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Dual pairs of problems

A prototype problem: A € R™*" pec R™

min [|z(;
st. ||b—Az|, <7

The (Fenchel-Rockafellar) dual problem:

sup (b, z) — 7|zl

st ATy <1



Piecewise Linear-Quadratic Penalties

é(x) := sup [(z,u) — %uTBu]
uelU

U C R” is nonempty, closed and convex with 0 € U.
B € R™ ™ is symmetric positive semi-definite.

Examples:
Norms, gauges, support functions, least-squares, Huber density



PLQ Densities: Gauss, Laplace, Huber, Vapnik
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Convex Sets

Convex Sets
A subset C of R" is convex if

[z,y]CC Ya,yel,

where

[,y ={(1—Az)+ Ay |[0< A< 1}

is the line segment connecting x and y.



Convex Sets

Convex Sets
A subset C of R" is convex if

[z,y]CC Ya,yel,

where

[,y ={(1—Az)+ Ay |[0< A< 1}

is the line segment connecting x and y.

Convex Cones
A subset K of R" is convex if
MM CK VA>0 and K + K C K.



Convex functions and the epigraphical perspective

A function f : R® — R is said to be convex if

epi f = {(z,p) [ f(z) < p},

is convex.




Convex functions and the epigraphical perspective

A function f : R® — R is said to be convex if

epi f = {(z,p) | f(z) < p},

is convex.

f is lower semi-continuous (lsc) <= epi(f) is closed
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AC :={Az |z € C} CR™ and
B7'C:={y|ByeC}CR™

are convex.



Linear transformations and their pre-images

If A, BT € R™*" then both

AC :={Az |z € C} CR™ and
B7'C:={y|ByeC}CR™

are convex.

For example, the projection of a convex set onto an affine set is
convex, where the affine sets are translates of subspaces.



Linear transformations and their pre-images

If A, BT € R™*" then both

AC :={Az |z € C} CR™ and
B7'C:={y|ByeC}CR™

are convex.

For example, the projection of a convex set onto an affine set is
convex, where the affine sets are translates of subspaces.

Caution:
The linear image of a closed convex set may not be closed.



Linear transformations and their pre-images

If A, BT € R™*" then both
AC :={Az |z € C} CR™ and
B7'C:={y|ByeC}CR™
are convex.

For example, the projection of a convex set onto an affine set is
convex, where the affine sets are translates of subspaces.

Caution:
The linear image of a closed convex set may not be closed.

Convex hull: The convex hull of S C R” is the intersection of
all convex sets in R™ containing S, denoted conv (5).
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Affine sets and relative interior

Affine sets: Any set of the form 2% + S where z° € R” and
S C R" is a subspace.

Affine hull: The affine hull of a set S C R" is the intersection
of all affine sets that contain S, denoted aff (5).

Relative interior: The relative interior of a convex set is the
interior relative to its affine hull:

riC:={zxeC|3e>0st. (z+eB)naff (C)c C}

Properties: Let C C R be convex and A, BT € R™*" then

Ari(C) =r1i(AC) and
B7'1i(C) =1i(B7'C), whenever B7'ri (C) # 0.



The Hahn-Banach Theorem

Hyperplanes: Affine sets of co-dimension 1, or equivalently,
any set of the form

{z [(2,2) =B}
for some 8 € R and non-zero z € L.
The Hahn-Banach Theorem: Let C' be a non-empty convex
set in the Euclidean space E, and let M C E be a nonempty

affine set such that
MnriC =10.

Then there is a hyperplane H in E such that

M CH and HnNriC =0.



Supporting hyperplanes

If Z € rbdry (C) := clC \ ri C, then there is a hyperplane H
containing ¥ that does not meet the relative interior of C', or
equivalently,

dz st (z,2) < (2,T) VzeriC. (1)
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Supporting hyperplanes

If Z € rbdry (C) := clC \ ri C, then there is a hyperplane H
containing ¥ that does not meet the relative interior of C', or
equivalently,

dz st (z,2) < (2,T) VzeriC. (1)

In this case, H is said to be a supporting hyperplane to C' at .

| | | | | | |
-5 -1 =05 0 05 1 15

Question: Given z € R", does it define a supporting
hyperplane to C' and what are the associated support points.



Support functions
The support function for a set S C R" is given by
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Support functions
The support function for a set S C R" is given by

os (z) :==sup (z, ).
zesS

It is straightforward to show that
0s(z) =0c(z), where C :=conv(S).

Fact: Support functions are sublinear:
1. (positively homogeneous) o(Az) = Ao (z) YA > 0,
2. (subadditive) o(x +y) < o(x) + o(y).

Hoérmander’s Theorem: o : R” — R, := R, U {+oco} Isc.

o is sublinear <= epi(0) is a closed cvx cone <= o =oc,

where C:={z |(z,z) <o(z)Va}={z|(z,2) <1Vo(x) <1}



Convex functions and the epigraphical perspective

A function f : R” — R is said to be convex if

epi f = {(z,p) [ f(z) < p},

is convex.

epi (f)



Convex functions and the epigraphical perspective

A function f : R” — R is said to be convex if

epi f = {(z,p) [ f(z) < p},

is convex.
¥(x2,f(x2))
| f(xl.f(xl)) 3
-3 -2 -1 0 1 2 3 );1 hxy+ (1-Nx o );2
epi (f) FUA =Nz + Az2) < (1 =N f(z1) + Af(22)

YV 21,29 € dom f and X € [0, 1]

dom f:={z | f(z) < o0}



Coordinate inf-projection of a convex set

Let C C R™*! be a convex set such that the projection of C
onto its last coordinate is bounded below. Define f : R™ — R}
by

flz) =inf{Zp41 |[TT € Cst. T=(2,Tm+1)},

where, again, the infimum over the empty set is 4oc0.



Coordinate inf-projection of a convex set

Let C' C R™*! be a convex set such that the projection of C
onto its last coordinate is bounded below. Define f : R™ — R}
by

flz) =inf{Zp41 |[TT € Cst. T=(2,Tm+1)},

where, again, the infimum over the empty set is 4oc0.

epi (f) = O + ({0} x )
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Coordinate inf-projection of a convex set

Let C' C R™*! be a convex set such that the projection of C
onto its last coordinate is bounded below. Define f : R™ — R}
by

flz) =inf{Zp41 |[TT € Cst. T=(2,Tm+1)},

where, again, the infimum over the empty set is 4oc0.

epi (f) = O + ({0} x )

S5 o1 05 0 05 1 15
Example: f(x):= inf  p
(@) (1) €epi (f)



Inf-projection: h(x) := inf, f(y, z)

Let f : R™ x R® — R be convex and consider the projection

P(yaﬂhu) = (1"/1’)'



Inf-projection: h(x) := inf, f(y, z)
Let f : R™ x R® — R be convex and consider the projection
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by epi (h) := Pepi (f) is also convex:
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Inf-projection: h(x) := inf, f(y, z)

Let f : R™ x R® — R be convex and consider the projection

P(y,x,p) = (z, p).

Since the set Pepi (f) is convex, the function h : R* — R given
by epi (h) := Pepi (f) is also convex:

h(x) := inf
(@) (ffc,u)epepi(f)'u

=inf{u [Jy e R™ s.t. f(y,2) <p}



Inf-projection: h(x) := inf, f(y, z)

Let f : R™ x R® — R be convex and consider the projection

P(y,x,p) = (z, p).

Since the set Pepi (f) is convex, the function h : R* — R given
by epi (h) := Pepi (f) is also convex:
h(x) := inf
(@) (2,1) € Pepi (f) a
=inf{u [Jy e R™ s.t. f(y,2) <p}

= inf{u inf f(y, ) < u}




Inf-projection: h(x) := inf, f(y, z)

Let f : R™ x R® — R be convex and consider the projection

P(y,x,p) = (z, p).

Since the set Pepi (f) is convex, the function h : R* — R given
by epi (h) := Pepi (f) is also convex:

h(zx) := inf
(@) (2,11) € Pepi (f)'u
=inf{u [Jy e R™ s.t. f(y,2) <p}
= inf{u inf f(y,z) < ,u}
y

= inf f(y,z).
Yy




The support function for epi(f): the convex conjugate

Oepi f ((27 _1)) = Sup <(Z7 _1)’ (CC,/L»
fl@)<p

= sup [(z,2) — p
f(x)<p

= Sgp[@,x) — f(=)]
=: f*(2)



The support function for epi(f): the convex conjugate

Oepi f ((Z7 _1)) = Sup <(Z’ _1)’ (CC,;L»

f(x)<p
— sup [(z,2) — 4]
f(x)<p
= sgp[(zyw — f(=)]
= [*(2)

Subgradients:

T € argmax[(z,z) — f(x)] <= (z,—1) supports epi(f) at (Z, f(T)).

x
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The support function for epi(f): the convex conjugate

Oepi f ((Z7 _1)) = Sup <(Z’ _1)’ (CC,;L»

f(x)<p
— sup [(z,2) — 4]
f(x)<p
= sgp[(zyw — f(=)]
= [*(2)

Subgradients:

T € argmax[(z,z) — f(x)] <= (z,—1) supports epi(f) at (Z, f(T)).

x

— <(Z7_1)’ (f,f(f» 2 <(Z7_1)’ (z7f($))> Ve dornf,
— f(z)>f@)+(z,2—T) VxeR"

z € Of(T), the subdifferential of f at .



The conjugate and subgradients

I I I |
-3 -2 —1 0 1 2 3

Of(Z) is a singleton <— 0f(z) = {Vf(Z)}.



The conjugate and subgradients
ff(z) > (z,x) — f(x) V xz €dom(f)and z € R"
— f(z) > (z,2) — f"(2) V z € dom (f*) and x € R”

— @)= ") VreR"



The conjugate and subgradients

f*(z) > (z,z) — f(x) V x €dom(f)and z € R"
— f(z) > (z,2) — f"(2) V z € dom (f*) and x € R”

— @)= ") VreR"

But
z€0f(x) <= (za) = f(2)+ [(2),

soVz € dom (9f) :={z |0f(z) #0} and z € Of(x),

f(z) < {z,2) = £7(2) < supl{w, ) — [1(w)] = f7(2) < f(@).



The conjugate and subgradients

f*(z) > (z,z) — f(x) V x €dom(f)and z € R"
— f(z) > (z,2) — f"(2) V z € dom (f*) and x € R”

— @)= ") VreR"

But
z€0f(x) <= (za) = f(2)+ [(2),

soVz € dom (9f) :={z |0f(z) #0} and z € Of(x),

f(z) < {z,2) = £7(2) < supl{w, ) — [1(w)] = f7(2) < f(@).

So f(z) = f**(x) on dom (9f), where ridom (f) C dom (9f).
Consequently f** =clf, soif f =clf, 0f* = (0f)~ .



The convex indicator function

C C R™ non-empty closed convex

0 , e,
b (z) = {+oo r¢C

d¢c(2) = 0c (2)

0 () ={2z|{z,y—2) <0 VyelC} (zel)
= N(z|C) the normal cone to C' at z

= set of supporting vectors to C' at x



The conjugate under inf-projection

Let F : R® x R™ — R and define the following optimal value
function by inf-projection:

ply) = inf F(z,y).

Then
p*(z) = sgp[<z, y) — p(y)]

= sup[(z, y> - lng(xv y)]

Yy
= supsup|(z, ) — F(z, )]
= (sup)[(((), z), (z,y)) — F(z,y)]

= F*(0,2)
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function by inf-projection: p(y) := inf, F(z,y).
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z € Op(y) and T € argmin F(z,y).
x
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The subdifferential under inf-projection

Let F : R" x R™ — R and define the following optimal value
function by inf-projection: p(y) := inf, F(z,y). Then

z € Op(y) and T € argmin F(z,y).
x

<~
F(z,y)+ F(0,2) = p(y) +p"(2) < (z,9) = ((0,2), (T, y))
—
(0,2) € OF (z,y) or equivalently (T,y) € IF*(0,z)
<~

p(y) +p°(2) < F(7,y) + F7(0,2) <{(0,2), (T,9)) = (2,9)



The subdifferential under inf-projection

Let F : R" x R™ — R and define the following optimal value
function by inf-projection: p(y) := inf, F(z,y). Then

z € Op(y) and T € argmin F(z,y).
x

—

F(@,y) + F*(0,2) = p(y) + p"(2) < (2,9) = ((0,2), (T,y))
—

(0,2) € OF (z,y) or equivalently (T,y) € IF*(0,z)

<~

p(y) +p°(2) < F(T,y) + F7(0,2) <{(0,2), (T, y)) = (2,9)
<~

z€0p(y) and T € arg;nin F(z,y).
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Duality Theory

Let F: R” x R™ — R and define the following optimal value
functions by inf-projection:

p(y) :==inf F(z,y) and ¢(w):=inf F*(w,2).
This set-up yields the primal-dual pair

p(0) = igf F(x,0) and p**(0) = sgp —F*(0,2) = —q(0).

p(0) > p*™*(0) = —q(0) always holds
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1. If 0 € ri (dom p), then p(0) = —¢(0) and the infimum ¢(0) is
attained, if finite, in which case argmax, —F*(0, z) is nonempty
and Op(0) = argmax, —F*(0, z). If, in fact, 0 € int (dom p) and
p(0) is finite, then dp(0) is bounded.
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1. If 0 € ri (dom p), then p(0) = —¢(0) and the infimum ¢(0) is
attained, if finite, in which case argmax, —F*(0, z) is nonempty
and Op(0) = argmax, —F*(0, z). If, in fact, 0 € int (dom p) and
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2. If 0 € ri(domg), then p(0) = —¢(0) and the infimum p(0) is
attained, if finite, in which case argmin, F'(z,0) is nonempty and
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Duality Theory

p(y) :=inf, F(z,y) and g¢(w):=inf, F*(w,z).

1. If 0 € ri (dom p), then p(0) = —¢(0) and the infimum ¢(0) is
attained, if finite, in which case argmax, —F*(0, z) is nonempty
and Op(0) = argmax, —F*(0, z). If, in fact, 0 € int (dom p) and
p(0) is finite, then dp(0) is bounded.

2. If 0 € ri(domg), then p(0) = —¢(0) and the infimum p(0) is
attained, if finite, in which case argmin, F'(z,0) is nonempty and
9q(0) = argmin, F'(x,0). If, in fact, 0 € int (dom ¢) and ¢(0) is
finite, then 0q(0) is bounded.

3. Optimal solutions are characterized by

Z € argmin, F(z,0)
§ € argmax, —F*(0, 2) < (0,2) € 9F(z,0) < (z,0) € OF*(0,2).
F(z,0) = —F*(0,2)
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Lagrangian Duality

The Lagrangian function:

L(x,2) = igf[F(%y)—(Ayﬂ = —Sgp[@’y)—F(m,y)]

Example: F(z, (u,0)) = h(Azx +u) + g(z + 0)+5 [u]] + o]
L(z, (z,w)) = (inf) h(Az + u) + g(z + v) — {(z,w), (u,v))

= —{sup({z,u) —h(Az +w)] + sup[(w,v) —g(z +v)] }

u



Lagrangian Duality

The Lagrangian function:

L(x,2) = igf[F(%y)—(Ayﬂ = —Sgp[@’y)—F(m,y)]

Example: F(z,(u,v)) := h(Az +u) + g(x + v)—l—%”qu + [vl2
Lz, (z,w)) = inf A(Az+u) + (@ +v) = {(z,w), (u,v))
= —{supl(z, ) — A4z + )]+ suplfw, o) oo +2)] )

u

(r:= Az +u) (s:=x+0)



Lagrangian Duality

The Lagrangian function:

L(x,2) = igf[F(%y)—(Ayﬂ = —Sgp[@’y)—F(m,y)]

Example: F(z, (u,0)) := h(Az + u) + g(@ + v)+5 [u]5 + [[v]3
L(@, (2, w)) = inf h(Az +u) + g(z +v) = {(z,w), (w,0))
= —{supl(z,u) — h(Az +w)] + supl(w,v) - g( + )] }
(r:= Az +u) (s:=z+v)
= —{supl(z,r — Az) = h(r)] + supl{w,s —x)—g(s)] }



Lagrangian Duality

The Lagrangian function:

L(x,2) = igf[F(%y)—(Ayﬂ = —Sgp[@’y)—F(m,y)]
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