definition the m× n matrix having
the gradient vectors ∇fi(x̄) as its rows; the transpose ∇F (x̄)∗ therefore has them as its
columns, so that

∇F (x̄)∗y = y1∇f1(x̄) + · · ·+ ym∇fm(x̄).

First consider a vector v = ∇F (x̄)∗y + z with y ∈ ND

(
F (x̄)

)
and z ∈ ND(x̄). We’ll

verify that v is a regular normal to C at x̄. This means showing for an arbitrary vector
w ∈ TC(x̄) that v·w ≤ 0. Such a vector w is by definition the limit of a sequence of vectors
wν = (xν − x̄)/τν with xν ∈ C and τν ↘0. In that setting we have F (xν) ∈ D and, by the
continuity of F , also F (xν) → F (x̄). Furthermore, the differentiability of F at x̄ entails
having F (xν) = F (x̄) +∇F (x̄)(xν − x̄) + o(xν − x̄) and consequently

F (xν)− F (x̄)
τν

= ∇F (x̄)wν +
o
(
|xν − x̄|

)
|xν − x̄|

|wν | → ∇F (x̄)w.
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Thus, ∇F (x̄)w ∈ TD

(
F (x̄)

)
. From the assumption that y ∈ ND

(
F (x̄)

)
and D is regular

at F (x̄), we know that y is a regular normal to D at F (x̄), hence y·∇F (x̄)w ≤ 0. But
this inner product is the same as ∇F (x̄)∗y·w ≤ 0. At the same time we have z·w ≥ 0
through the fact that z ∈ NX(x̄) and X is regular at X; any regular normal to X at
x̄ is in particular a regular normal to C at x̄, because x̄ ∈ C ⊂ X. From having both
∇F (x̄)∗y·w ≤ 0 and z·w ≥ 0 we conclude that v·w ≥ 0.

We must show that conversely, under the constraint qualification and regularity as-
sumptions, every normal vector v to C at x̄ in the general sense can be represented as
∇F (x̄)∗y + v for some y ∈ ND

(
F (x̄)

)
and z ∈ NX(x̄), from which it will follow that v

is regular, as just seen, so that C is regular at x̄. But the argument will pass through
an intermediate stage involving representations “approximately” like this. Specifically, we
consider now only a regular normal vector v to C at x̄ together with any ε > 0, and we
demonstrate the existence of

x ∈ IRn with |x− x̄| < ε

u ∈ D with
∣∣u− F (x)

∣∣ < ε

w ∈ IRn with |w| < ε

y ∈ ND(u), z ∈ NX(x)


such that v = ∇F (x)∗y + z + w.

The proof of this won’t yet use the constraint qualification or the regularity assumptions.
We take any sequence of values τν ↘0 and define the functions ϕν on IRn × IRm by

ϕν(x, u) =
1

2τν

∣∣x− (x̄ + τνv)
∣∣2 +

1
2τν

∣∣F (x)− u
∣∣2 ≥ 0.

These functions are continuously differentiable in x and u. Our construction will be based
on analyzing the problem of minimizing ϕν over the closed set X × D, and we have
to know, before proceeding, that for each ν an optimal solution to this problem exists.
Temporarily fixing ν and any value α ≥ 0, we’ll establish that the level set S =

{
(x, u) ∈

X ×D
∣∣ ϕν(x, u) ≤ α

}
is bounded; this will show that the problem of minimizing ϕν over

X×D is well posed, from which the existence of an optimal solution is assured by Theorem
1. Obviously any point (x, u) ∈ S has both |x−(x̄+τνv)|2 ≤ 2τνα and |u−F (x)|2 ≤ 2τνα.
Then |x| ≤ λ := |x̄|+τν |v|+

√
2τνα. Over the closed ball

{
x

∣∣ |x| ≤ λ
}

there is a maximum
to the possible values of

∣∣F (x)
∣∣ (an expression that is continuous in x); say

∣∣F (x)
∣∣ ≤ σ for

all such x. The inequality |u − F (x)|2 ≤ 2τνρ then yields |u| ≤ µ = σ +
√

2τνα. Since
every element (x, u) ∈ S has |x| ≤ λ and |u| ≤ µ, the level set S is bounded as claimed.

We now have license to denote by (xν , uν) for each ν an optimal solution (not neces-
sarily unique) to the problem of minimizing the function ϕν over X × D; we denote the
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optimal value in this problem by αν . Obviously

0 ≤ αν = ϕν(xν , uν) ≤ ϕν
(
x̄, F (x̄)

)
=

τν

2
|v|2 → 0.

The inequalities deduced in our investigation of level sets of ϕν tell us at the same time
that neither |xν − (x̄ + τνv)|2 nor |uν −F (xν)|2 can exceed 2τναν . Since αν ≤ (τν/2)|v|2,
as just seen, we must have

∣∣xν − (x̄ + τνv)
∣∣ ≤ τν |v| and

∣∣uν − F (xν)
∣∣ ≤ τν |v|. Therefore,

xν → x̄ and
∣∣uν − F (xν)

∣∣ → 0. In addition the sequence of vectors wν = (xν − x̄)/τν

is bounded because the inequality
∣∣xν − (x̄ + τνv)

∣∣ ≤ τν |v|, when divided by τν , gives
|wν − v| ≤ |v|. This sequence therefore has a cluster point w. Any such cluster point
w belongs by definition to the tangent cone TC(x̄), so it satisfies w·v ≤ 0 because v is a
regular normal at x̄, but at the same time it satisfies |w − v| ≤ |v|. In squaring the latter
we see that |w|2−2v·w+ |v|2 ≤ |v|2, which implies |w|2 ≤ 2v·w ≤ 0. Hence actually w = 0.
Thus, the only possible cluster point of the sequence of vectors wν is 0, and we conclude
that wν → 0. Eventually then, once ν is large enough, we’ll have

|xν − x̄| < ε, |uν − F (xν)| < ε, |wν | < ε.

Next we use the fact that (xν , uν) minimizes ϕν over X×D. In particular the minimum
of ϕν(xν , u) over u ∈ D is attained at uν , whereas the minimum of ϕν(x, uν) over x ∈ X

is attained at xν . From part (a) of Theorem 9, therefore, we have

−∇uϕν(xν , uν) ∈ ND(uν), −∇xϕν(xν , uν) ∈ NX(xν).

with −∇uϕν(xν , uν) actually a regular normal vector to D at uν . Let yν = −∇uϕν(xν , uν)
and zν = −∇xϕν(xν , uν). Then yν ∈ ND(uν), zν ∈ NX(xν) and, as seen through differ-
entiation of ϕν in u, we have yν = [F (xν)−uν ]/τν . Differentiation of ϕν in x reveals then
that zν = −wν + v −∇F (xν)∗yν . Thus, v = ∇F (xν)∗yν + zν + wν . It follows that when
ν is taken sufficiently large the elements x = xν , u = uν , y = yν and w = wν furnish the
kind of approximate representation of v that was required.

Now we are ready for the final stage of argument. We consider a general vector
v ∈ NC(x̄) and aim at proving the existence of y ∈ ND(x̄) and z ∈ ND(x̄) such that
v = ∇F (x̄)∗y+z. Fix any sequence of values εν ↘0. From the definition of normal vectors
in general sense, we know there exist sequences x̄ν → x̄ in C and vν → v with vν a regular
normal to C at x̄ν . Then, on the basis of the intermediate fact just established, there exist
for each ν

xν ∈ IRn with |xν − x̄ν | < εν

uν ∈ D with
∣∣uν − F (x̄ν)

∣∣ < εν

wν ∈ IRn with |wν | < εν

yν ∈ ND(uν), zν ∈ NX(xν)


such that vν = ∇F (xν)∗yν + zν + wν .
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There are two cases to distinguish: either the sequence of vectors yν has a cluster point y, or
it has no bounded subsequences at all, meaning that |yν | → ∞. In the case of a cluster point
y, we have in the limit that y ∈ ND

(
F (x̄)

)
, since F (x̄ν) → F (x̄) and ∇F (x̄ν) → ∇F (x̄)

by the continuity of F and its first partial derivatives. The corresponding subsequence
of the zν ’s is then bounded and must have a cluster point too, say z. We have z ∈
ND(x̄) and consequently from taking limits in the equation vν = ∇F (xν)∗yν + zν + wν

that v = ∇F (x̄)∗y + z, as needed. In the contrary case, where |yν | → ∞, the vectors
ȳν = yν/|yν | and z̄ν = zν/|yν |, which like yν and zν belong to ND

(
F (xν)

)
and NX(xν),

have unit length and the sequence of pairs (ȳν , z̄ν) therefore has a cluster point (ȳ, z̄)
with |ȳ| = 1 and |z̄| = 1. Again we get ȳ ∈ ND

(
F (x̄)

)
and z̄ ∈ ND(x̄). In dividing the

equation vν = ∇F (xν)∗yν + zν + wν by |yν | and taking the limit as ν → ∞, we see that
∇F (x̄)∗ȳ + z̄ = 0. But ȳ 6= 0, so this is impossible under the constraint qualification in
the theorem. Only the first case is viable. This finishes the proof.

Tangents to sets with constraint structure: Under the assumptions of Theorem 10,
the tangent cone to C at x̄ has the formula:

TC(x̄) =
{
w ∈ TX(x̄)

∣∣∇F (x̄)w ∈ TD

(
F (x̄)

)}
.

This follows from the regularity of C at x̄, which we earlier saw implies that TC(x̄)
consists of the vectors w satisfying v·w ≤ 0 for all v ∈ NC(x̄). The formula for such
vectors v in Theorem 10, together with the expressions of TX(x̄) and TD

(
F (x̄)

)
in

terms of NX(x̄) and ND

(
F (x̄)

)
, based again on regularity, gives the result.

Lagrange multipliers: The coefficients yi in this representation of a normal vector v

are called Lagrange multipliers associated with the constraint functions fi at x̄.

Sign restrictions on Lagrange multipliers: In the central case where the set D in
Theorem 10 is a box J1×· · ·×Jm, corresponding to constraints fi(x) ∈ Ji in the
specification of C, one has ND

(
F (x̄)

)
= NJ1

(
f1(x̄)

)
× · · · × NJm

(
fm(x̄)

)
. Then

the condition y ∈ ND

(
F (x̄)

)
imposed in Theorem 10 means that

yi ≤ 0 if fi(x̄) is the left endpoint (only) of Ji,
yi ≥ 0 if fi(x̄) is the right endpoint (only) of Ji,
yi = 0 if fi(x̄) lies in the interior of Ji,
yi free if Ji is a one-point interval, consisting just of fi(x̄).
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Why the constraint qualification is needed in general: Without the qualification
in Theorem 10 being satisfied, the formula in that theorem can fall short of expressing
all the vectors v ∈ NC(x̄). This can already be seen from examples in IR2. Let C be
the set of all x = (x1, x2) satisfying f1(x) ≤ 0 and f2(x) ≤ 0 for the functions

f1(x) = (x1 − 1)2 + (x2 − 1)2 − 2, f2(x) = (x1 + 1)2 + (x2 + 1)2 − 2,

which corresponds to D = IR2
− = (−∞, 0]× (−∞, 0] and X = IR2. In this case C is

the intersection of two disks, both of radius
√

2 and centered at (1, 1) and (−1,−1)
respectively. These touch only at the origin, so that C consists of just x̄ = (0, 0),
with NC(x̄) = IR2. We have ND

(
F (x̄)

)
= ND(0, 0) = IR2

+ and NX(x̄) = {(0, 0)},
so the only vectors v covered by the formula in Theorem 10 are those expressible as
y1(−1,−1) + y2(1, 1) = (y2 − y1)(1, 1) for some choice of y1 ≥ 0 and y2 ≥ 0. Such
vectors merely constitute a line in IR2, not all of IR2.

Example of normal and tangent spaces to smooth manifolds: Suppose C is given
by a system of equations fi(x) = 0 for i = 1, . . . ,m, and x̄ is a point of C where the
gradient vectors ∇fi(x̄) are linearly independent, i.e., the Jacobian matrix ∇F (x̄)
for the mapping F with component functions fi has rank m. This is the classical
case in differential geometry in which C is a smooth manifold around x̄. In the
framework of Theorem 10 we have X = IRn, whereas D is the singleton set consisting
of just the origin of IRm, which is the value of F (x̄). Hence NX(x̄) consists only of
the origin of IRn while ND

(
F (x̄)

)
= IRm. The constraint qualification of Theorem

10 reduces to the condition that the only combination of coefficients yi ∈ IR with
y1∇f1(x̄) + · · · + ym∇fm(x̄) = 0 is the 0 coefficients. This is precisely the linear
independence of the constraint gradients, which we have supposed. It follows that

NC(x̄) =
{
v = y1∇f1(x̄) + · · ·+ ym∇fm(x̄)

∣∣ yi ∈ IR
}
,

which is the linear subspace of IRn spanned by all the vectors ∇fi(x̄), whereas

TC(x̄) =
{
w

∣∣∇f1(x̄)·w = 0, . . . ,∇fm(x̄)·w = 0
}
,

which is the linear subspace of IRn orthogonal to the vectors ∇fi(x̄). These are the
classical normal and tangent spaces associated with the smooth manifold C at x̄.
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Normals to sets with linear constraint structure only: The constraint qualification
of Theorem 10 is superfluous in the case where X and D are boxes and the mapping
F is affine (its component functions fi are affine). The normal cone formula holds
then at every point x̄ ∈ C without need for any extra assumption. So too does the
corresponding tangent cone formula indicated above.

Significance: This fact is important in linear and quadratic programing. Therefore its
linear-algebraic proof will be supplied in full for the theoretically minded.

Proof: A shift of notation will greatly simplify matters. The condition F (x) ∈ D refers
to constraints fi(x) ∈ Ji for certain closed intervals Ji, each fi being affine, but
likewise the condition x ∈ X refers to similar constraints gj(x) ∈ Ij for certain
closed intervals Ij , where gj(x) = ej·x for the vector ej having jth component 1
but all other components 0. We can regard the gj constraints as a supplementary
batch of fi constraints and think of C as specified in that one manner. The normal
cone formula comes out the same either way. Thus, without loss of generality we
can focus on the case where no gj constraints enter in at all, i.e., X = IRn.

Having done this, we can proceed also to drop any constraint fi(x) ∈ Ji that’s
inactive because fi(x̄) lies in the interior of Ji; such a constraint has no effect on
C around x̄, and the multiplier yi it contributes has to be 0. Among the active
constraints remaining, some will correspond to equations—where Ji is a one-point
interval containing just fi(x̄)—while others will correspond to inequalities where
fi(x̄) is only the right endpoint or only the left endpoint of Ji. By a switch of
signs we can convert the left endpoint cases to right endpoint cases. Then, with
only right endpoints active, we can suppress the left endpoints as irrelevant. In
other words, we can take the intervals Ji corresponding to inequalities all to be
of the form (−∞, ci], where fi(x̄) = ci. Each fi is given by an affine expression
fi(x) = ai·x − bi, and we see that (through a change of coordinates if necessary
with x replaced by x′ = x− x̄) we can arrange that x̄ = 0, ci = 0.

In summary, we can revert to the case of C being specified by

ai·x ∈
{

(−∞, 0] for i ∈ [1, s],
[0, 0] for i ∈ [s + 1,m],

with all these constraints active at x̄ = 0. In this situation the tangent cone is

TC(x̄) =
{
w

∣∣ ai·w ≤ 0 for i ∈ [1, s], ai·w = 0 for i ∈ [s + 1,m]
}
,

whereas the set claimed to be NC(x̄) is

N =
{
y1a1 + ·+ ymam

∣∣ yi ≥ 0 for i ∈ [1, s], yi free for i ∈ [s + 1,m]
}
.
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It’s evident that each v ∈ N has v·w ≤ 0 for all w ∈ TC(x̄), so v is a regular
normal at x̄. Hence N ⊂ NC(x̄). The challenge is to show N ⊃ NC(x̄).

Let Y be the set of vectors y with yi ≥ 0 for i ∈ [1, s] but yi free for
i ∈ [s + 1,m], and let Y0 =

{
y ∈ Y

∣∣ ∑m
i=1 yiai = 0

}
. Let I be the set of indices

i ∈ [1, s] such that there exists y ∈ Y0 with yi > 0. There must actually be a
vector ỹ ∈ Y0 with ỹi > 0 for all i ∈ I simultaneously. (Taking separate vectors
that do the trick for each i ∈ I individually, add them to get ỹ.) For every
w ∈ TC(x̄) the vector ṽ := ỹ1a1 + · · · + ỹmam satisfies 0 ≥ ṽ·w =

∑m
i=1 ỹiai·w.

From the description of TC(x̄) we see this implies ai·w = 0 for all i ∈ I. Thus the
inequalities describing TC(x̄) must, for i ∈ I, hold as equations, and this is true
then too for the system specifying C (since in our set-up these are the same).
Reordering indices, we can suppose I = [r + 1, . . . , s] for a certain r.

Choose a maximal linearly independent subset of
{
ai

∣∣ i ∈ [r + 1,m]
}
, de-

noting the corresponding set of indices by I0; then
{
ai

∣∣ i ∈ I0

}
is a basis for the

subspace of IRn spanned by
{
ai

∣∣ i ∈ [r + 1,m]
}
. In particular, every vector in{

ai

∣∣ i ∈ [r + 1,m]
}

can be expressed as a linear combination of the vectors in{
ai

∣∣ i ∈ I0

}
. Then C is equally well specified by the alternative system

ai·x ∈
{

(−∞, 0] for i ∈ [1, r],
[0, 0] for i ∈ I0.

The constraint qualification of Theorem 10 for this system demands that the
only coefficients giving

∑r
i=1 yiai +

∑
i∈I0

yiai = 0 with yi ≥ 0 for i ∈ [1, r] be the
0 coefficients. Is this fulfilled? Consider any such coefficients yi for i ∈ [1, r] ∪ I0

and augment them by 0 coefficients for the remaining indices i so as to get a vector
y = (y1, . . . , ym) with

∑n
i=1 yiai = 0. Taking y′ = y + λỹ for λ > 0 sufficiently

large, we get
∑m

i=1 y′iai = 0 with y′i ≥ 0 for all i ∈ [1, s]. The maximality in the
selection of I and ỹ ensures that for i ∈ [1, r] not only ỹi = 0 but y′i = 0. Hence
yi = 0 for all i ∈ [1, r], and we are left with having

∑
i∈I0

yiai = 0. But the
vectors ai for i ∈ I0 are linearly independent, so this implies yi = 0 for all i ∈ I0

as well. The condition does therefore hold, as needed, so the formula of Theorem
10 is applicable to the alternative representation of C at x̄.

By this formula the vectors v ∈ NC(x̄) have the form v =
∑r

i=1 yiai +∑
i∈I0

yiai for coefficients that are nonnegative for i ∈ [1, r] but free for i ∈ I0.
Again we can augment these by 0 coefficients in the remaining indices to get
v =

∑m
i=1 yiai with yi ≥ 0 for i ∈ [1, r]. Then with y′ = y + λỹ for large enough

λ > 0 we have v =
∑m

i=1 y′iai with y′i ≥ 0 for i ∈ [1, s]. This confirms that v ∈ N .
Hence NC(x̄) ⊂ N , and we are done.
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Normals to polyhedral sets: Sets with linear constraint structure only are of course
polyhedral sets, by definition. Earlier we had a formula for the tangent cones to such
a set C in the case of a constraint representation of the type

x ∈ C ⇐⇒

 ai·x ≤ bi for i ∈ [1, s],
ai·x = bi for i ∈ [s + 1,m],
x ∈ X, with X a box,

which entails no loss of generality. Now we can obtain a corresponding formula for
the normal cones to such a set C. It’s only necessary to call upon Theorem 10, and
in doing so we are permitted to ignore the constraint qualification in that theorem,
because of the argument just given. Then for any x̄ ∈ C we have

v ∈ NC(x̄) ⇐⇒


v = y1a1 + · · ·+ ymam + z for some choice of

z ∈ NX(x̄) and

 yi ≥ 0 for i ∈ [1, s] with ai·x̄ = bi,
yi = 0 for i ∈ [1, s] with ai·x̄ < bi,
yi free for i ∈ [s + 1,m].

Here we are taking F (x) =
(
f1(x), . . . , fm(x)

)
with fi(x) = ai·x − bi and D =

J1 × · · · × Jm with Ji = (−∞, 0] for i ∈ [1, s] but Ji = [0, 0] for i ∈ [s + 1,m].

Generalization: Just as easily we could replace the particular inequalities and equa-
tions in this constraint representation for C by conditions of the form ai·x ∈ Ji

for any closed intervals Ji. The effect would merely be to alter the pattern of sign
restrictions on the yi’s.

Minimization with linear constraints: When a function f0 of class C1 is minimized
over a polyhedral set C, and C is furnished with this kind of representation, it
follows from Theorem 9 and the formula just developed that there must be an
expression

−∇f0(x̄) = ȳ1a1 + · · ·+ ȳmam + z̄

in terms of coefficients ȳi and a vector z̄ satisfying the conditions indicated. Much
the same is true for nonlinear constraints, except that the constraint qualification
in Theorem 10 can’t usually be avoided as an assumption needed to make the
normal cone formula work.
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Lagrange multipliers in the description of optimality: In combining Theorem 9
with Theorem 10, it’s possible to deduce optimality conditions of great generality
in which normal vector expressions involving Lagrange multipliers play a leading
role. Here’s the pattern. Suppose C is a set having a constraint representation of
the general kind in Theorem 10, and consider a problem in which a C1 function
f0 is minimized over C. Let x̄ be locally optimal. By Theorem 9 we must have
−∇f0(x̄) ∈ NC(x̄). By Theorem 10, under the additional assumption that the con-
straint qualification in that theorem is fulfilled at x̄, there must exist a representation

−∇f0(x̄) = ȳ1∇f1(x̄) + · · ·+ ȳm∇fm(x̄) + z̄

in which the coefficient vector (ȳ1, . . . , ȳm) belongs to the cone ND

(
F (x̄)

)
and the

vector z̄ belongs to the cone NX(x̄). This equation can be written instead as

∇f0(x̄) + ȳ1∇f1(x̄) + · · ·+ ȳm∇fm(x̄) + z̄ = 0,

but even better as

−
[
∇f0(x̄) + ȳ1∇f1(x̄) + · · ·+ ȳm∇fm(x̄)

]
= z̄.

Therefore, the local optimality of x̄ implies, under the constraint qualification in
Theorem 10, the existence of Lagrange multipliers ȳi such that

−
[
∇f0(x̄) + ȳ1∇f1(x̄) + · · ·+ȳm∇fm(x̄)

]
∈ NX(x̄)

with (ȳ1, . . . , ȳm) ∈ ND

(
F (x̄)

)
.

When D is a box, the final condition on (ȳ1, . . . , ȳm) corresponds to simple sign
restrictions on the ȳi’s, as already explained. Our goal now is to elaborate this result
in the conventional setting.

Lagrange multipliers for problems in conventional format: These facts will be
applied now to the feasible set C associated with a problem in conventional format:

(P) minimize f0(x) over all x ∈ X such that fi(x)
{
≤ 0 for i = 1, . . . , s,
= 0 for i = s + 1, . . . ,m.

It will be assumed throughout this discussion that the functions f0, f1, . . . , fm are
of class C1, and the set X is nonempty, closed and regular at all of its points. In
particular X could be IRn or any closed, convex set such as a box. An inequality
constraint fi(x) ≤ 0 will be called active at x̄ if fi(x̄) = 0 and inactive if fi(x̄) < 0.
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How this fits in: Here C =
{
x ∈ X

∣∣ F (x) ∈ D
}

for the vector mapping F with
component functions fi and the set D = (−∞, 0]s× [0, 0]m−s, which is a box. We
work out the details of our theory of Lagrange multipliers for this case. First we
need the corresponding specialization of the constraint qualification of Theorem
10, which will turn out to be the following.

Basic constraint qualification: For a feasible solution x̄ to such a problem (P), we’ll
say that the basic constraint qualification is fulfilled at x̄ if

only the vector y = (0, . . . , 0) satisfies

−
[
y1∇f1(x̄) + · · ·+ ym∇fm(x̄)

]
∈ NX(x̄)

with

 yi ≥ 0 for i ∈ [1, s] active at x̄,
yi = 0 for i ∈ [1, s] inactive at x̄,
yi free for i ∈ [s + 1,m].

THEOREM 11 (first-order optimality in conventional format). Let x̄ be a feasible

solution to problem (P) (with every fi of class C1 and X closed and regular).

(a) (necessary). If x̄ is locally optimal and the basic constraint qualification is fulfilled

at x̄, there must be a Lagrange multiplier vector ȳ = (ȳ1, . . . , ȳm) such that

−
[
∇f0(x̄) + ȳ1∇f1(x̄) + · · ·+ ȳm∇fm(x̄)

]
∈ NX(x̄)

with

 ȳi ≥ 0 for i ∈ [1, s] active at x̄,
ȳi = 0 for i ∈ [1, s] inactive at x̄,
ȳi free for i ∈ [s + 1,m].

(b) (sufficient). If such a vector ȳ exists, and f0 and C are convex (as in the case of

convex programming), then x̄ is globally optimal.

Note: When x̄ lies in the interior of X the gradient condition here becomes:

∇f0(x̄) + ȳ1∇f1(x̄) + · · ·+ ȳm∇fm(x̄) = 0.

Proof. As already mentioned, we have here the case of C =
{
x ∈ X

∣∣ F (x) ∈ D
}

with
F (x) =

(
f1(x), . . . , fm(x)

)
and the box D = J1 × · · · × Jm formed by taking Ji = (−∞, 0]

for i ∈ [1, s] but Ji = [0, 0] for i ∈ [s + 1,m]. Since D is a box, it’s regular at all of
its points. We saw earlier how the condition y ∈ ND

(
F (x̄)

)
reduces for a box D to sign

restrictions on the components yi of y. Here these restrictions come out as the ones in the
statement of the basic constraint qualification as well as in the theorem. We only have to
invoke Theorem 9 using the formula for NC(x̄) provided by Theorem 10.

79



Kuhn-Tucker conditions: A pair of vectors x̄ ∈ IRn and ȳ ∈ IRm is said to satisfy
the Kuhn-Tucker conditions (and be a Kuhn-Tucker pair) for (P) if x̄ is a feasible
solution to (P) and ȳ is an associated Lagrange multiplier vector as in Theorem 11:

−
[
∇f0(x̄) + ȳ1∇f1(x̄) + · · ·+ ȳm∇fm(x̄)

]
∈ NX(x̄)

with

 ȳi ≥ 0 for i ∈ [1, s] active at x̄,
ȳi = 0 for i ∈ [1, s] inactive at x̄,
ȳi free for i ∈ [s + 1,m].

The Kuhn-Tucker conditions thus constitute the chief mode of expressing first-order
optimality for optimization problems (P) in conventional format. Under the basic
constraint qualification, the local optimality of x̄ implies the existence of ȳ such that
(x̄, ȳ) is a Kuhn-Tucker pair. On the other hand, this property is sufficient for the
global optimality of x̄ in the case of convex programming.

Alternative expression of the sign restrictions on Lagrange multipliers: The restric-
tions on the ȳi’s in the Kuhn-Tucker conditions can fruitfully be stated in another
way. In combination with the requirement that x̄ satisfy fi(x̄) ≤ 0 for i ∈ [1, s]
and fi(x̄) = 0 for i ∈ [s + 1,m], they can jointly be summarized in terms of the
vector F (x̄) =

(
f1(x̄), . . . , fm(x̄)

)
by saying that

F (x̄) ∈ NY (ȳ), where Y := IRs
+ × IRm−s.

Reason: Here Y is a box: s copies of [0,∞) times m − s copies of (−∞,∞). For
ȳ = (ȳ1, . . . , ȳm) and ū = (ū1, . . . , ūm) (with ū = F (x̄) as a special case),{

ȳ ∈ Y
ū ∈ NY (ȳ)

}
⇐⇒

{
ȳi ≥ 0, ūi ≤ 0, ȳiūi = 0 for i ∈ [1, s]
ȳi free, ūi = 0 for i ∈ [s + 1,m]

}
.

Lagrangian function: An elegant expression of the Kuhn-Tucker conditions as a whole
can be achieved in terms of the Lagrangian for problem (P), which is the function

L(x, y) := f0(x) + y1f1(x) + · · ·+ ymfm(x) for x ∈ X and y ∈ Y = IRs
+× IRm−s.

Then ∇xL(x, y) = ∇f0(x) + y1∇f1(x) + · · ·+ ym∇fm(x) and ∇yL(x, y) = F (x).

Lagrangian form of the Kuhn-Tucker conditions: A pair of vectors x̄ and ȳ satisfies
the Kuhn-Tucker conditions for (P) if and only if x̄ ∈ X, ȳ ∈ Y , and

−∇xL(x̄, ȳ) ∈ NX(x̄), ∇yL(x̄, ȳ) ∈ NY (ȳ),

where Y = IRs
+ × IRm−s. This is immediate from the observations just made.
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Problems with an abstract constraint only: If there are no constraints in function
form, so (P) consists just of minimizing f0(x) over all x ∈ X (this set being identical
with C), the optimality condition furnished by Theorem 11 reduces to the one in
Theorem 9. At any locally optimal solution x̄ we must have

−∇f0(x̄) ∈ NX(x̄).

Problems with equality constraints only: Consider the case of (P) where no in-
equality constraints are present and X = IRn:

minimize f0(x) subject to fi(x) = 0 for i = 1, . . . ,m.

The basic constraint qualification turns out to mean the linear independence of the
vectors ∇f1(x̄), . . . ,∇fm(x̄). This is the case where C is a smooth manifold around
x̄, the geometry of which was explained earlier. We obtain from Theorem 11 that if
x̄ is a locally optimal solution at which such linear independence holds, there must
exist multipliers ȳ1, . . . , ȳm such that

∇f0(x̄) + ȳ1∇f1(x̄) + · · ·+ ȳm∇fm(x̄) = 0 (with ȳi free of restriction).

Problems with inequality constraints only: Consider instead the case of (P) where
X = IRn and s = m, the problem being to

minimize f0(x) subject to fi(x) ≤ 0 for i = 1, . . . ,m.

The basic constraint qualification comes out then as the requirement that
only the vector y = (0, . . . , 0) satisfies the conditions

y1∇f1(x̄) + · · ·+ ym∇fm(x̄) = 0 with
{

yi ≥ 0 for i active at x̄,
yi = 0 for i inactive at x̄.

When this holds at a locally optimal solution x̄, we conclude from Theorem 11 that
there must exist multipliers ȳ1, . . . , ȳm such that

∇f0(x̄) + ȳ1∇f1(x̄) + · · ·+ ȳm∇fm(x̄) = 0 with
{

ȳi ≥ 0 for i active at x̄,
ȳi = 0 for i inactive at x̄.
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THEOREM 12 (refined constraint qualification for linear constraints). For a

problem (P) in conventional format in which X is a box and some of the constraint

functions fi are affine, the following weaker condition can be substituted for the basic

constraint qualification in Theorem 11:

the only vectors y = (y1, . . . , ym) satisfying

−
[
y1∇f1(x̄) + · · ·+ ym∇fm(x̄)

]
∈ NX(x̄)

with

 yi ≥ 0 for i ∈ [1, s] active at x̄,
yi = 0 for i ∈ [1, s] inactive at x̄,
yi free for i ∈ [s + 1,m],

have yi = 0 for every i such that fi is not affine.

Thus, if (P) has only linear constraints, no constraint qualification is needed, and the

Kuhn-Tucker conditions are necessary for the local optimality of any feasible solution x̄.

Proof. For simplicity we can suppose the notation is chosen so that the indices of the
affine inequality constraints are i ∈ [1, q] while those of the affine equality constraints are
i ∈ [r + 1,m]. Let X ′ =

{
x ∈ X

∣∣ fi(x) ≤ 0 for i ∈ [1, q], fi(x) = 0 for i ∈ [r + 1,m]
}
, so

that (P) can be identified with the problem

(P ′) minimize f0(x) over all x ∈ X ′ such that fi(x)
{
≤ 0 for i = q + 1, . . . , s,
= 0 for i = s + 1, . . . , r.

In particular the locally optimal solutions are the same in both cases. Let x̄ be one at
which the refined constraint qualification holds.

Because the constraint system specifying X ′ is linear, Theorem 10 can be applied to
it without need for checking any constraint qualification (as was established above). In
consequence, NX′(x̄) consists of the vectors of the form

z′ =
q∑

i=1

yi∇fi(x̄) +
m∑

i=r+1

yi∇fi(x̄) with

 yi ≥ 0 for i ∈ [1, q] active at x̄,
yi = 0 for i ∈ [1, q] inactive at x̄,
yi free for i ∈ [r + 1,m].

Our strategy is to apply Theorem 11 to (P ′) in place of (P), using this information. We
do have X ′ closed as well as regular at all of its points, because X ′ is polyhedral. The
basic constraint qualification for (P ′) obliges us to examine the possibilities of having

−
r∑

i=q+1

yi∇fi(x̄) ∈ NX′(x̄) with

 yi ≥ 0 for i ∈ [q + 1, s] active at x̄,
yi = 0 for i ∈ [q + 1, s] inactive at x̄,
yi free for i ∈ [s + 1, r].
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The issue is whether this necessitates yi = 0 for all i ∈ [q+1, r]. It does, through the direct
combination of the formula for vectors z′ ∈ NX′(x̄) and the refined constraint qualification
being satisfied at x̄. The Kuhn-Tucker conditions for (P ′) must therefore hold at x̄: there
must exist Lagrange multipliers ȳi for i ∈ [q + 1, r] such that

−
[
∇f0(x̄) +

r∑
i=q+1

ȳi∇fi(x̄)
]
∈ NX′(x̄) with

 ȳi ≥ 0 for i ∈ [q + 1, s] active at x̄,
ȳi = 0 for i ∈ [q + 1, s] inactive at x̄,
ȳi free for i ∈ [s + 1, r].

Invoking the formula for vectors z′ ∈ NX′(x̄) once more, we end up with the additional
Lagrange multipliers needed to see that the Kuhn-Tucker conditions for (P) hold at x̄.

Convex programming with linear constraints: It follows from Theorem 12 along
with Theorem 11 that in any convex programming problem (P) with only linear
constraints, as in linear programming and quadratic programming, the existence
of a Lagrange multiplier vector ȳ satisfying the Kuhn-Tucker conditions with x̄ is
necessary and sufficient for the local—indeed global—optimality of x̄.

Second-order conditions: Until now in the study of Lagrange multipliers, we have been
occupied with only first-order conditions. The full theory of second-order necessary
conditions and sufficient conditions for local optimality is subtle and complicated.
Here we’ll be content with looking at a sufficient condition favored in the development
of numerical methods.

THEOREM 13 (second-order optimality in conventional format). Consider the

case of problem (P) where X is polyhedral and the functions f0, f1, . . . , fm are of class C2.

Suppose that x̄ and ȳ satisfy the Kuhn-Tucker conditions and, in addition,

w·∇2
xxL(x̄, ȳ)w > 0 for all w 6= 0 such that

w ∈ TX(x̄) and ∇fi(x̄)·w
{
≤ 0 for active i ∈ [1, s]
= 0 for inactive i ∈ [s + 1,m] and for i = 0.

Then x̄ is a locally optimal solution to (P).

Proof. For a penalty parameter value ρ > 0 of magnitude yet to be determined, consider
the problem

minimize f(x, u) := f0(x) +
m∑

i=1

ȳi

[
fi(x)− ui

]
+

ρ

2

m∑
i=1

[
fi(x)− ui

]2 over X ×D,

where D is the box formed by product of s intervals (−∞, 0] and m−s intervals [0, 0]. This
is a problem in which a C2 function f is minimized over a polyhedral set, and the sufficient
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condition in Theorem 6(b) is therefore applicable for establishing local optimality. Is this
condition satisfied at (x̄, ū), where ūi = fi(x̄)? It turns out that under our hypothesis it is,
provided ρ is high enough. This will be verified shortly, but first suppose it’s true, in order
to see where it leads. Suppose, in other words, that f(x, u) ≥ f(x̄, ū) for all (x, u) ∈ X×D

in some neighborhood of (x̄, ū).

Then for feasible x ∈ X near enough to x̄, the vector u(x) :=
(
f1(x), . . . , fm(x)

)
in

D will (by the continuity of the fi’s) be near to u(x̄) = z̄ with f(x, u(x)) ≥ f(x̄, ū). But
f(x, u(x)) = f0(x) when x is feasible, and in particular f(x̄, ū) = f0(x̄). It follows that
f0(x) ≥ f0(x̄) for all feasible x in some neighborhood of x̄, and we conclude that x̄ is
locally optimal in the given problem.

We proceed now with verifying that for large values of ρ the sufficient condition in
Theorem 6(b) is satisfied for the local optimality of (x̄, ū) in the problem of minimizing f

over X ×D. The condition in question involves first and second partial derivatives of f as
well as the tangent cone to the box X ×D, which from the characterization given earlier
for tangents to boxes can be expressed in the product form

TX×D(x̄, ū) = TX(x̄)× TD(ū).

Specifically, the condition requires that

∇f(x̄, ū)·(w, z) ≥ 0 for all (w, z) in TX(x̄)× TD(ū),

(w, z)·∇2f(x̄, w̄)(w, z) > 0 for all (w, z) 6= (0, 0) in TX(x̄)× TZ(ū)

with ∇f(x̄, ū)·(w, z) = 0.

The first partial derivatives are

∂f

∂xj
(x, u) =

∂L

∂xj
(x, ȳ) + ρ

m∑
i=1

[
fi(x)− ui

] ∂fi

∂xj
(x),

∂f

∂ui
(x, u) = −ȳi − ρ

[
fi(x)− ui

]
,

while the second partial derivatives are

∂2f

∂xk∂xj
(x, u) =

∂2L

∂xk∂xj
(x, ȳ) + ρ

m∑
i=1

[
fi(x)− ui

] ∂2fi

∂xk∂xj
(x) + ρ

∂fi

∂xk
(x)

∂fi

∂xj
(x),

∂2f

∂ul∂xj
(x, u) = −ρ

∂fl

∂xj
(x),

∂2f

∂xk∂ui
(x, u) = −ρ

∂fi

∂xk
(x),

∂2f

∂ul∂ui
(x, u) =

{
1 if l = i
0 if l 6= i.
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Because fi(x̄)− ūi = 0, we obtain that

∇f(x̄, ū)·(w, z) = ∇xL(x̄, ȳ)·w − ȳ·z,

(w, z)·∇2f(x̄, ū)(w, z) = w·∇2
xxL(x̄, ȳ)w + ρ

m∑
i=1

[
∇fi(x̄)·w − zi

]2
.

The sufficient condition we wish to verify (for ρ large) thus takes the form:

∇xL(x̄, ȳ)·w ≥ 0 for all w ∈ TX(x̄), ȳ·z ≤ 0 for all z ∈ TD(ū),

w·∇2
xxL(x̄, ȳ)w + ρ

m∑
i=1

[
∇fi(x̄)·w − zi

]2
> 0 for all (w, z) 6= (0, 0) with

w ∈ TX(x̄), ∇xL(x̄, ȳ)·w = 0, z ∈ TD(ū), ȳ·z = 0.

Here the first-order inequalities merely restate the relations −∇xL(x̄, ȳ) ∈ NX(x̄) and
ȳ ∈ ND(ū) (equivalent to ū ∈ NY (ȳ), as seen before), which hold by assumption. In the
second-order condition we obviously do have strict inequality when w = 0 and z 6= 0, since
the quadratic expression reduces in that case to ρ|z|2. Therefore, we can limit attention
to demonstrating strict inequality in cases where w 6= 0, or more specifically (through
rescaling), where |w| = 1. From the form of D and ū we know

z ∈ TD(ū)

ȳ·z = 0

}
⇐⇒


zi free for inactive i ∈ [1, s],
zi ≤ 0 for active i ∈ [1, s] with ȳi = 0,
zi = 0 for active i ∈ [1, s] with ȳi > 0,
zi = 0 for i ∈ [s + 1,m],

so for any w 6= 0 in TX(x̄) the minimum of the quadratic expression with respect to
z ∈ TD(ū) with ȳ·z〉 = 0 will be attained when

zi = zi(w) =


∇fi(x̄)·w for inactive i ∈ [1, s],
min

{
0,∇fi(x̄)·w

}
for active i ∈ [1, s] with ȳi = 0,

0 for active i ∈ [1, s] with ȳi > 0,
0 for i ∈ [s + 1,m].

Thus, we can limit attention further to pairs (w, z) not only with |w| = 1 but also with
zi = zi(w). We’ll suppose the claim for this special case is false and argue toward a
contradiction.

If the claim is false, there has to be a sequence of values ρν → ∞ along with vectors
wν ∈ TX(x̄) with |wν | = 1 such that ∇xL(x̄, ȳ)·wν

〉
= 0 and

wν ,∇2
xxL(x̄, ȳ)wν + ρν

m∑
i=1

[
∇fi(x̄)·wν − zi(wν)

]2

≤ 0,
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and hence in particular

wν·∇2
xxL(x̄, ȳ)wν ≤ 0,[

∇fi(x̄)·wν − zi(wν)
]2

≤ − 1
ρν

wν·∇2
xxL(x̄, ȳ)wν for all i.

Because the sequence {wν}∞ν=1 is bounded, it has a cluster point w̄. By the continuity of
the expressions involved, and the closedness of tangent cones, we get in the limit that

w̄ ∈ TX(x̄), |w̄| = 1, ∇xL(x̄, ȳ)·w̄ = 0, ȳ·z̄(w̄) = 0,

w̄·∇2
xxL(x̄, ȳ)w̄ ≤ 0,

[
∇fi(x̄)·w̄ − zi(w̄)

]2 ≤ 0 for all i.

The final batch of inequalities says that ∇fi(x̄)·w̄ = zi(w̄) for all i, which means

∇fi(x̄)·w

≤ 0 for active i ∈ [1, s] with ȳi = 0,
= 0 for inactive i ∈ [1, s] with ȳi > 0,
= 0 for i ∈ [s + 1,m].

These conditions along with the fact that F (x̄) ∈ NY (ȳ) and

∇xL(x̄, ȳ)·w̄ = ∇f0(x̄)·w̄ + ȳ1∇f1(x̄)·w̄ + · · ·+ ȳm∇fm(x̄)·w̄

also imply ∇f0(x̄)·w̄ = 0. We have arrived therefore at a vector w̄ 6= 0 for which the
second-order condition in the theorem is violated. This finishes the proof.

Specialization to linear constraints: If all the functions fi are affine, the sufficient
condition in Theorem 13 reduces to the one in Theorem 6(b). Indeed, the feasible
set C is polyhedral then, and the indicated constraints on w describe the vectors
w ∈ TC(x̄) with ∇f0(x̄)·w = 0. At the same time one has ∇2

xxL(x̄, ȳ) = ∇2f0(x̄).

Curvature of the feasible set when nonlinear constraints are present: The key
feature of Theorem 13, in contrast to Theorem 6(b), is that the possible curvature
of the boundary of C around x̄ has been accounted for through the replacement of
∇2f0(x̄) by the matrix ∇2

xxL(x̄, ȳ) = ∇2f0(x̄) + ȳ1∇2f1(x̄) + · · ·+ ȳm∇2fm(x̄).

Caution: It’s not true that the condition analogous to the one in Theorem 13, but
merely with w·∇2

xxL(x̄, ȳ)w ≥ 0, is necessary for the local optimality in (P), not
even if the basic constraint qualification is satisfied. Second-order necessary con-
ditions generally have to resort to a combination of several different Lagrange
multiplier vectors ȳ at the same point x̄. More sharply developed sufficient con-
ditions take on such a form as well. Such necessary or sufficient conditions lie
beyond the scope of our efforts here.
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