SMOOTH COMPACTIFICATIONS OF CERTAIN NORMIC BUNDLES

ANTHONY VÁRILLY-ALVARADO AND BIANCA VIRAY

Abstract

For a finite cyclic Galois extension of fields K / k of degree n and a separable polynomial of degree $d n$ or $d n-1$, we construct an explicit smooth compactification $X \rightarrow \mathbb{P}_{k}^{1}$ of the affine normic bundle X_{0} given by $$
\mathrm{N}_{K / k}(\vec{z})=P(x) \neq 0
$$ extending the map $X_{0} \rightarrow \mathbb{A}_{k}^{1}$, where $(\vec{z}, x) \mapsto x$. The construction makes no assumption of the characteristic of k, making it a suitable departure point for studying the arithmetic of smooth compactifications of X_{0} over global fields of positive characteristic.

1. Introduction

For a finite extension K / k of fields and a polynomial $P(x) \in k[x]$, the affine norm hypersurface $X_{0} \subset \mathbb{A}_{k}^{n+1}$ given by

$$
\begin{equation*}
\mathrm{N}_{K / k}(\vec{z})=P(x) \neq 0 \tag{1.1}
\end{equation*}
$$

parametrizes the values of $P(x)$ that are norms for K / k.
Suppose that k is a number field. The classical Hasse norm theorem states that if K / k is a cyclic Galois extension and if $P(x)$ is a nonzero constant, then X_{0} satisfies the Hasse principle. Although both the Hasse principle and weak approximation fail for more general X_{0}, Colliot-Thélène has conjectured that the Brauer-Manin obstruction controls failures of weak approximation on any smooth proper model of X_{0}. See [DSW14, §1] for a summary of progress towards this conjecture.

The existence of a smooth proper model X of X_{0} extending the projection

$$
X_{0} \rightarrow \mathbb{A}^{1}, \quad(\vec{z}, x) \mapsto x
$$

to a map $X \rightarrow \mathbb{P}_{k}^{1}$ is especially useful for proving arithmetic results in the direction of Colliot-Thélène's conjecture, because the map $X \rightarrow \mathbb{P}_{k}^{1}$ affords some control over the Brauer group of X. This map can also be used to prove that certain subsets of the number field k are diophantine Poo09, VAV12, CTvG.

The known constructions of $X \rightarrow \mathbb{P}^{1}$ proceed in two steps. First, one constructs a partial compactification $X^{\prime} \rightarrow \mathbb{A}_{k}^{1}$ (e.g. [CTHS03, §2] or CTvG, Proposition 2.2(i)]). Second, one extends $X^{\prime} \rightarrow \mathbb{A}_{k}^{1}$ to a map $X \rightarrow \mathbb{P}^{1}$ via Hironaka's theorem. This second step limits the scope of the construction to fields of characteristic 0 .

Our goal in this note is to give an explicit construction of a compactification $X \rightarrow \mathbb{P}_{k}^{1}$ convenient for arithmetic applications, under some hypotheses. (For example, the Picard group and Brauer group of such a compactification X are easily computable; see the proofs of [VAV12, Proposition 3.1 and Theorem 3.2].) The construction of X does not impose a restriction on the characteristic of k; it therefore serves as a starting point for studying the arithmetic of smooth compactifications of X_{0} over global fields of positive characteristic.

[^0]Theorem 1.1. Let K / k be a cyclic Galois extension of fields of degree n, and let $P(x) \in k[x]$ be a separable polynomial of degree dn or $d n-1$. There exists a smooth proper compactification X of X_{0}, fibered over $\mathbb{P}_{k}^{1}=\operatorname{Proj} k\left[x_{0}, x_{1}\right]$, such that $X \rightarrow \mathbb{P}_{k}^{1}$ extends the map $X_{0} \rightarrow \mathbb{A}_{k}^{1}$. Furthermore, the generic fiber of $X \rightarrow \mathbb{P}_{k}^{1}$ is a Severi-Brauer variety, and the degenerate fibers lie over $V\left(P\left(x_{0} / x_{1}\right) x_{1}^{d n}\right)$, and consist of the union of n rational varieties all conjugate under $\operatorname{Gal}(K / k)$.
1.1. Outline. Our construction of a smooth compactification takes a cue from work of Kang: the generic fiber of our construction is the embedded Severi-Brauer variety in Kan90.

In § 3.2 , we construct a partial compactification $Y_{a} \rightarrow$ Spec R of the variety $z_{1} \cdots z_{n}=a \neq 0$ for any k-algebra R with no zero-divisors and any $a \in R \backslash 0$. In $\S 3.3$, we give an explicit open covering of Y_{a}, which we use in $\S 3.4$ to prove that Y is smooth if and only if $V(a) \subset \operatorname{Spec}(R)$ is smooth. We describe the geometry of the degenerate fibers of $Y_{a} \rightarrow \operatorname{Spec} R$ in $\$ 3.5$.

In $\$ 4$. we construct a K / k-twist of $Y_{a}, X_{K, a}^{0} \rightarrow \operatorname{Spec} R$. Finally, in $\$ 5$, we restrict to the case $R=k[x]$ and $a=P(x)$, give a full compactification $X \rightarrow \mathbb{P}_{k}^{1}$, and prove Theorem 1.1.

Remark 1.2. Let R be a Dedekind domain, and let \mathcal{O} be a maximal R-order in a central simple $\operatorname{Frac}(R)$-algebra of rank n^{2}. Write $X_{\mathcal{O}} \rightarrow \operatorname{Spec} R$ for the scheme of rank n left ideals of \mathcal{O}. In Art82 Artin studies the geometry of $X_{\mathcal{O}} \rightarrow \operatorname{Spec} R$ through its functor of points. By taking $R=k[x]$, and an appropriate choice of \mathcal{O}, this gives a variety $X_{\mathcal{O}}$ proper over \mathbb{A}_{k}^{1}, whose generic fiber is the Severi-Brauer variety associated to $X_{0, k(x)}$, and whose degenerate fibers consist of n rational varieties conjugate under $\operatorname{Gal}(K / k)$.

The functor of points description of $X_{\mathcal{O}}$ highlights the connection with central simple algebras, but the embedding $X_{0, k(x)} \hookrightarrow X_{\mathcal{O}}$ is not easily extracted from this description. In contrast, our construction of a compactification of X_{0} takes the norm form X_{0} as a starting point, and thus the embedding $X_{0} \hookrightarrow X$ is readily apparent in the construction.

Acknowledgements. We also thank Jean-Louis Colliot-Thélène and the anonymous referee for comments improving the exposition.

2. Preliminaries on vectors

Throughout, we fix an integer $n>1$. By the weight of a vector $\mathbf{v}=\left(v_{m}\right)_{m=0}^{n-1} \in \mathbb{Z}^{n}$, we mean the sum $\sum_{m=0}^{n-1} v_{m}$; we also say \mathbf{v} has length n. Let \mathcal{V}_{n} denote the set of nonnegative integer vectors of weight n and length n. Write $\sigma: \mathcal{V}_{n} \rightarrow \mathcal{V}_{n}$ for the shift operator

$$
\mathbf{v}=\left(v_{0}, v_{1}, \ldots, v_{n-1}\right) \mapsto\left(v_{1}, v_{2}, \ldots, v_{n-1}, v_{0}\right)=: \sigma(\mathbf{v})
$$

For any $\mathbf{v}=\left(v_{m}\right)_{m=0}^{n-1} \in \mathcal{V}_{n}$ we define two nonnegative integers:

$$
\mu(\mathbf{v}):=\max _{i \in(0, n]}\left(i-v_{0}-\cdots-v_{i-1}\right), \quad \lambda(\mathbf{v}):=\mu(\mathbf{v})+\mu(\sigma(\mathbf{v}))+\cdots+\mu\left(\sigma^{n-1}(\mathbf{v})\right)
$$

and for any integers i, j with $i \not \equiv j \bmod n$ and $v_{j}>0$, we let $\mathbf{v}^{i, j}:=\left(v_{m}+\delta_{i \bmod n, m}-\right.$ $\left.\delta_{j \bmod n, m}\right)_{m=0}^{n-1}$; note that $\mathbf{v}^{i, j} \in \mathcal{V}_{n}$, because $v_{j}>0$. We collect a few straightforward relations used frequently below.

Lemma 2.1. We have the following relations.
(1) $\mu\left(\sigma^{s}(\mathbf{v})\right)=\mu(\mathbf{v})+v_{0}+v_{1}+\cdots+v_{s-1}-s$ for any $\mathbf{v} \in \mathcal{V}_{n}$ and for any $s \in(0, n]$.
(2) For any integer r and any vectors $\mathbf{v}_{i}, \mathbf{w}_{i} \in \mathcal{V}_{n}$ with $1 \leq i \leq r$, such that $\sum_{i=1}^{r} \mathbf{w}_{i}=$ $\sum_{i=1}^{r} \mathbf{v}_{i}$, we have $\sum_{i=1}^{r} \lambda\left(\mathbf{w}_{i}\right)-\sum_{i=1}^{r} \lambda\left(\mathbf{v}_{i}\right)=n\left(\sum_{i=1}^{r} \mu\left(\mathbf{w}_{i}\right)-\sum_{i=1}^{r} \mu\left(\mathbf{v}_{i}\right)\right)$.
(3) Fix integers $0 \leq r<s<n$ and fix $\mathbf{v}=\left(v_{m}\right)_{m=0}^{n-1} \in \mathcal{V}_{n}$ such that $v_{r}, v_{s}>0$. Then: $0 \leq \mu\left(\mathbf{v}^{r, s}\right)+\mu\left(\mathbf{v}^{s, r}\right)-2 \mu(\mathbf{v}) \leq 1$, and the first inequality is strict if and only if $\mu(\mathbf{v})=i-\sum_{m=0}^{i-1} v_{m}=j-\sum_{m=0}^{j-1} v_{m}$ for some $i \in(r, s]$ and $j \in(0, r] \cup(s, n]$.

Proof. Let $\mathbf{w}:=\sigma^{s}(\mathbf{v})$, so that $w_{j}=v_{j+s}$ if $j<n-s$ and $w_{j}=v_{j+s-n}$ if $j \geq n-s$. Then $i-w_{0}-w_{1}-\cdots-w_{i-1}$ equals

$$
\begin{cases}\left((i+s)-v_{0}-\cdots-v_{i+s-1}\right)+v_{0}+\cdots+v_{s-1}-s & \text { if } i+s \leq n \\ \left((i+s-n)-v_{0}-\cdots-v_{i+s-n-1}\right)+(n-s)-v_{s}-\cdots-v_{n-1} & \text { otherwise }\end{cases}
$$

To conclude (1), note that since \mathbf{v} has weight n, we have $v_{0}+v_{1}+\cdots+v_{s-1}-s=(n-s)-$ $v_{s}-v_{s+1}-\cdots-v_{n-1}$.

By (1), for any vector $\mathbf{v}=\left(v_{m}\right)_{m=0}^{n-1} \in \mathcal{V}_{n}$ we have

$$
\lambda(\mathbf{v})=n \mu(\mathbf{v})+\sum_{m=0}^{n-1}\left((n-1-m) v_{m}-m\right)
$$

Using the assumption that $\sum_{i=1}^{r} \mathbf{w}_{i}=\sum_{i=1}^{r} \mathbf{v}_{i}$, the proof of (2) is now a simple manipulation.
It remains to prove (3). Let $\mathbf{w}^{-}:=\mathbf{v}^{r, s}$ and $\mathbf{w}^{+}:=\mathbf{v}^{s, r}$. Since $r<s$, by the definition of μ we have

$$
\mu(\mathbf{v})-1 \leq \mu\left(\mathbf{w}^{-}\right) \leq \mu(\mathbf{v}) \quad \text { and } \quad \mu(\mathbf{v}) \leq \mu\left(\mathbf{w}^{+}\right) \leq \mu(\mathbf{v})+1
$$

Furthermore, $\mu\left(\mathbf{w}^{-}\right)=\mu(\mathbf{v})-1$ if and only if the maximum of $\left\{i-v_{0}-\cdots-v_{i-1}\right\}_{i \in(0, n]}$ is only achieved for $i \in(r, s]$. Similarly, $\mu(\mathbf{v})=\mu\left(\mathbf{w}^{+}\right)$if and only if the maximum of $\left\{i-v_{0}-\cdots-v_{i-1}\right\}_{i \in(0, n]}$ is only achieved for $i \in(0, r] \cup(s, n]$.

The following notion is the fundamental book-keeping device in the construction of $X \rightarrow$ \mathbb{P}_{k}^{1}.
Definition 2.2. A vector $\mathbf{v}=\left(v_{0}, v_{1}, \ldots, v_{n-1}\right) \in \mathcal{V}_{n}$ is well-spaced if

$$
v_{i}>0 \Rightarrow v_{i+v_{i}}>0 \text { and } v_{i+j}=0 \text { for all } j \in\left[1, v_{i}-1\right]
$$

for all $i \in[0, n)$. Here indices are considered modulo n.
For example, $\mathbf{v}=(0,3,0,0,2,0,4,0,0)$ is well-spaced whereas $\mathbf{w}=(0,3,0,0,2,4,0,0,0)$ is not. Note that $\sigma(\mathbf{v})$ is well-spaced if and only if \mathbf{v} is well-spaced.

Remark 2.3. We are unaware if well-spaced vectors arise naturally in other fields. It would be interesting to have a conceptual understanding of why these vectors yield useful affine coverings of the varieties under consideration (see \$3).

Lemma 2.4. Let $\mathbf{v} \in \mathcal{V}_{n}$ be a well-spaced vector with $\ell+1$ nonzero entries indexed by $i_{0}<\cdots<i_{\ell}$. Set $i_{\ell+1}:=n+i_{0}$. Then $\mu(\mathbf{v})=i_{0}$, and for any $r, s \in[0, \ell]$ and $j \in\left(i_{r}, i_{r+1}\right)$, we have

$$
\begin{array}{rlr}
\mu\left(\mathbf{v}^{j, i_{r}}\right)=\mu(\mathbf{v})-\left\lfloor\frac{j}{n}\right\rfloor, & \mu\left(\sigma^{i_{s}}\left(\mathbf{v}^{j, i_{r}}\right)\right)=0, \\
\left(\mathbf{v}^{i_{r}, i_{r+1}}\right) & =\mu(\mathbf{v})+\left\lfloor\frac{i_{r+1}}{n}\right\rfloor, & \mu\left(\sigma^{i_{s}}\left(\mathbf{v}^{i_{r}, i_{r+1}}\right)\right)=\delta_{s},
\end{array}
$$

Proof. For any vector $\mathbf{v}=\left(v_{m}\right)_{m=0}^{n-1} \in \mathcal{V}_{n}$, the maximum of $\left\{i-v_{0}-\cdots-v_{i-1}\right\}_{i \in(0, n]}$ is never achieved at an $i=j$ where $v_{j}=0$. Additionally, since \mathbf{v} is well-spaced, $v_{i_{r}}=i_{r+1}-i_{r}$ for all $r \in[0, \ell]$. Hence

$$
\mu(\mathbf{v})=\max _{r \in[0, \ell]}\left(i_{r}-v_{i_{0}}-\cdots-v_{i_{r-1}}\right)=\max _{r \in[0, \ell]}\left(i_{r}-\left(i_{1}-i_{0}\right)-\cdots-\left(i_{r}-i_{r-1}\right)\right)=i_{0}
$$

and the maximum of $\left\{i-v_{0}-\cdots-v_{i-1}\right\}_{i \in(0, n]}$ is achieved at $i=i_{r}$ for all $r \in[0, \ell]$.
Thus, the formulas for $\mu\left(\mathbf{v}^{j, i_{r}}\right)$ and $\mu\left(\mathbf{v}^{i_{r}, i_{r+1}}\right)$ follow from the same argument as in Lemma 2.1(3). Let $\mathbf{w}:=\mathbf{v}^{j, i_{r}}$. Then

$$
\begin{aligned}
\mu\left(\sigma^{i_{s}}(\mathbf{w})\right) & =\mu(\mathbf{w})+w_{0}+\cdots+w_{i_{s}-1}-i_{s} & & \text { by Lemma 2.1 11, } \\
& =\mu(\mathbf{v})-\left\lfloor\frac{j}{n}\right\rfloor+w_{0}+\cdots+w_{i_{s}-1}-i_{s} & & \text { by the formula for } \mu\left(\mathbf{v}^{j, i_{r}}\right), \\
& =\mu(\mathbf{v})-\left\lfloor\frac{j}{n}\right\rfloor+v_{0}+\cdots+v_{i_{s}-1}-i_{s}+\left\lfloor\frac{j}{n}\right\rfloor & & \text { by the definition of } \mathbf{v}^{j, i_{r}}, \\
& =\mu(\mathbf{v})-i_{0} & & \text { since } v_{i_{r}}=i_{r+1}-i_{r} \text { for } r \in[0, \ell] .
\end{aligned}
$$

Similarly, if $\mathbf{w}:=\mathbf{v}^{i_{r}, i_{r+1}}$, we have

$$
\begin{aligned}
\mu\left(\sigma^{i_{s}}(\mathbf{w})\right) & =\mu(\mathbf{w})+w_{0}+\cdots+w_{i_{s}-1}-i_{s} \\
& =\mu(\mathbf{v})+\left\lfloor\frac{i_{r+1}}{n}\right\rfloor+w_{0}+\cdots+w_{i_{s}-1}-i_{s} \\
& =\mu(\mathbf{v})+\left\lfloor\frac{i_{r+1}}{n}\right\rfloor+v_{0}+\cdots+v_{i_{s}-1}-i_{s}+\delta_{s, r+1 \bmod \ell+1}-\left\lfloor\frac{i_{r+1}}{n}\right\rfloor \\
& =\mu(\mathbf{v})-i_{0}+\delta_{s, r+1 \bmod \ell+1} .
\end{aligned}
$$

3. The auxiliary bundle $Y \rightarrow \operatorname{Spec} R$

3.1. Notation. Let R be a k-algebra with no zero-divisors. Given a nonzero element $a \in R$, we use the standard notation $D(a)$ to denote the open affine subscheme of $\operatorname{Spec} R$ given by Spec R_{a}; if R is graded, we let $D_{+}(a)$ denote the open affine subscheme of $\operatorname{Proj} R$ given by $\operatorname{Spec}\left(R_{a}\right)_{0}$.

Let $N=\binom{2 n-1}{n}-1$, and fix coordinates on $\mathbb{P}_{k}^{N}=\operatorname{Proj} k\left[\left\{y_{\mathbf{v}}: \mathbf{v} \in \mathcal{V}_{n}\right\}\right]$. We set $\mathbb{P}_{R}^{N}:=$ $\mathbb{P}_{k}^{N} \times{ }_{\text {Spec } k} \operatorname{Spec} R$.
3.2. Construction of Y_{a}. For any nonzero $a \in R$, we consider the embedding

$$
\iota_{a}: \operatorname{Proj} R\left[t_{0}, \ldots, t_{n-1}\right] \cap D(a) \hookrightarrow \mathbb{P}_{R}^{N} \times_{\text {Spec } R} D(a)
$$

induced by the map $y_{\mathbf{v}} \mapsto a^{\mu(\mathbf{v})} t_{0}^{v_{0}} t_{1}^{v_{1}} \cdots t_{n-1}^{v_{n-1}}$. (This is easily seen to be an embedding since it is the composition of the (n)-uple embedding with a scaling of the coordinates by an appropriate power of a.) The image of ι_{a} is cut out by the equations (see [Har92, Example 2.6]):

$$
\begin{equation*}
a^{\sum_{i=1}^{r} \mu\left(\mathbf{w}_{i}\right)} \prod_{i=1}^{r} y_{\mathbf{v}_{i}}=a^{\sum_{i=1}^{r} \mu\left(\mathbf{v}_{i}\right)} \prod_{i=1}^{r} y_{\mathbf{w}_{i}} \tag{3.1}
\end{equation*}
$$

for all integers r and all sets of vectors $\mathbf{w}_{i}, \mathbf{v}_{i}$, with $1 \leq i \leq r$, such that $\sum_{i=1}^{r} \mathbf{w}_{i}=\sum_{i=1}^{r} \mathbf{v}_{i}$. Let Y_{a} be the closure in \mathbb{P}_{R}^{N} of the image of ι_{a}.
Lemma 3.1. The order n automorphism $\phi: \mathbb{P}_{R}^{N} \rightarrow \mathbb{P}_{R}^{N}, y_{\mathbf{v}} \mapsto y_{\sigma(\mathbf{v})}$ preserves Y_{a}.

Proof. Fix an integer r and vectors $\mathbf{v}_{i}, \mathbf{w}_{i}$, with $1 \leq i \leq r$, such that $\sum_{i=1}^{r} \mathbf{v}_{i}=\sum_{i=1}^{r} \mathbf{w}_{i}$. It is clear that $\sum_{i=1}^{r} \sigma\left(\mathbf{v}_{i}\right)=\sum_{i=1}^{r} \sigma\left(\mathbf{w}_{i}\right)$. Moreover, by Lemma 2.1, 1],

$$
\sum_{i=1}^{r} \mu\left(\sigma\left(\mathbf{v}_{i}\right)\right)-\sum_{i=1}^{r} \mu\left(\sigma\left(\mathbf{w}_{i}\right)\right)=\sum_{i=1}^{r} \mu\left(\mathbf{v}_{i}\right)-\sum_{i=1}^{r} \mu\left(\mathbf{w}_{i}\right) .
$$

Therefore, ϕ preserves the relations (3.1).

3.3. An open covering.

Proposition 3.2. The open subvarieties $\left\{D_{+}\left(y_{\mathbf{v}}\right) \subseteq \mathbb{P}_{R}^{N}: \mathbf{v} \in \mathcal{V}_{n}\right.$ well-spaced $\}$ cover Y_{a}.
Proof. Let $\mathbf{w}=\left(w_{0}, w_{1}, \ldots, w_{n-1}\right) \in \mathcal{V}_{n}$ be a vector that is not well-spaced. We will show that $D_{+}\left(y_{\mathbf{w}}\right) \cap Y_{a} \subset D_{+}\left(y_{\mathbf{v}}\right)$ for some well-spaced vector $\mathbf{v} \in \mathcal{V}_{n}$. Let $i_{0}<\cdots<i_{\ell}$ be the indices such that $w_{i_{j}}>0$, and set $i_{\ell+1}=i_{0}+n$.

If $\mu(\mathbf{w})>i_{0} \geq 0$, then there exists an $r \in[0, \ell)$ such that $\mu(\mathbf{w})=i_{r+1}-w_{i_{0}}-w_{i_{1}}-\cdots-w_{i_{r}}$. Fix the smallest such r; then $i_{r+1}-i_{r}-w_{i_{r}}>0$. Since \mathbf{w} has length n and weight n, there exists an $r<s \leq \ell$ such that $\left(i_{s+1}-i_{s}-w_{i_{s}}\right)<0$; fix the largest such s. Then by our choice of r and s, if $\mu(\mathbf{w})=j-v_{0}-\cdots-v_{j-1}$, we must have $j \in\left(i_{r}, i_{s}\right]$. Therefore by Lemma $2.1(3)$, the defining equations for Y_{a} include the relation

$$
y_{\mathbf{w}}^{2}=y_{\mathbf{w}^{i_{r}, i_{s}}} y_{\mathbf{w}^{i_{s}, i_{r}}},
$$

so $D_{+}\left(y_{\mathbf{w}}\right) \subset D_{+}\left(y_{\mathbf{w}^{i r}, i_{s}}\right)$. After possibly repeating the argument we may assume that $\mu(\mathbf{w})=i_{0}$.

If $i_{r+1}-i_{r}-w_{i_{r}}=0$ for all r, then \mathbf{w} is well-spaced. Otherwise, fix the smallest integer r such that $\left|i_{r+1}-i_{r}-w_{i_{r}}\right|>0$; since $\mu(\mathbf{w})=i_{0}$, we must have $i_{r+1}-i_{r}-w_{i_{r}}<0$. Since \mathbf{w} has length n and weight n, there exists an $r<s \leq \ell$ such that $\left(i_{s+1}-i_{s}-w_{i_{s}}\right)>0$; fix the smallest such s. Now by our choice of r and s, if $\mu(\mathbf{w})=j-v_{0}-\cdots-v_{j-1}$, we must have $j \in\left[0, i_{r}\right] \cup\left(i_{s}, n\right)$. Then by the same argument as above, the defining equations for Y_{a} include the relation

$$
y_{\mathbf{w}}^{2}=y_{\mathbf{w}^{i_{r}, i_{s}}} y_{\mathbf{w}^{i_{s}, i_{r}}} .
$$

By replacing w with $\mathbf{w}^{i_{s}, i_{r}}$, we reduce the value of $\left|i_{r+1}-i_{r}-w_{i_{r}}\right|$. Repeating this process we will arrive at a well-spaced vector \mathbf{v} in finitely many steps.

3.4. Smoothness of Y_{a}.

Proposition 3.3. Let $\mathbb{A}_{R}^{n}=\operatorname{Spec} R\left[Z_{0}, \ldots, Z_{n-1}\right]$. Let $\mathbf{v} \in \mathcal{V}_{n}$ be a well-spaced vector with $\ell+1$ nonzero entries indexed by $i_{0}<\cdots<i_{\ell}$ and set $i_{\ell+1}:=i_{0}+n$. Then the map

$$
\frac{y_{\mathbf{w}}}{y_{\mathbf{v}}} \mapsto\left(\prod_{j \in[0, n), v_{j}=0} Z_{j}^{w_{j}}\right) \times\left(\prod_{r=0}^{\ell} Z_{i_{r}}^{\mu\left(\sigma^{i_{r+1}}(\mathbf{w})\right)}\right)
$$

yields an isomorphism $Y_{a} \cap D_{+}\left(y_{\mathbf{v}}\right) \cong V\left(Z_{i_{0}} \cdots Z_{i_{\ell}}-a\right) \subset \mathbb{A}_{R}^{n}$. In particular, Y_{a} is a compactification of the variety in \mathbb{A}_{R}^{n} given by $Z_{0} Z_{1} \cdots Z_{n-1}=a$.

Corollary 3.4. The variety Y_{a} is smooth if and only if $V(a)$ is smooth in $\operatorname{Spec} R$.
Proof. This follows from Propositions 3.2 and 3.3 , and the Jacobian criterion.

Proof of Proposition 3.3. Set $i_{-1}=i_{\ell}-n$. The proof of the proposition differs slightly in the case when $\ell=0$. To give a unified presentation, if $\ell=0$ then we set $y_{\mathbf{v}}{ }^{i_{0}, i_{\ell+1}}:=a y_{\mathbf{v}}$. Consider the following functions on $Y_{a} \cap D_{+}\left(y_{\mathbf{v}}\right)$ for $j=i_{0}, i_{0}+1, \ldots, i_{0}+n-1$:

$$
g_{j}:= \begin{cases}y_{\mathbf{v}^{j}, i_{r}} y_{\mathbf{v}}^{-1} & \text { if } i_{r}<j<i_{r+1} \text { for some } 0 \leq r \leq \ell \tag{3.2}\\ y_{\mathbf{v}^{i_{r}, i_{r+1}}} y_{\mathbf{v}}^{-1} & \text { if } j=i_{r}, 0 \leq r \leq \ell\end{cases}
$$

Lemma 2.4 shows that the map sends $g_{j} \rightarrow Z_{j \bmod n}$. In addition, Lemma 2.4 together with the relations (3.1) shows that $g_{i_{0}} \ldots g_{i_{\ell}}=a$. Thus, to prove the map is a well-defined isomorphism, we will show that

$$
y_{\mathbf{w}} y_{\mathbf{v}}^{m}=\left(\prod_{j \in[0, n), v_{j}=0} y_{\mathbf{v}^{j}, i_{r}}^{w_{j}}\right) \times\left(\prod_{r=0}^{\ell} y_{\mathbf{v}^{i_{r}, i_{r+1}}}^{\mu\left(\sigma^{i^{i}+1}(\mathbf{w})\right)}\right)
$$

where $m=-1+\sum_{j, v_{j}=0} w_{j}+\sum_{r=0}^{\ell} \mu\left(\sigma^{i_{r+1}}(\mathbf{w})\right)$. By Lemmas 2.4 and 2.1 1. , we have

$$
\begin{aligned}
\sum_{\substack{j \in[0, n), v_{j}=0}} w_{j} \cdot \mu\left(\mathbf{v}^{j, i_{r}}\right)+\sum_{r=0}^{\ell} \mu\left(\sigma^{i_{r+1}}(\mathbf{w})\right) \mu\left(\mathbf{v}^{i_{r}, i_{r+1}}\right) & =(m+1) \mu(\mathbf{v})-\sum_{j=0}^{i_{0}-1} w_{j}+\mu\left(\sigma^{i_{\ell+1}}(\mathbf{w})\right) \\
& =(m+1) \mu(\mathbf{v})+\mu(\mathbf{w})-i_{0}=m \mu(\mathbf{v})+\mu(\mathbf{w}) .
\end{aligned}
$$

Hence, by (3.1), it suffices to prove that $\mathbf{w}+m \mathbf{v}$ is equal to

$$
\mathbf{w}^{\prime}:=\sum_{j \in[0, n), v_{j}=0} w_{j} \mathbf{v}^{j, i_{r}}+\sum_{r=0}^{\ell} \mu\left(\sigma^{i_{r+1}}(\mathbf{w})\right) \mathbf{v}^{i_{r}, i_{r+1}} .
$$

For j such that $v_{j}=0$, it is evident that $w_{j}^{\prime}=w_{j}+m v_{j}$. Further,

$$
\begin{array}{rlr}
w_{i_{s}}^{\prime} & =(m+1) v_{i_{s}}-\sum_{j=i_{s}+1}^{i_{s+1}-1} w_{j}+\mu\left(\sigma^{i_{s+1}}(\mathbf{w})\right)-\mu\left(\sigma^{i_{s}}(\mathbf{w})\right) \\
& =(m+1) v_{i_{s}}-\sum_{j=i_{s}+1}^{i_{s+1}-1} w_{j}+\sum_{j=i_{s}}^{i_{s+1}-1} w_{j}-i_{s+1}+i_{s} & \text { by Lemma 2.1 1 } 1) \\
& =m v_{i_{s}}+w_{i_{s}} & \\
\text { since } v_{i_{s}}=i_{s+1}-i_{s} .
\end{array}
$$

3.5. The degenerate fibers of $Y_{a} \rightarrow \operatorname{Spec} R$.

Proposition 3.5. Let $Q \in V(a) \in R$ be a closed point. The fiber $Y_{a, Q}$ consists of n rational ($n-1$)-dimensional irreducible components which are permuted cyclically by the automorphism ϕ of Lemma 3.1.

Proof. For $i=0, \ldots, n-1$, we define $S_{i}:=Y_{a, Q} \cap V\left(\left\langle y_{\mathbf{w}}: \mu\left(\sigma^{i+1}(\mathbf{w})\right)>0\right\rangle\right)$. From the definition, it follows that ϕ acts on the set $\left\{S_{i}: 0 \leq i \leq n-1\right\}$ via the permutation

$$
S_{0} \mapsto S_{n-1} \mapsto S_{n-2} \mapsto \ldots \mapsto S_{1} \mapsto S_{0}
$$

We claim that $Y_{a, Q}=S_{0} \cup S_{1} \cup \cdots \cup S_{n-1}$ and that each S_{i} is an irreducible rational $(n-1)$ dimensional variety.

Let $\mathbf{v} \in \mathcal{V}_{n}$ be a well-spaced vector and let $i_{0}<\cdots<i_{\ell}$ be the indices of the nonzero entries of \mathbf{v}. By Proposition 3.3, $Y_{a, Q} \cap D_{+}\left(y_{\mathbf{v}}\right)$ is isomorphic to a union of $\ell+1$ hyperplanes in $\mathbb{A}_{\mathbf{k}(Q)}^{n}=\operatorname{Spec} \mathbf{k}(Q)\left[Z_{0}, \ldots, Z_{n-1}\right]$. Furthermore, the hyperplane $Z_{i_{r}}=0$ is isomorphic to the subvariety

$$
V\left(\left\langle\frac{y_{\mathbf{w}}}{y_{\mathbf{v}}}: \mu\left(\sigma^{i_{r}+1}(\mathbf{w})\right)>0\right\rangle\right) \subset Y_{a, Q} \cap D_{+}\left(y_{\mathbf{v}}\right) .
$$

Hence, $Y_{a, Q} \cap D_{+}\left(y_{\mathbf{v}}\right)$ is a dense open subset of $S_{i_{0}} \cup S_{i_{1}} \cup \cdots \cup S_{i_{\ell}}$. Since the open subvarieties $\left\{D_{+}\left(y_{\mathbf{v}}\right) \cap Y_{a, Q}: \mathbf{v}\right.$ well-spaced $\}$ cover $Y_{a, Q}$, this completes the proof.

4. A K / k TWIST of Y_{a}

Let K / k be a cyclic Galois extension of degree n, and let $R_{K}:=R \otimes_{k} K$. Fix a basis $\left\{\alpha_{0}, \ldots, \alpha_{n-1}\right\}$ of K as a k-vector space, as well as a generator τ of $\operatorname{Gal}(K / k)$.

Let T be a set of representatives for the orbits of \mathcal{V}_{n} under the action of the shift operator σ. Consider the K-isomorphism $\psi: \operatorname{Proj} K\left[\left\{z_{\mathbf{v}}: \mathbf{v} \in \mathcal{V}_{n}\right\}\right] \rightarrow \operatorname{Proj} K\left[\left\{y_{\mathbf{v}}: \mathbf{v} \in \mathcal{V}_{n}\right\}\right]$ determined by

$$
\begin{aligned}
y_{\mathbf{v}} & \mapsto \alpha_{0} z_{\mathbf{v}}+\alpha_{1} z_{\sigma(\mathbf{v})}+\cdots+\alpha_{n-1} z_{\sigma^{n-1}(\mathbf{v})} \quad \text { for } \mathbf{v} \in T \\
y_{\sigma^{i}(\mathbf{v})} & \mapsto \sum_{j=0}^{n-1} \tau^{i}\left(\alpha_{j}\right) z_{\sigma^{j}(\mathbf{v})} \quad \text { for } \mathbf{v} \in T \text { and } i=1, \ldots, n-1 .
\end{aligned}
$$

Define $X_{K, a}^{0}:=\psi_{R_{K}}^{-1}\left(Y_{a}\right)$. Abusing notation, we write τ for the endomorphism of Proj $R\left[\left\{z_{\mathbf{v}}\right.\right.$: $\left.\left.\mathbf{v} \in \mathcal{V}_{n}\right\}\right] \times_{R} R_{K}$ given by id $\times \tau$. Let $\phi: \mathbb{P}_{R}^{N} \rightarrow \mathbb{P}_{R}^{N}$ be the automorphism of Lemma 3.1. The following diagram commutes

By Lemma 3.1, the map ϕ preserves Y_{a}. Together with the commutativity of the above diagram, this implies that $X_{K, a}^{0}$ descends to a R-scheme.

5. Proof of Theorem 1.1

Let K / k be a cyclic Galois extension of degree n and let $P(x) \in k[x]$ be a separable polynomial of degree $d n$ or $d n-1$ for some d.

Lemma 5.1. There exists a smooth projective variety $X=X_{K / k, P(x)} \rightarrow \mathbb{P}_{k}^{1}$ such that $X_{\mathbb{A}^{1}} \cong$ $X_{K, P(x)}^{0}$ and that $X_{\mathbb{P}^{1} \backslash\{0\}} \cong X_{K, P\left(1 / x^{\prime}\right) x^{\prime d n}}^{0}$, where $x^{\prime}=1 / x$.
Proof. We will construct X by glueing $Y_{P(x)}$ and $Y_{P\left(1 / x^{\prime}\right) x^{\prime d n}}$ over Spec $k\left[x^{ \pm 1}\right]$ and Spec $k\left[x^{\prime \pm 1}\right]$, in a way which is compatible with the map ψ from $\$ 4$. Let $y_{\mathbf{v}}$ denote the coordinates on $Y_{P(x)}$ and let $y_{\mathbf{v}}^{\prime}$ denote the coordinates on $Y_{P\left(1 / x^{\prime}\right) x^{\prime d n}}$. By Lemma 2.1 2), the morphism

$$
Y_{P\left(1 / x^{\prime}\right) x^{\prime d n}} \times_{\mathbb{A}^{1}} \operatorname{Spec} k\left[x^{\prime}, x_{7}^{\prime-1}\right] \rightarrow Y_{P(x)} \times_{\mathbb{A}^{1}} \operatorname{Spec} k\left[x, x^{-1}\right]
$$

where $y_{\mathbf{v}} \mapsto\left(x^{\prime}\right)^{d \lambda(\mathbf{v})} y_{\mathbf{v}}^{\prime}$ and $x \mapsto 1 / x^{\prime}$ is well-defined and is an isomorphism. Since $\lambda(\mathbf{v})=$ $\lambda(\sigma(\mathbf{v}))$, this morphism is compatible with ψ and thus gives a glueing of $X_{K, P(x)}^{0}$ and $X_{K, P\left(1 / x^{\prime}\right) x^{\prime d n}}^{0}$.

Proposition 5.2. The variety X is a smooth proper compactification of X_{0}, the generic fiber of $X \rightarrow \mathbb{P}^{1}$ is a Severi-Brauer variety, and the degenerate fibers of $X \rightarrow \mathbb{P}^{1}$ lie over $V\left(P\left(x_{0} / x_{1}\right) x_{1}^{d n}\right)$ and consist of the union of n rational varieties all conjugate under $\operatorname{Gal}(K / k)$.

Proof. The compatibility (4.1) together with Proposition 3.3 and Corollary 3.4 implies that

$$
\left(X \times_{\mathbb{P}^{1}} \mathbb{A}^{1}\right) \cap D_{+}\left(z_{(1,1, \ldots, 1)}\right) \cong X_{0},
$$

which gives the first claim. The second claim is immediate from the construction of X, and the third claim follows from Proposition 3.5 and the compatibility (4.1).

Proposition 5.2 completes the proof of Theorem 1.1 .

References

[Art82] M. Artin, Left ideals in maximal orders, Brauer groups in ring theory and algebraic geometry (Wilrijk, 1981), Lecture Notes in Math., vol. 917, Springer, Berlin, 1982, pp. 182-193. MR657429 (83j:16009) $\uparrow 1.2$
[CTvG] Jean-Louis Colliot-Thélène and Jan van Geel, Le complémentaire des puissances n-ièmes dans un corps de nombres est un ensemble diophantien. Preprint. arXiv:1401.0915. $\uparrow 1$
[CTHS03] Jean-Louis Colliot-Thélène, David Harari, and Alexei Skorobogatov, Valeurs d'un polynôme à une variable représentées par une norme, Number theory and algebraic geometry, London Math. Soc. Lecture Note Ser., vol. 303, Cambridge Univ. Press, Cambridge, 2003, pp. 69-89 (French, with English summary). MR2053456 (2005d:11095) †1
[DSW14] Ulrich Derenthal, Arne Smeets, and Dasheng Wei, Universal torsors and values of quadratic polynomials represented by norms, Math. Ann., posted on 2014, 1-22, DOI 10.1007/s00208-014-1106-7, (to appear in print). 11
[Har92] Joe Harris, Algebraic geometry, Graduate Texts in Mathematics, vol. 133, Springer-Verlag, New York, 1992. A first course. MR1182558 (93j:14001) $\uparrow 3.2$
[Kan90] Ming Chang Kang, Constructions of Brauer-Severi varieties and norm hypersurfaces, Canad. J. Math. 42 (1990), no. 2, 230-238, DOI 10.4153/CJM-1990-013-7. MR1051727 (91h:12006) ヶ1.1
[Poo09] Bjorn Poonen, The set of nonsquares in a number field is Diophantine, Math. Res. Lett. 16 (2009), no. 1, 165-170, DOI 10.4310/MRL.2009.v16.n1.a16. MR2480570 (2010c:14025) $\uparrow 1$
[VAV12] Anthony Várilly-Alvarado and Bianca Viray, Higher-dimensional analogs of Châtelet surfaces, Bull. Lond. Math. Soc. 44 (2012), no. 1, 125-135, DOI 10.1112/blms/bdr075. MR2881330 11

Department of Mathematics, Rice University, 6100 S. Main St. MS 136, Houston, TX 77005, USA

E-mail address: varilly@rice.edu
URL: http://www.math.rice.edu/~av15
Department of Mathematics, University of Washington, Box 354350, Seattle, WA 98195, USA

E-mail address: bviray@math.washington.edu
URL: http://math.washington.edu/~ bviray

[^0]: 2000 Mathematics Subject Classification. Primary 11 G35; Secondary 14 G05.

