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Abstract. Bruinier and Yang conjectured a formula for intersection numbers on an arith-
metic Hilbert modular surface, and as a consequence obtained a conjectural formula for
CM(K).G1 under strong assumptions on the ramification in K. Yang later proved this con-
jecture under slightly stronger assumptions on the ramification. In recent work, Lauter and
Viray proved a different formula for CM(K).G1 for primitive quartic CM fields with a mild
assumption, using a method of proof independent from that of Yang. In this paper we show
that these two formulas agree, for a class of primitive quartic CM fields which is slightly
larger than the intersection of the fields considered by Yang and Lauter and Viray. Further-
more, the proof that these formulas agree does not rely on the results of Yang or Lauter and
Viray. As a consequence of our proof, we conclude that the Bruinier-Yang formula holds for
a slightly largely class of quartic CM fields K than what was proved by Yang, since it agrees
with the Lauter-Viray formula, which is proved in those cases. The factorization of these
intersection numbers has applications to cryptography: precise formulas for them allow one
to compute the denominators of Igusa class polynomials, which has important applications
to the construction of genus 2 curves for use in cryptography.

1. Introduction

In this paper we study the relationship between two formulas proved for arithmetic inter-
section numbers on the Siegel moduli space of principally polarized abelian surfaces. Specif-
ically, these are formulas for the arithmetic intersection of the CM points of K, denoted
by CM(K), with the Humbert surface G1, which parametrizes abelian surfaces isomorphic
to a product of elliptic curves with the product polarization; the `-part of this arithmetic
intersection number is denoted (CM(K).G1)`.

The study of these particular intersection numbers was largely motivated by applications
to cryptography. In order to generate genus 2 curves over a finite field whose Jacobians
have prime order, the CM method proceeds by computing the minimal polynomials of the
invariants of the genus 2 curves with CM by a primitive quartic CM field K. These minimal
polynomials are analogous to the Hilbert class polynomials for imaginary quadratic fields
K. Indeed, Igusa defined a collection of invariants for genus 2 curves and proved expressions
for them in terms of quotients of Siegel modular forms. For genus 2 curves with complex
multiplication (CM) by a primitive quartic CM field K, these invariants lie in the Hilbert
class field of the reflex field of K, and their minimal polynomials, Igusa class polynomials,
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have coefficients which are rational, not necessarily integral as is the case for Hilbert class
polynomials related to invariants of elliptic curves.

Ignoring cancellation with numerators, the primes which appear in the denominators of
Igusa class polynomials are those which appear in (CM(K).G1), the arithmetic intersection
on the Siegel moduli space of the divisor of the Siegel modular form χ10 with the CM points
of K. In [GL07], it was proved that these primes are those ` for which there is a solution to
an Embedding Problem, that is, there exists an embedding of OK into M2(B`,∞) with certain
properties. Studying this embedding problem, [GL07] gave a bound on the primes which
can appear, and [GL11] gave a bound on the powers to which they can appear.

At the same time, Bruinier and Yang, using methods from Arakelov intersection theory,
gave a conjectural exact formula for the factorization of the denominators under certain
conditions on the ramification in the primitive quartic CM field K [BY06]. They assume

that the discriminant of K is D2D̃, where D and D̃ are both primes congruent to 1 (mod 4).
In [Yan10, Yan], Yang proved the conjectured intersection formula assuming the ring of
integers of K is generated by one element over the ring of integers of the real quadratic
subfield. Yang’s proof uses results of Gross-Keating, and then computes local densities by
evaluating certain local integrals over the quaternions.

In practice, very few primitive quartic CM fields have ramification of such restricted form.
In [GJLL+11], Grundman, Johnson-Leung, Salerno, Wittenborn, and the third and last
author studied all 13 quartic cyclic CM fields in van Wamelen’s tables of CM genus 2 curves
defined over Q, compared denominators with the number of solutions to the Embedding
Problem and Bruinier and Yang’s formula, and found that the Bruinier-Yang formula does
not hold in general as stated when the assumptions on the ramification of K are relaxed. For
applications to the computation of genus 2 curves for cryptography, it is important to have
a precise formula for the denominators of Igusa class polynomials which holds for general
primitive quartic CM fields.

In [LV], the third and last author proved a formula for (CM(K).G1) for primitive quartic
CM fields K with almost no assumptions on K. A simplified version of this formula holds
with an extra mild assumption. The proof of their formula follows from parameterizing
solutions to the Embedding Problem by pairs of endomorphisms of a supersingular elliptic
curve E, x, u ∈ End(E) with a fixed norm and trace. This, in turn, is related to a counting
problem studied by Gross and Zagier in their formula for the factorization of differences of
singular moduli.

The formula given by Bruinier and Yang is strikingly similar to the simplified version of
the formula in [LV]. Indeed, both formulas involve two nested sums where the summand is
a product that includes the number of ideals of a given norm. However, the Bruinier-Yang
formula counts ideals in a quartic CM field, whereas the Lauter-Viray formula counts ideals
in an imaginary quadratic order.

In this paper, we show that the formulas of Bruinier-Yang (BY) and Lauter-Viray (LV)
agree, without using that the formulas compute the same arithmetic intersection number.
As a consequence of our result, we conclude that the BY formula holds for a slightly larger
class of quartic CM fields K than what was proved by Yang. See §5 for more details.

1.1. Idea of proof. The BY formula sums over elements in F̃ , the real quadratic subfield

of K̃, the reflex field of K, counting the number of ideals of K̃ with certain norms, with a
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certain multiplicity. The LV formula sums over certain integers which turn out to be in one-

to-one correspondence with the elements of F̃ which arise in BY, under the assumptions on
the ramification of K (see Proposition 5.3). For each such integer n in the LV formula, two
related imaginary quadratic fields are defined, with suborders of discriminants du = du(n)
and dx = dx(n) respectively. The LV formula counts ideals in Z[(du +

√
du)/2] with norm

equal to N , a quantity related to n, with certain multiplicities. The heart of our proof of the
equality of these two formulas is Proposition 6.7, which shows how the splitting behavior of

certain primes in the quadratic extension K̃/F̃ is related to the splitting behavior of certain
primes in the quadratic extensions Q(

√
du) and Q(

√
dx). Thus the results of this paper can

be viewed as a kind of “reciprocity” between splitting behavior of certain primes in different
quadratic extensions. The resulting equality of local factors in the BY and LV formulas also
involves the multiplicities which appear in the LV formula arising from genus theory, and
indeed our proofs rely heavily on computations of related Hilbert symbols.

1.2. Outline of paper. In §§2 and 3, we precisely state the BY formula and the LV formula,
respectively. We also prove that these formulas can be expressed as a product of local factors,
which will be instrumental in the proof of our main result.

Both formulas rely on a relative integral basis for the ring of integers of K over the ring
of integers of the real quadratic subfield F . In §4 we give the possibilities for this integral

basis under the assumption that D is prime and D̃ is squarefree.
We precisely state our main result in §5 and begin the proof by showing that the BY

formula and LV formula both sum over the same indices. The crux of the proof is in §6,
where we show that the summands in the BY formula and LV formula agree by comparing
the local factors.

1.3. Notation. Let F/Q denote a real quadratic field, and let

D = DiscF/Q(OF ).

Let A,B ∈ 1
2
Z be such that A+B

√
D ∈ OF and K = F (

√
A+B

√
D) is a totally imaginary

quadratic extension of F . Throughout this paper, K will be assumed to be a primitive quartic
CM field, which is the case if it is either non-Galois or Galois cyclic [Shi98, Ch. II, §8.4].
Write

D̃ = NormF/Q(DiscK/F (OK))

and write F̃ = Q(
√
D̃). There is a choice of CM-type of K for which the reflex field K̃

equals F̃ (
√

2A+ 2
√
A2 −B2D); throughout we work with this fixed type and reflex field.

Denote the relative discriminant of K̃/F̃ by

DK̃/F̃ = DiscK̃/F̃ (OK̃).
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2. The Bruinier-Yang formula

In this section, we describe the formula for (CM(K).G1)` that was conjectured by Bruinier
and Yang [BY06] and later proved by Yang [Yan]. One of the factors (which we denote by
RK̃/F̃ ) in this intersection formula is multiplicative, so it makes sense to express it in terms
of local factors over each prime. The key result of this section is Theorem 2.5, which does
exactly this. We start by recalling the necessary definitions to state the formula of Bruinier
and Yang.

2.1. Yang’s Theorem.

Definition 2.1. Let a ⊆ F̃ be an ideal. We define

RK̃/F̃ (a) := #{n ⊂ OK̃ | NormK̃/F̃ (n) = a}.

The following proves a special case of the conjecture of Bruinier and Yang, which we will
refer to throughout as the Bruinier-Yang formula.

Theorem 2.2. [Yan, Thm. 1.2] Assume that D and D̃ are congruent to 1 modulo 4 and

prime. Further assume that OK = OF [(w +
√
A+B

√
D)/2] for some w ∈ OF ; this implies

that D̃ = A2 −B2D. Then for each rational prime `, (G1.CM(K))`/(log `) equals

(2.1)
∑

δ=D−x2
4
∈Z≥0

∑
n s.t. n+δ

√
D̃

2D
∈D−1

K̃/F̃

|n|<δ
√
D̃

B
n+δ
√
D̃

2D

(`),

where x is some integer, and

Bt(`) =
∑
l|`

{
0 if l splits in K̃
1
2
(vl(t) + 1)RK̃/F̃ (tDK̃/F̃ l

−1)f(l/`) otherwise,

where the sum ranges over prime ideals l of OF̃ lying over ` and f(l/`) denotes the inertial
degree of l over OF .

Remarks 2.3.

(1) According to [KW89], if A2 − B2D is not a square, then K is primitive, so this

assumption is certainly satisfied if D̃ is prime or squarefree.
(2) In Lemma 4.4 and Corollary 4.5 of [BY06], it is proved that under the assumptions

of the above theorem, Norm(DK̃/F̃ ) = D.

(3) If D = 5 so that the only value for δ is 1, then Yang [Yan10] showed that the same

statement holds if the assumption that D̃ is 1 modulo 4 and prime is replaced with

the assumption that D̃ is 1 modulo 4 and squarefree.
(4) Yang’s theorem and the Bruinier-Yang conjecture actually deal with intersections of

Hirzebruch-Zagier divisors with the CM-cycle on Hilbert modular surfaces. However,
as the cycle CM(K) naturally lives on a Hilbert modular surface, and the pullback
of G1 can be expressed as a sum of Hirzebruch-Zagier divisors [vdG88, Prop. 2.8,
Chap. IX], the work of Yang implies Theorem 2.2.
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2.2. A local interpretation of the Bruinier-Yang formula.

Definition 2.4. Let p be a rational prime, and let a be an ideal in F̃ . Then we define:

εK̃/F̃ (p, a) :=
∏

p|p,vp(a)>0


1
2
(1 + (−1)vp(a)) if p is inert in K̃

vp(a) + 1 if p is split in K̃

1 otherwise.

Let n ∈ Z be such that |n| < δ
√
D̃ and such that N := (n+δ

√
D̃

2D
) divides D−1

K̃/F̃
. For

simplicity, we let t = n+δ
√
D̃

2D
. Assume that Norm(DK̃/F̃ ) = D. Then we define

N := Norm(NDK̃/F̃ ) =
δ2D̃ − n2

4D
.

Theorem 2.5. Let ` be a rational prime. If vl(NDK̃/F̃ ) = 0 for all primes l|` in OF̃ , then

Bt(`) = 0. Assume that there exists exactly one prime l|` in OF̃ such that vl(NDK̃/F̃ ) > 0

and this prime l is unramified in K̃. Then

(2.2) Bt(`) =


vl(N)+1

2
f(l/l)

∏
p|N,p6=` εK̃/F̃ (p,NDK̃/F̃ ) if l is inert in K̃/F̃ ,

and vl(N) ≡ 1 mod 2

0 otherwise.

Proof. If vl(NDK̃/F̃ ) = 0 for all primes l in OF̃ lying over `, then l−1NDK̃/F̃ is not integral
so it cannot be the norm of an integral ideal in OK̃ . Thus,

RK̃/F̃ (l−1NDK̃/F̃ ) = 0

for all l|` and so Bt(`) = 0.
Henceforth, assume that there exists exactly one prime l|` in OF̃ such that vl(NDK̃/F̃ ) > 0

and this prime l is unramified in K̃. Then for any OF̃ -prime l′|`, l′ 6= l, the ideal l′−1NDK̃/F̃

is not integral and so RK̃/F̃ (l′−1NDK̃/F̃ ) = 0. Thus we have the simplified expression

Bt(`) =

{
0 if l splits in K̃
1
2
(vl(N) + 1)RK̃/F̃ (NDK̃/F̃ l

−1)f(l/`) otherwise.

To prove the local formula, first assume that l is not inert in K̃/F̃ . By assumption, l is also

unramified, so l must be split and BN(`) = 0. If l is inert in K̃/F̃ and vl(N) = vl(NDK̃/F̃ ) is

even, then vl(l
−1NDK̃/F̃ ) is odd. But since l is inert, the l-valuation of NormK̃/F̃ (B) is even

for any ideal B of K̃. Thus R(l−1NDK̃/F̃ ) = 0 = Bt(`).

From now on, we may assume that l is inert in K̃ and that vl(N) is odd. Recall that by
definition, we have RK̃/F̃ (l−1NDK̃/F̃ ) = #{a ⊂ OK̃ | NormK̃/F̃ (a) = NDK̃/F̃ l

−1}.
By the unique factorization of ideals in OK̃ and OF̃ ,

RK̃/F̃ (NDK̃/F̃ l
−1) =

∏
p

∏
p|p

RK̃/F̃ (pvp(ND
K̃/F̃

l−1)).
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Since the ideal NDK̃/F̃ l
−1 is integral, we need only consider rational primes p such that p|N .

Additionally, the factor at ` is equal to 1, so

RK̃/F̃ (NDK̃/F̃ l
−1) =

∏
p|N,p6=`

∏
p|p

RK̃/F̃ (pvp(ND
K̃/F̃

)).

Then it suffices to show that
∏

p|pRK̃/F̃ (pvp(ND
K̃/F̃

)) = εK̃/F̃ (p,NDK̃/F̃ ) for p 6= `.

Let p|p be a prime ideal in OF̃ . Let v = vp(NDK̃/F̃ ). If p is inert in K̃, then there is a

unique prime P lying over p and NormK̃/F̃ (P) = p2. Thus if v is odd, there are no ideals

in OK̃ whose relative norm has p-adic valuation v, and if v is even, RK̃/F̃ (pv) = 1. Now

suppose that p splits in K̃. Then we can write p = P1P2 and NormK̃/F̃ (Pi) = p so the only

ideals in OK̃ with relative norm equal to pv are of the form Pn1
1 Pn2

2 , where n1 + n2 = v and

0 ≤ n1, n2 ≤ v. Thus RK̃/F̃ (pvp(ND
K̃/F̃

)) = v + 1. Finally, if pOK̃ = P2 is ramified, then the

only ideal in OK̃ with relative norm pv is Pv, so RK̃/F̃ (pvp(ND
K̃/F̃

)) = 1. We observe that this

matches the expression for εK̃/F̃ (p,N) exactly. �

3. The Lauter-Viray formula

In this section, we describe the formula for (CM(K).G1)` proved by the third and last
author [LV]. As in the Bruinier-Yang formula, some of the factors in this intersection formula
are multiplicative. The key result of this section is Theorem 3.3 where we show that the
formula in [LV] has an expression involving products of local factors.

3.1. A simplified version of the Lauter-Viray formula. Throughout, we assume that
OK is freely generated over OF and write η for a generator, i.e., OK = OF [η]. We define
integers α0, α1, β0, β1 (depending on η) satisfying

TrK/F (η) = α0 + α1
D +

√
D

2
, and NormK/F (η) = β0 + β1

D +
√
D

2
.

Let ` be a rational prime and let δ be a positive integer such that D − 4δ is a square. We
define

cK := α2
0 + α0α1D + α2

1

D2 −D
4

− 4β0 − 2β1D.

For any integer n such that 2D|(n+ cK) and δ2D̃−n2

4D
is a positive integer, we define

tu := α1δ,

tx := α0 +
1

2
(D −

√
D − 4δ)α1,

du(n) := (α1δ)
2 + 4

(n+ cK)δ

2D
,

dx(n) := (α0 +
1

2
(D −

√
D − 4δ)α1)

2 − 4

(
β0 +

1

2
(D −

√
D − 4δ)β1 +

n+ cK
2D

)
,

txu∨(n) = β1δ +
√
D − 4δ

n+ cK
2D

.

The curious reader may refer to [LV, §2] to see how these quantities arise.
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Theorem 3.1. [LV, Thm. 2.10] Assume that for every δ ∈ Z>0 and n ∈ Z such that D−4δ

is a square, 2D|(n+ cKδ) and N := δ2D̃−n2

4D
∈ Z>0, we have that ` does not divide both δ and

N and that du(n) is a fundamental discriminant. Then (CM(K).G1)`/(log `) equals

(3.1)
∑
δ∈Z>0
D−4δ=�

∑
n∈Z,

2D|n+cKδ
δ2D̃−n2∈4DZ>0

µ(n)ρ̃du(n)(N)Rdu(n)(N`
−1),

where Rd(A) = #{b ⊆ Od = Z[d+
√
d

2
] : b invertible ,Norm(b) = A},

µ(n) =

{
v`(N) if `|gcd(du(n), dx(n)),
v`(N)+1

2
otherwise,

ρ̃d(A) =


0 if (d,−A)p = −1

for some p|d, p 6= `,

2#{p:p|gcd(d,A),p 6=`} otherwise,

and (a, b)p denotes the Hilbert symbol at p.

3.2. A local interpretation of the Lauter-Viray formula.

Definition 3.2. Let Od = Z[d+
√
d

2
]. Define

εd(p,A) =


1
2
(1 + (−1)vp(A)) if p is inert in Od
vp(A) + 1 if p is split in Od
2 if p|d and (d,−A)p = 1

0 otherwise.

Theorem 3.3. For any δ, n, N which arise as in Theorem 3.1, let du = du(n) and dx =
dx(n). Let ` be a prime that does not ramify in both Odu and Odx. Then

(3.2) µ(n)Rdu(`−1N)ρ̃du(N) =


µ(n)

∏
p|N,p6=` εdu(p,N) if ` is inert in Odu or Odx

and v`(N) ≡ 1 mod 2

0 otherwise.

Proof. Recall that the Hilbert symbol (a, b)p remains unchanged when a is multiplied by a

norm from Qp(
√
b). Thus since dxdu = NormQp(

√
−N)(txtu − 2txu∨ − 2

√
−N) [LV, Eqn. 3.6],

we have
(du,−N)p = (dx,−N)p

for all primes p (including ∞).
Assume that ` is split in Odu or Odx , or that ` is inert in Odu or Odx and v`(N) is

even. Then the right hand side of formula 3.2 is zero. If ` is split in Odu or Odx , then the
Hilbert symbol (du,−N)` = 1 because either du or dx is a square modulo `. Recall that
if Q`(

√
a) is a nontrivial unramified extension of Q`, then (a, b)` = 1 if and only if v`(b)

is even ([Ser70, Thm 1, p. 39]). Thus if ` is inert in Odu or Odx and v`(N) is even then
(du,−N)` = 1. By [LV, Proof of Cor. 2.7] du is negative and so (du,−N)∞ = −1. Therefore,
by the product formula, there exists some prime p 6= ` such that (du,−N)p = −1. If p is

ramified in Odu , then this is exactly the condition to have ρ̃du(N) = 0, so the left hand side
7



of formula 3.2 is also zero. If p is unramified in Odu , then since (du,−N)p = −1, p must be
inert in Odu and vp(N) must be odd by the same argument as above. In this case, there is
no ideal in Odu with norm `−1N and so Rdu(`−1N) = 0.

Since, by assumption, ` does not ramify in both Odu and Odx , the remaining case is
when ` is inert in Odu or Odx and v`(N) is odd. If ` is inert in Odx , then since ` divides
N = 1

4
(dxdu − (dxdu − 2t)2), ` is either inert or ramified in Odu . In either case, Rdu(`2k) = 1

for any non-negative integer k, so

Rdu(`−1N) =
∏
p|N

Rdu(pvp(`
−1N)) =

∏
p|N,p6=`

Rdu(pvp(N)).

Then, by the same argument as in the proof of Theorem 2.5,

Rdu(`−1N) =
∏

p|N,p6=`


1
2
(1 + (−1)vp(N)) if p is inert in Odu ,
vp(N) + 1 if p is split in Odu ,
1 if p|du.

Furthermore, it follows from the definition of ρ̃du that

ρ̃du(N) =
∏

p|gcd(N,du),
p6=`

{
2 if (du,−N)p = 1,

0 if (du,−N)p = −1.

From these two local expansions, it is clear that

µ(n)Rdu(`−1N)ρ̃du(N) = µ(n)
∏

p|N,p6=`

εdu(p,N)

if ` is inert in Odu or Odx and v`(N) ≡ 1 mod 2. This completes the proof. �

4. Relative integral bases

In the previous section (and hence throughout the paper), a number of quantities, such as
α0, α1, β0, β1 and the others defined in terms of these, are expressed in a way that depends on
the form of the integral basis {1, η} for OF . In this section, we use a result of Spearman and
Williams to determine the possible forms η can take, thus narrowing down the possibilities
for the other quantities given in Section 3. Throughout, we let A,B ∈ 1

2
Z be such that

A+B
√
D is squarefree in OF and such that K = F (

√
A+B

√
D).

Lemma 4.1. Assume that D and D̃ are 1 modulo 4 and squarefree and that OK is freely
generated over OF . Then a relative integral basis for K over F is {1, η}, where

η =
1 +

√
A+B

√
D

2
or η =

2B +
√
D + 2

√
A+B

√
D

4
.

Furthermore, the latter case only occurs if D ≡ 5 mod 8 and A,B ∈ 1
2
Z \ Z.

Proof. In [SW96], Spearman and Williams give a necessary and sufficient condition for the
existence of a relative integral basis for a quartic number field over a quadratic subfield. In
addition, in the cases where a relative integral basis exists, they give an explicit description
of such an integral basis. This lemma will follow almost immediately from their work.
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Spearman and Williams use the classification of quartic number fields with a quadratic
subfield that was given in an earlier paper of Huard, Spearman, and Williams [HSW95];
there are 51 cases with labels A1-A8, B1-B8, C1-C8, and D1-D27. If D ≡ 5 mod 8, then the
field falls in cases C1 - C8 and if D ≡ 1 mod 8 then the field falls in cases D1-D27.

By [SW96, Thm 1], if D̃ is squarefree, then K falls into one of nine cases, only five of
which have the property that D ≡ 1 mod 4. These five cases are C2, C7, D3, D16, or D20.

If D ≡ 1 mod 8, then by [SW96, Thm 2], η = 1+
√
A+B

√
D

2
.

Now consider the case when D ≡ 5 mod 8. By [SW96, Thm 2 and p.190], if A,B ∈ Z,

then η = 1+
√
A+B

√
D

2
and otherwise A,B ∈ 1

2
Z \ Z and η = 2B+

√
D+2
√
A+B

√
D

4
. �

We will use this lemma to give simplified expressions for the quantities du(n), dx(n), and
txu∨(n) defined in §3.

Proposition 4.2. Assume that D and D̃ are 1 modulo 4 and squarefree and that OK is
freely generated over OF . Let δ ∈ Z>0 be such that D− 4δ is a square and let n ∈ Z be such

that 2D divides (n+ cKδ) and such that δ2D̃−n2

4D
is a positive integer. Then

du(n) =
δ(2n+ δ2A)

D
,

dx(n) = A−B
√
D − 4δ − 2n+ δ2A

D
, and

txtu − 2txu∨(n) = Bδ −
√
D − 4δ(n+ δA)

D
.

Moreover, cK ≡ 1 mod 2 and 2cK ≡ 2A mod D.

Proof. Lemma 4.1 gives us two possible choices for η. In each case, we can explicitly give the

values of αi, βi. If η = 1+
√
A+B

√
D

2
, we have α0 = 1, α1 = 0, β0 = 1−A+BD

4
, and β1 = −B

2
. If

η = 2B+
√
D+2
√
A+B

√
D

4
, we have α0 = B− D

2
, α1 = 1, β0 = 4B2+D−4A

16
, and β1 = 0. Using these

values, we calculate du(n), dx(n), and txtu − 2txu∨(n) and find that they have the desired
expressions in both cases.

To prove the congruence conditions, recall that

cK = α2
0 + α0α1D + α2

1

D2 −D
4

− 4β0 − 2β1D.

If α0 = 1 and α1 = 0, then cK ≡ 1 mod 2. Otherwise, D ≡ 5 (mod 8), and so 1
4
(D2 −D) ≡

1 mod 2. Then, cK ≡ (α2
0 + α0α1 + α2

1) mod 2. Since α1 = 1 in this case, we see that,
regardless of the parity of α0, cK ≡ 1 mod 2.

Calculating cK explicitly in each case, we see that cK is either equal to A or A − D
2

. In
either case, it is clear that 2cK ≡ 2A mod D. �

5. Equality of indices

The remainder of the paper will focus on proving, under slightly weaker assumptions
than those in Theorems 2.2 and 3.1 and without using Theorems 3.1 and 2.2, that the
expressions (2.1) and (3.1) agree. Precisely, we will show:

Theorem 5.1. Assume that:
9



• D is prime, and hence congruent to 1 modulo 4,

• D̃ is squarefree and congruent to 1 modulo 4,
• Norm(DK̃/F̃ ) = D, and

• for all δ ∈ Z>0 such that D− 4δ is a square, and for all n ∈ Z such that 2D|n+ cKδ

and 4D|δ2D̃−n2, du(n) is a fundamental discriminant, i.e., du(n) is the discriminant
of a quadratic field.

Then (2.1) and (3.1) are equal.

Corollary 5.2. Retain the assumptions of Theorem 5.1. Then, the Bruinier-Yang conjec-
tural formula for (CM(K).G1)` holds.

Both formula (2.1) and (3.1) involve summands indexed by two integers denoted δ and n.
The index δ ranges over the same quantities in both (2.1) and (3.1). While it is not obvious,
the same statement is true for the index n.

Proposition 5.3. Assume that D and D̃ are congruent to 1 modulo 4 and squarefree and
that Norm(DK̃/F̃ ) = D. Fix a positive integer δ such that D − 4δ is a square. Then for any
n ∈ Z,

δ2D̃ − n2 ∈ 4DZ and n ≡ −δcK (mod 2D)

if and only if

n+ δ
√
D̃

2D
∈ D−1

K̃/F̃
.

Remark 5.4. If we work with a different CM-type of K so that

K̃ = F̃ (

√
2A− 2

√
A2 −B2D),

then the indices n are in one-to-one correspondance, but not necessarily equal. Indeed, the
correspondence would be that

δ2D̃ − n2 ∈ 4DZ and n ≡ −δcK (mod 2D)

if and only if

−n+ δ
√
D̃

2D
∈ D−1

K̃/F̃
.

Proof. We will need the factorization of 〈p〉 in OF̃ for any p|D, so we present this first.

Recall that A and B are chosen to be in 1
2
Z such that D̃ = A2 − B2D. Since 2A is a

solution of X2 − 4D̃ mod D and 2 - D, for any p|D, we can factor 〈p〉 in OF̃ as p1p2 where

p1 = (2A− 2
√
D̃, p) and p2 = (2A + 2

√
D̃, p). Note that p1 = p2 if and only if p|D̃ as well

as D. The norm of DK̃/F̃ is equal to D and since p|D one of p1 or p2 must ramify in K̃/F̃ .
Since D is squarefree, at most one of p1 or p2 ramifies and DK̃/F̃ has pi-adic valuation at

most 1. Recall that K̃ = Q(

√
2A+ 2

√
D̃), thus p2|DK̃/F̃ .

First assume that δ2D̃ − n2 ∈ 4DZ and that n ≡ −δcK (mod 2D); we will show that
n+δ
√
D̃

2D
∈ D−1

K̃/F̃
. Since δ2D̃ − n2 is divisible by 4, n must be congruent to δ modulo 2 and

thus n+δ
√
D̃

2
is integral. Further, since DK̃/F̃ is integral, so is (n+δ

√
D̃

2
)DK̃/F̃ . To prove that

10



n+δ
√
D̃

2D
∈ D−1

K̃/F̃
, we will show that every prime lying over p for p|D either divides n+δ

√
D̃

2
or

DK̃/F̃ . In addition, if p also divides D̃, then we will show that the unique prime p lying over

p divides DK̃/F̃ and n+δ
√
D̃

2
. Note that we have p > 2 since D and D̃ are assumed to be 1

modulo 4.
By assumption, 2D|(n+ cKδ) and by Proposition 4.2 we have 2cK ≡ 2A mod D, so

2n+ 2δ
√
D̃ ≡ −2δA+ 2δ

√
D̃ ≡ 0 mod p1

and thus vp1(
n+δ
√
D̃

2D
) > 0. We have already seen that p2|DK̃/F̃ . Therefore, n+δ

√
D̃

2D
∈ D−1

K̃/F̃
.

Now we prove the reverse direction. Assume that n+δ
√
D̃

2D
∈ D−1

K̃/F̃
. Taking the absolute

norm, we have

NF̃ /Q

((
n+ δ

√
D̃

2D

)
DF̃ /K̃

)
=
n2 − δ2D̃

4D2
·NF̃ /Q(DK̃/F̃ )

=
n2 − δ2D̃

4D
·
NF̃ /Q(DK̃/F̃ )

D
∈ Z.

Since NF̃ /Q(DK̃/F̃ ) = D, we have δ2D̃ − n2 ∈ 4DZ.

To prove the congruence condition, we use the fact that p2|DK̃/F̃ . Since Norm(DK̃/F̃ ) is

squarefree and p divides n+δ
√
D̃

2
DK̃/F̃ , this implies that p1|(n+δ

√
D̃)/2. Since 2n+2δ

√
D̃ ≡

2n + 2δA (mod p1), the integer 2n + 2δA is contained in p1 and hence is 0 modulo p, for
all p|D. This implies that n + δA ≡ n + cKδ ≡ 0 mod D. We have already shown that

δ2D̃ − n2 ∈ 4Z, which implies that n ≡ δ (mod 2). Finally, by Proposition 4.2, cK ≡ 1
(mod 2). Thus, n ≡ δcK (mod 2), and the proof is complete. �

6. Equality of summands

By the results of the previous section, both formula (2.1) and formula (3.1) sum over the
same values δ and n. Thus, to prove that the formulas agree, it suffices to show that for a
fixed δ and n, the corresponding summands of formula (2.1) and (3.1) are equal. The goal
of the present section is to prove this equality.

Throughout, we work with a fixed positive integer δ and a fixed integer n such that

D − 4δ = �, n+ cKδ ≡ 0 mod 2D, and N :=
δ2D̃ − n2

4D
∈ Z>0.

For simplicity, we write du := du(n) and dx := dx(n). We let Odu and Odx denote the
quadratic imaginary orders of discriminant du and dx respectively.

Precisely, in this section we prove:

Theorem 6.1. Retain the assumptions from Theorem 5.1. Then for any prime `,

(6.1) µ(n)Rdu(`−1N)ρ̃du(N) =
∑
l|`

{
0 if l splits in K̃
vl(N)+1

2
f(l/`)RK̃/F̃ (l−1NDK̃/F̃ ) otherwise,

11



where N = (n+δ
√
D̃

2D
).

In §6.1, we prove restrictions on the prime divisors of N . These restrictions will prove
useful in later sections, and they also allow us to give a simplified formula for µ(n). In §6.2,
we consider the splitting behavior in Odu and Odx of primes p dividing N and relate it to

the splitting behavior in K̃ of primes p dividing N. We use this in §6.3 to show that for
each prime p 6= `, the local factor at p in formula (2.2) agrees with the local factor at p
in formula (3.2). Finally, in §6.4, we explain how these ingredients come together to prove
Theorem 6.1.

6.1. Reduction steps.

Lemma 6.2. Retain the assumptions from Theorem 5.1. Then δ and N = δ2D̃−n2

4D
are

relatively prime.

Proof. First suppose that p is an odd prime. If p divides both δ and δ2D̃−n2

4D
, p must also

divide n. Since D is prime and p ≤ δ < D, p cannot divide D, and so p2 must divide

du(n) = δ(2n+δ2A)
D

. This violates the hypothesis that du(n) is the discriminant of an imaginary
quadratic field.

Now let p = 2 and assume that p|N and p|δ. Then since D − 4δ is a square, D must be

congruent to 1 modulo 8. Since D̃ = A2 − B2D is 1 modulo 4, A and B must be integers

and A must be odd. By assumption, 8|δ2D̃ − n2 and 2|δ, so n ≡ δ ≡ δA mod 4. Thus
du(n) = 2δ(n+ δA)/D is 0 modulo 16, which gives a contradiction. �

Proposition 6.3. Assume that D̃ is squarefree and fix a prime p that does not divide δ. If
p|N , then p cannot divide both du(n) and dx(n).

Proof. Suppose p divides both du(n) and dx(n). Recall that we have

(6.2) δ2D̃ − n2 = D
(
dx(n)du(n)− (txtu − 2txu∨(n))2

)
.

If 4pD divides the left hand side of this equation, then p must also divide (txtu − 2txu∨(n)).
Using the formulations for this quantity, du(n), and dx(n) given in Proposition 4.2, we see
that if p|du(x), then p|2n+δ2A

D
. If p|n+δA

D
and p|(txtu− 2txu∨(n)), then p|2B. But, if p divides

all of these quantities, by considering the expression for dx(n) in Proposition 4.2, we see that
p must also divide 2A. Furthermore, if p = 2, then this argument can be strengthened to
show that A and B are even integers. However, A and B must be relatively prime, because

D̃ = A2−B2D is assumed to be squarefree. Thus, p cannot divide both du(n) and dx(n). �

Corollary 6.4. Retain the assumptions from Theorem 5.1. If `|N , then µ(n) = 1
2
(v`(N)+1).

6.2. Comparing valuations and splitting behavior.

Lemma 6.5. Retain the assumptions from Theorem 5.1. Let n ∈ Z be such that 2D|(n+cKδ)

and that δ2D̃−n2

4D
∈ Z>0. Let p be a prime that divides δ2D̃−n2

4D
. Then there is a unique prime

p ∈ OF̃ lying over p such that vp

(
n+δ
√
D̃

2D
DK̃/F̃

)
is positive. This prime p is unramified in

K̃, f(p/p) = 1, and we have

vp

(
δ2D̃ − n2

4D

)
= vp

(
n+ δ

√
D̃

2D

)
= vp

(
n+ δ

√
D̃

2D
DK̃/F̃

)
.

12



Remark 6.6. This lemma shows that the assumptions in Theorem 5.1 imply the assumptions
in Theorem 2.5.

Proof. By Lemma 6.2, p - δ, so there is at most one prime in OF̃ lying over p that divides

n+δ
√
D̃

2
and this prime has inertial degree 1 over p. First consider the case when p - D. Since

Norm(DK̃/F̃ ) = D, we have that for all p|p, p is unramified in K̃ and vp

(
n+δ
√
D̃

2D
DK̃/F̃

)
=

vp

(
n+δ
√
D̃

2

)
. As

(6.3) vp

(
δ2D̃ − n2

4D

)
=
∑
p|p

vp

(
n+ δ

√
D̃

2D
DK̃/F̃

)
,

this completes the proof.

Now consider the case when p|D. If p is ramified in F̃ , then p|D̃. However, this contradicts

the assumption that δ2D̃−n2

4D
∈ pZ>0 because D̃ is squarefree and p - δ. Thus p is split in

F̃ . Let p1 and p2 denote the two primes lying over p. Since Norm(DK̃/F̃ ) = D and D
is a prime, there is at most one prime lying over p that divides DK̃/F̃ ; we may assume

that this prime is p2. Hence vp1

(
n+δ
√
D̃

2D
DK̃/F̃

)
= vp1

(
n+δ
√
D̃

2

)
− 1. By the assumption

on n and Proposition 5.3, n+δ
√
D̃

2D
DK̃/F̃ is integral, and thus vp1

(
n+δ
√
D̃

2

)
> 0. This in

turn implies that 1
2
(n + δ

√
D̃) is a p2-adic unit. Combining this with (6.3), we see that

vp

(
δ2D̃−n2

4D

)
= vp1

(
n+δ
√
D̃

2D

)
and p1 - DK̃/F̃ as desired. �

Proposition 6.7. Retain the assumptions from Theorem 5.1. Fix a prime p that divides
δ2D̃−n2

4D
and let p|p be the unique prime given in Lemma 6.5. The prime ideal p splits in K̃

if and only if p splits in at least one of Odx or Odu. Similarly, p is inert in K̃ if and only if
p is inert in at least one of Odx or Odu.

Proof. By Lemma 6.2 and Proposition 6.3, p does not ramify in bothOdu andOdx . Therefore,
if p is not split in either Odx or Odu , then p is inert in at least one of Odu and Odx . Thus,
the second claim of the lemma follows from the first claim.

As noted above, δ2D̃−n2

4D
=

dudx−(txtu−2txu∨ )2
4

. Since 4Dp|(δ2D̃ − n2), the product dudx is
congruent to a square modulo p. Therefore, if p is split in one of Odx or Odu , then p cannot
be inert in the other order. If p > 2, the proof breaks into cases depending on whether or

not p ramifies in Odu . Recall, du = 2δ(n+δA)
D

. Assume that p|du and p > 2. Then, since

p - δ (Lemma 6.2), 2n + 2Aδ and n + δ
√
D̃ both have p-adic valuation strictly greater

than vp(D), and hence so does 2A − 2
√
D̃. This in turn implies that p divides 2B and so

dx = A−B
√
D − 4δ− 2(n+δA)

D
≡ A mod p. Recall that

√
2A+ 2

√
D̃ generates the extension

K̃/F̃ . Consider the product

(6.4) (2A+ 2
√
D̃)dx ≡ 4A · A (mod p).
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Since D̃ is squarefree, 4A2 is a nonzero square modulo p. Then (6.4) implies that 2A+ 2
√
D̃

and dx are nonzero modulo p and that 2A + 2
√
D̃ is a square modulo p if and only if dx is

a square modulo p. This shows that p splits in K̃ if and only if p splits in Odx .
Suppose that p - du and p > 2. Then by the argument above, 2A − 2

√
D̃ is a p-adic

unit. Thus, if p|2B, we must have that p|(2A + 2
√
D̃). We will show that (2A + 2

√
D̃)du

is congruent to a nonzero square modulo p2vp(2B)+1. This will show that p splits in K̃ if and
only if p splits in Odu .

Since 2A− 2
√
D̃ is a p-adic unit, vp(2A+ 2

√
D̃) = 2vp(2B). By assumption, we also have

that vp(
n+δ
√
D̃

2D
) is positive, so

(2A+ 2
√
D̃)δ2

2n/δ + 2
√
D̃

D
∈ p2vp(2B)+1.

From this, we see that

(2A+ 2
√
D̃)du ≡

δ2

D
(2A+ 2

√
D̃)(2A− 2

√
D̃) ≡ δ2(2B)2 mod p2vp(2B)+1.

By Lemma 6.2, p - δ, so we obtain our result.
Henceforth, we assume that p = 2. Suppose that A and B are half-integers, i.e., that

2A and 2B are odd integers. Then 2n+2δ
√
D̃

D
is zero modulo p3, so du = δ2 2A+2n/δ

D
≡

δ2 2A−2
√
D̃

D
mod p3. Thus

(2A+ 2
√
D̃)du ≡ δ2(2B)2 mod p3.

Since δ2B is odd, this shows that p splits in K̃ if and only if p splits in Odu .

If A and B are integers, then du is necessarily divisible by 2 and A+
√
D̃

2
∈ OF̃ . Suppose

that du ≡ 8 mod 16 so A+n/δ
2
≡ 0 mod 2. Then A−

√
D̃

2
= A+n/δ

2
− n/δ+

√
D̃

2
is 0 modulo p.

The discriminants D and D̃ = A2 −B2D are 1 modulo 4, so A must be odd and B must be

even. Since A−
√
D̃

2
∈ p, A2 ≡ D̃ mod 8 and so B must be divisible by 4. Thus A+

√
D̃

2
is a

p-adic unit. Consider

A+
√
D̃

2
− dx ≡

−A+
√
D̃

2
+B
√
D − 4δ mod p3.

Since Norm(−A+
√
D̃

2
) = B2D/4 and D is 1 modulo 4, vp(

−A+
√
D̃

2
) = vp(B

2/4). If vp(B) ≥ 3,

then A+
√
D̃

2
≡ dx mod p3. If vp(B) = 2, then vp(

−A+
√
D̃

2
) is also 2, so the sum −A+

√
D̃

2
+

B
√
D − 4δ has p-adic valuation at least 3. Therefore, in all cases, A+

√
D̃

2
≡ dx mod p3 and

so p splits in K̃ if and only if p splits in Odu .
Finally we suppose that du ≡ 4 mod 8. By assumption, du is fundamental which implies

that A+n/δ
2

is 3 modulo 4. Since dx is a quadratic discriminant and congruent to A modulo

4, A must be congruent to 1 modulo 4, so A−n/δ
2

is 2 modulo 4. Both A−n/δ
2

and n/δ+
√
D̃

2
are p-adic uniformizers, hence their sum and difference both have p-adic valuation at least

14



2. Moreover, at most one of the sum and difference have p-adic valuation exactly equal to 2.

In particular, A+
√
D̃

2
has positive valuation, so vp(B

2/4) must be positive (so B is 0 modulo

4) and vp(B
2/4) = vp(

A+
√
D̃

2
). From this, we can see that p splits in K̃ if

(6.5)

(
A+

√
D̃

2

)(
A−

√
D̃

2

)2

4B−2 =

(
A−

√
D̃

2

)
D

is a square modulo p3, and that p is inert in K̃ if (6.5) is a non-square modulo p3.

If B ≡ 4 mod 8, then vp(
A+
√
D̃

2
) = 2 and vp(

−A+2n/δ+
√
D̃

2
) ≥ 3. Therefore

A−
√
D̃

2
≡ n/δ ≡ A+ 4 mod p3,

and

dx = A−B
√
D − 4δ − du/δ ≡ A+ 4 + 4 ≡ A mod p3,

so

(
A−
√
D̃

2

)
D · dx is equivalent to D(A2 + 4A) modulo p3. Since D− 4δ is a square and δ is

odd, D must be 5 modulo 8. Thus D(A2 + 4A) ≡ 5(1 + 4) ≡ 1 mod 8, so p splits in K̃ if and

only if p splits in Odx . If B ≡ 0 mod 8, then vp(
A+
√
D̃

2
) ≥ 3 and so A−

√
D̃

2
≡ A mod p3. We

also have dx ≡ A + 4 mod 8. Thus, as above,

(
A−
√
D̃

2

)
D · dx ≡ D(A2 + 4A) ≡ 1 mod p3.

This completes the proof. �

6.3. Comparing εdu and εK̃/F̃ .

Proposition 6.8. Retain the assumptions from Theorem 5.1. Let n ∈ Z be such that

2D|(n+ cKδ) and that δ2D̃−n2

4D
∈ `Z>0. Fix a prime p 6= ` that divides N := δ2D̃−n2

4D
. Then

εdu(p,N) = εK̃/F̃ (p,NDK̃/F̃ ).

Proof. By Lemma 6.5, there is a unique prime p lying over p such that vp(NDK̃/F̃ ) is positive.
Thus,

εK̃/F̃ (p,NDK̃/F̃ ) =


1
2
(1 + (−1)vp(ND

K̃/F̃
)) if p is inert in K̃

vp(NDK̃/F̃ ) + 1 if p is split in K̃

1 otherwise.

Assume that p is inert in K̃. Then, by Proposition 6.7, p is inert in at least one of Odu or
Odx . If p is inert in Odu , then

εdu(p,N) =
1

2
(1 + (−1)vp(N)) =

1

2
(1 + (−1)vp(ND

K̃/F̃
)) = εK̃/F̃ (p,NDK̃/F̃ ),

as desired. (The middle equality follows from Lemma 6.5.) If p is not inert in Odu , then p

must be inert in Odx . The equality δ2D̃−n2

4D
=

dudx−(txtu−2txu∨ )2
4

, shows that dudx is congruent
15



to a square modulo p. Thus p is ramified in Odu . In addition, by Lemma 6.5 and since p2

does not divide du,

vp

(
δ2D̃ − n2

4D

)
= vp(NDK̃/F̃ ) = 1.

Since dx is not a square modulo p and the p-valuation of N is odd, it follows again from [Ser70,
Ch III, Thm 1] that (

du,
n2 − δ2D̃

4D

)
p

=

(
dx,

n2 − δ2D̃
4D

)
p

= −1.

Thus εdu(p, `−1N) = 0 = 1
2
(1 + (−1)vp(ND

K̃/F̃
)) = εK̃/F̃ (p,NDK̃/F̃ ).

If p is not inert in K̃, then, by Lemma 6.5, p is split in K̃. By Proposition 6.7, this implies
that p is split in at least one of Odx or Odu . If p is split in Odu , then

εdu(p,N) = vp(N) + 1 = vp(NDK̃/F̃ ) + 1 = εK̃/F̃ (p,NDK̃/F̃ ).

If p is not split in Odu , then p is split in Odx , and the same arguments as above show that p

is ramified in Odu , vp(
δ2D̃−n2

4D
) = 1. Furthermore,(

du,
n2 − δ2D̃

4D

)
p

=

(
dx,

n2 − δ2D̃
4D

)
p

= 1

and so εdu(p,N) = 2 = vp(N) + 1 = vp(NDK̃/F̃ ) + 1 = εK̃/F̃ (p,NDK̃/F̃ ). This completes the
proof. �

6.4. Proof of Theorem 6.1. Let l denote the prime lying over ` such that vl(
n+δ
√
D̃

2D
DK̃/F̃ )

is positive; this is unique by Lemma 6.5. If l is split in K̃, then by Theorem 2.5 the right-

hand side of (6.1) is zero. Additionally, by Proposition 6.7, if l is split in K̃, then ` is split
in Odu or Odx . By Theorem 3.3, this implies that the left-hand side of (6.1) is zero.

Since, by Lemma 6.5, l is unramified in K̃, we are left to consider the case when l is inert

in K̃. By Proposition 6.7 this coincides with the case when ` is inert in at least one of Odu
and Odx . First assume that vl(N) is even; by Lemma 6.5, v`(N) is also even. Then, by
Theorems 2.5 and 3.3, both sides of (6.1) are 0.

Now suppose that l is inert in K̃ and that vl(N) is odd. By Lemma 6.5, if l′|` is a prime

in F̃ different from l, then l′−1NDK̃/F̃ is not integral. Therefore, R(l′−1NDK̃/F̃ ) = 0 and the

right-hand side of (6.1) reduces to

vl(N) + 1

2
· f(l/`) ·RK̃/F̃ (l−1NDK̃/F̃ ).

Using Theorems 2.5 and 3.3, Corollary 6.4, and Lemma 6.5 we deduce

vl(N) + 1

2
· f(l/`) ·RK̃/F̃ (l−1NDK̃/F̃ ) =

vl(N) + 1

2

∏
p|N,p6=`

εK̃/F̃ (p,NDK̃/F̃ )

µ(n)Rdu(`−1N)ρ̃du(N) =
v`(N) + 1

2

∏
p|N,p6=`

εdu(p,N).
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We apply Lemma 6.5 to show that vl(N)+1
2

= v`(N)+1
2

and Proposition 6.8 to give

εK̃/F̃ (p,NDK̃/F̃ ) = εdu(p,N).

This completes the proof of Theorem 6.1. �

6.5. Proof of Theorem 5.1. Theorem 5.1 follows immediately from Proposition 5.3 and
Theorem 6.1. �

6.6. Proof of Corollary 5.2. By Lemma 6.2, the assumptions of Theorem 5.1 imply the
assumptions of Theorem 3.1. Thus, Theorems 3.1 and 5.1 complete the proof. �
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