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ANTHONY VÁRILLY-ALVARADO AND BIANCA VIRAY

Abstract. For a finite cyclic Galois extension of fields K/k of degree n and a separable
polynomial of degree dn or dn−1, we construct an explicit smooth compactification X → P1

k

of the affine normic bundle X0 given by

NK/k(~z) = P (x) 6= 0,

extending the map X0 → A1
k, where (~z, x) 7→ x. The construction makes no assumption of

the characteristic of k, making it a suitable departure point for studying the arithmetic of
smooth compactifications of X0 over global fields of positive characteristic.

1. Introduction

For a finite extension K/k of fields and a polynomial P (x) ∈ k[x], the affine norm hyper-
surface X0 ⊂ An+1

k given by
NK/k(~z) = P (x) 6= 0 (1.1)

parametrizes the values of P (x) that are norms for K/k.
Suppose that k is a number field. The classical Hasse norm theorem states that if K/k

is a cyclic Galois extension and if P (x) is a nonzero constant, then X0 satisfies the Hasse
principle. Although both the Hasse principle and weak approximation fail for more general
X0, Colliot-Thélène has conjectured that the Brauer-Manin obstruction controls failures of
weak approximation on any smooth proper model of X0. See [DSW14, §1] for a summary of
progress towards this conjecture.

The existence of a smooth proper model X of X0 extending the projection

X0 → A1, (~z, x) 7→ x

to a map X → P1
k is especially useful for proving arithmetic results in the direction of

Colliot-Thélène’s conjecture, because the map X → P1
k affords some control over the Brauer

group of X. This map can also be used to prove that certain subsets of the number field k
are diophantine [Poo09,VAV12,CTvG].

The known constructions of X → P1 proceed in two steps. First, one constructs a partial
compactification X ′ → A1

k (e.g. [CTHS03, §2] or [CTvG, Proposition 2.2(i)]). Second, one
extends X ′ → A1

k to a map X → P1 via Hironaka’s theorem. This second step limits the
scope of the construction to fields of characteristic 0.

Our goal in this note is to give an explicit construction of a compactification X → P1
k

convenient for arithmetic applications, under some hypotheses. (For example, the Picard
group and Brauer group of such a compactification X are easily computable; see the proofs
of [VAV12, Proposition 3.1 and Theorem 3.2].) The construction of X does not impose a
restriction on the characteristic of k; it therefore serves as a starting point for studying the
arithmetic of smooth compactifications of X0 over global fields of positive characteristic.
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Theorem 1.1. Let K/k be a cyclic Galois extension of fields of degree n, and let P (x) ∈ k[x]
be a separable polynomial of degree dn or dn− 1. There exists a smooth proper compactifica-
tion X of X0, fibered over P1

k = Proj k[x0, x1], such that X → P1
k extends the map X0 → A1

k.
Furthermore, the generic fiber of X → P1

k is a Severi-Brauer variety, and the degenerate
fibers lie over V (P (x0/x1)x

dn
1 ), and consist of the union of n rational varieties all conjugate

under Gal(K/k).

1.1. Outline. Our construction of a smooth compactification takes a cue from work of Kang:
the generic fiber of our construction is the embedded Severi-Brauer variety in [Kan90].

In §3.2, we construct a partial compactification Ya → SpecR of the variety z1 · · · zn = a 6= 0
for any k-algebra R with no zero-divisors and any a ∈ R\0. In §3.3, we give an explicit open
covering of Ya, which we use in §3.4 to prove that Y is smooth if and only if V (a) ⊂ Spec(R)
is smooth. We describe the geometry of the degenerate fibers of Ya → SpecR in §3.5.

In §4, we construct a K/k-twist of Ya, X
0
K,a → SpecR. Finally, in §5, we restrict to the

case R = k[x] and a = P (x), give a full compactification X → P1
k, and prove Theorem 1.1.

Remark 1.2. Let R be a Dedekind domain, and let O be a maximal R-order in a central
simple Frac(R)-algebra of rank n2. Write XO → SpecR for the scheme of rank n left ideals
of O. In [Art82] Artin studies the geometry of XO → SpecR through its functor of points.
By taking R = k[x], and an appropriate choice of O, this gives a variety XO proper over A1

k,
whose generic fiber is the Severi-Brauer variety associated to X0,k(x), and whose degenerate
fibers consist of n rational varieties conjugate under Gal(K/k).

The functor of points description of XO highlights the connection with central simple
algebras, but the embedding X0,k(x) ↪→ XO is not easily extracted from this description. In
contrast, our construction of a compactification of X0 takes the norm form X0 as a starting
point, and thus the embedding X0 ↪→ X is readily apparent in the construction.

Acknowledgements. We also thank Jean-Louis Colliot-Thélène and the anonymous referee
for comments improving the exposition.

2. Preliminaries on vectors

Throughout, we fix an integer n > 1. By the weight of a vector v = (vm)n−1m=0 ∈ Zn, we
mean the sum

∑n−1
m=0 vm; we also say v has length n. Let Vn denote the set of nonnegative

integer vectors of weight n and length n. Write σ : Vn → Vn for the shift operator

v = (v0, v1, . . . , vn−1) 7→ (v1, v2, . . . , vn−1, v0) =: σ(v).

For any v = (vm)n−1m=0 ∈ Vn we define two nonnegative integers:

µ(v) := max
i∈(0,n]

(i− v0 − · · · − vi−1), λ(v) := µ(v) + µ(σ(v)) + · · ·+ µ(σn−1(v)),

and for any integers i, j with i 6≡ j mod n and vj > 0, we let vi,j := (vm + δi mod n,m −
δj mod n,m)n−1m=0; note that vi,j ∈ Vn, because vj > 0. We collect a few straightforward relations
used frequently below.

Lemma 2.1. We have the following relations.

(1) µ(σs(v)) = µ(v) + v0 + v1 + · · ·+ vs−1 − s for any v ∈ Vn and for any s ∈ (0, n].
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(2) For any integer r and any vectors vi,wi ∈ Vn with 1 ≤ i ≤ r, such that
∑r

i=1 wi =∑r
i=1 vi, we have

∑r
i=1 λ(wi)−

∑r
i=1 λ(vi) = n (

∑r
i=1 µ(wi)−

∑r
i=1 µ(vi)).

(3) Fix integers 0 ≤ r < s < n and fix v = (vm)n−1m=0 ∈ Vn such that vr, vs > 0. Then:
0 ≤ µ(vr,s) + µ(vs,r) − 2µ(v) ≤ 1, and the first inequality is strict if and only if

µ(v) = i−
∑i−1

m=0 vm = j −
∑j−1

m=0 vm for some i ∈ (r, s] and j ∈ (0, r] ∪ (s, n].

Proof. Let w := σs(v), so that wj = vj+s if j < n − s and wj = vj+s−n if j ≥ n − s. Then
i− w0 − w1 − · · · − wi−1 equals{

((i+ s)− v0 − · · · − vi+s−1) + v0 + · · ·+ vs−1 − s if i+ s ≤ n

((i+ s− n)− v0 − · · · − vi+s−n−1) + (n− s)− vs − · · · − vn−1 otherwise.

To conclude (1), note that since v has weight n, we have v0 + v1 + · · ·+ vs−1− s = (n− s)−
vs − vs+1 − · · · − vn−1.

By (1), for any vector v = (vm)n−1m=0 ∈ Vn we have

λ(v) = nµ(v) +
n−1∑
m=0

((n− 1−m)vm −m) .

Using the assumption that
∑r

i=1 wi =
∑r

i=1 vi, the proof of (2) is now a simple manipulation.
It remains to prove (3). Let w− := vr,s and w+ := vs,r. Since r < s, by the definition of

µ we have
µ(v)− 1 ≤ µ(w−) ≤ µ(v) and µ(v) ≤ µ(w+) ≤ µ(v) + 1.

Furthermore, µ(w−) = µ(v) − 1 if and only if the maximum of {i − v0 − · · · − vi−1}i∈(0,n]
is only achieved for i ∈ (r, s]. Similarly, µ(v) = µ(w+) if and only if the maximum of
{i− v0 − · · · − vi−1}i∈(0,n] is only achieved for i ∈ (0, r] ∪ (s, n]. �

The following notion is the fundamental book-keeping device in the construction of X →
P1
k.

Definition 2.2. A vector v = (v0, v1, . . . , vn−1) ∈ Vn is well-spaced if

vi > 0⇒ vi+vi > 0 and vi+j = 0 for all j ∈ [1, vi − 1]

for all i ∈ [0, n). Here indices are considered modulo n.

For example, v = (0, 3, 0, 0, 2, 0, 4, 0, 0) is well-spaced whereas w = (0, 3, 0, 0, 2, 4, 0, 0, 0)
is not. Note that σ(v) is well-spaced if and only if v is well-spaced.

Remark 2.3. We are unaware if well-spaced vectors arise naturally in other fields. It would
be interesting to have a conceptual understanding of why these vectors yield useful affine
coverings of the varieties under consideration (see §3).

Lemma 2.4. Let v ∈ Vn be a well-spaced vector with ` + 1 nonzero entries indexed by
i0 < · · · < i`. Set i`+1 := n + i0. Then µ(v) = i0, and for any r, s ∈ [0, `] and j ∈ (ir, ir+1),
we have

µ(vj,ir) = µ(v)−
⌊
j

n

⌋
, µ(σis(vj,ir)) = 0,

and if ` 6= 0, µ(vir,ir+1) = µ(v) +

⌊
ir+1

n

⌋
, µ(σis(vir,ir+1)) = δs,r+1 mod `+1.
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Proof. For any vector v = (vm)n−1m=0 ∈ Vn, the maximum of {i− v0− · · ·− vi−1}i∈(0,n] is never
achieved at an i = j where vj = 0. Additionally, since v is well-spaced, vir = ir+1− ir for all
r ∈ [0, `]. Hence

µ(v) = max
r∈[0,`]

(
ir − vi0 − · · · − vir−1

)
= max

r∈[0,`]
(ir − (i1 − i0)− · · · − (ir − ir−1)) = i0

and the maximum of {i− v0 − · · · − vi−1}i∈(0,n] is achieved at i = ir for all r ∈ [0, `].
Thus, the formulas for µ(vj,ir) and µ(vir,ir+1) follow from the same argument as in Lemma 2.1 (3).

Let w := vj,ir . Then

µ(σis(w)) = µ(w) + w0 + · · ·+ wis−1 − is by Lemma 2.1 (1),

= µ(v)−
⌊
j

n

⌋
+ w0 + · · ·+ wis−1 − is by the formula for µ(vj,ir),

= µ(v)−
⌊
j

n

⌋
+ v0 + · · ·+ vis−1 − is +

⌊
j

n

⌋
by the definition of vj,ir ,

= µ(v)− i0 since vir = ir+1 − ir for r ∈ [0, `].

Similarly, if w := vir,ir+1 , we have

µ(σis(w)) = µ(w) + w0 + · · ·+ wis−1 − is

= µ(v) +

⌊
ir+1

n

⌋
+ w0 + · · ·+ wis−1 − is

= µ(v) +

⌊
ir+1

n

⌋
+ v0 + · · ·+ vis−1 − is + δs,r+1 mod `+1 −

⌊
ir+1

n

⌋
= µ(v)− i0 + δs,r+1 mod `+1. �

3. The auxiliary bundle Y → SpecR

3.1. Notation. Let R be a k-algebra with no zero-divisors. Given a nonzero element a ∈ R,
we use the standard notation D(a) to denote the open affine subscheme of SpecR given by
SpecRa; if R is graded, we let D+(a) denote the open affine subscheme of ProjR given by
Spec(Ra)0.

Let N =
(
2n−1
n

)
− 1, and fix coordinates on PNk = Proj k [{yv : v ∈ Vn}]. We set PNR :=

PNk ×Spec k SpecR.

3.2. Construction of Ya. For any nonzero a ∈ R, we consider the embedding

ιa : ProjR[t0, . . . , tn−1] ∩D(a) ↪→ PNR ×SpecR D(a)

induced by the map yv 7→ aµ(v)tv00 t
v1
1 · · · t

vn−1

n−1 .(This is easily seen to be an embedding since it is
the composition of the (n)-uple embedding with a scaling of the coordinates by an appropriate
power of a.) The image of ιa is cut out by the equations (see [Har92, Example 2.6]):

a
∑r

i=1 µ(wi)

r∏
i=1

yvi
= a

∑r
i=1 µ(vi)

r∏
i=1

ywi
(3.1)

for all integers r and all sets of vectors wi,vi, with 1 ≤ i ≤ r, such that
∑r

i=1 wi =
∑r

i=1 vi.
Let Ya be the closure in PNR of the image of ιa.

Lemma 3.1. The order n automorphism φ : PNR → PNR , yv 7→ yσ(v) preserves Ya.
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Proof. Fix an integer r and vectors vi,wi, with 1 ≤ i ≤ r, such that
∑r

i=1 vi =
∑r

i=1 wi. It
is clear that

∑r
i=1 σ (vi) =

∑r
i=1 σ (wi). Moreover, by Lemma 2.1(1),

r∑
i=1

µ(σ(vi))−
r∑
i=1

µ(σ(wi)) =
r∑
i=1

µ(vi)−
r∑
i=1

µ(wi).

Therefore, φ preserves the relations (3.1). �

3.3. An open covering.

Proposition 3.2. The open subvarieties {D+(yv) ⊆ PNR : v ∈ Vn well-spaced} cover Ya.

Proof. Let w = (w0, w1, . . . , wn−1) ∈ Vn be a vector that is not well-spaced. We will show
that D+(yw) ∩ Ya ⊂ D+(yv) for some well-spaced vector v ∈ Vn. Let i0 < · · · < i` be the
indices such that wij > 0, and set i`+1 = i0 + n.

If µ(w) > i0 ≥ 0, then there exists an r ∈ [0, `) such that µ(w) = ir+1−wi0−wi1−· · ·−wir .
Fix the smallest such r; then ir+1 − ir − wir > 0. Since w has length n and weight n, there
exists an r < s ≤ ` such that (is+1 − is − wis) < 0; fix the largest such s. Then by our
choice of r and s, if µ(w) = j − v0 − · · · − vj−1, we must have j ∈ (ir, is]. Therefore by
Lemma 2.1(3), the defining equations for Ya include the relation

y2w = ywir,isywis,ir ,

so D+(yw) ⊂ D+(ywir,is ). After possibly repeating the argument we may assume that
µ(w) = i0.

If ir+1 − ir − wir = 0 for all r, then w is well-spaced. Otherwise, fix the smallest integer
r such that |ir+1 − ir − wir | > 0; since µ(w) = i0, we must have ir+1 − ir − wir < 0. Since
w has length n and weight n, there exists an r < s ≤ ` such that (is+1 − is − wis) > 0; fix
the smallest such s. Now by our choice of r and s, if µ(w) = j − v0 − · · · − vj−1, we must
have j ∈ [0, ir]∪ (is, n). Then by the same argument as above, the defining equations for Ya
include the relation

y2w = ywir,isywis,ir .

By replacing w with wis,ir , we reduce the value of |ir+1 − ir − wir |. Repeating this process
we will arrive at a well-spaced vector v in finitely many steps. �

3.4. Smoothness of Ya.

Proposition 3.3. Let An
R = SpecR[Z0, . . . , Zn−1]. Let v ∈ Vn be a well-spaced vector with

`+ 1 nonzero entries indexed by i0 < · · · < i` and set i`+1 := i0 + n. Then the map

yw
yv
7→

 ∏
j∈[0,n), vj=0

Z
wj

j

×(∏̀
r=0

Z
µ(σir+1 (w))
ir

)

yields an isomorphism Ya ∩ D+(yv) ∼= V (Zi0 · · ·Zi` − a) ⊂ An
R. In particular, Ya is a com-

pactification of the variety in An
R given by Z0Z1 · · ·Zn−1 = a.

Corollary 3.4. The variety Ya is smooth if and only if V (a) is smooth in SpecR.

Proof. This follows from Propositions 3.2 and 3.3, and the Jacobian criterion. �
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Proof of Proposition 3.3. Set i−1 = i` − n. The proof of the proposition differs slightly in
the case when ` = 0. To give a unified presentation, if ` = 0 then we set yvi0,i`+1 := ayv.
Consider the following functions on Ya∩D+(yv) for j = i0, i0 + 1, . . . , i0 + n− 1:

gj :=

{
yvj,iry−1v if ir < j < ir+1 for some 0 ≤ r ≤ `,

yvir,ir+1y−1v if j = ir, 0 ≤ r ≤ `.
(3.2)

Lemma 2.4 shows that the map sends gj → Zj mod n. In addition, Lemma 2.4 together
with the relations (3.1) shows that gi0 . . . gi` = a. Thus, to prove the map is a well-defined
isomorphism, we will show that

ywy
m
v =

 ∏
j∈[0,n), vj=0

y
wj

vj,ir

×(∏̀
r=0

y
µ(σir+1 (w))

vir,ir+1

)

where m = −1 +
∑

j,vj=0wj +
∑`

r=0 µ(σir+1(w)). By Lemmas 2.4 and 2.1(1), we have

∑
j∈[0,n),
vj=0

wj · µ(vj,ir) +
∑̀
r=0

µ(σir+1(w))µ(vir,ir+1) = (m+ 1)µ(v)−
i0−1∑
j=0

wj + µ(σi`+1(w))

= (m+ 1)µ(v) + µ(w)− i0 = mµ(v) + µ(w).

Hence, by (3.1), it suffices to prove that w +mv is equal to

w′ :=
∑

j∈[0,n), vj=0

wjv
j,ir +

∑̀
r=0

µ(σir+1(w))vir,ir+1 .

For j such that vj = 0, it is evident that w′j = wj +mvj. Further,

w′is = (m+ 1)vis −
is+1−1∑
j=is+1

wj + µ(σis+1(w))− µ(σis(w))

= (m+ 1)vis −
is+1−1∑
j=is+1

wj +

is+1−1∑
j=is

wj − is+1 + is by Lemma 2.1(1)

= mvis + wis since vis = is+1 − is. �

3.5. The degenerate fibers of Ya → SpecR.

Proposition 3.5. Let Q ∈ V (a) ∈ R be a closed point. The fiber Ya,Q consists of n rational
(n − 1)-dimensional irreducible components which are permuted cyclically by the automor-
phism φ of Lemma 3.1.

Proof. For i = 0, . . . , n − 1, we define Si := Ya,Q ∩ V (〈yw : µ(σi+1(w)) > 0〉). From the
definition, it follows that φ acts on the set {Si : 0 ≤ i ≤ n− 1} via the permutation

S0 7→ Sn−1 7→ Sn−2 7→ . . . 7→ S1 7→ S0.

We claim that Ya,Q = S0 ∪S1 ∪ · · · ∪Sn−1 and that each Si is an irreducible rational (n− 1)-
dimensional variety.
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Let v ∈ Vn be a well-spaced vector and let i0 < · · · < i` be the indices of the nonzero
entries of v. By Proposition 3.3, Ya,Q∩D+(yv) is isomorphic to a union of `+ 1 hyperplanes
in An

k(Q) = Spec k(Q)[Z0, . . . , Zn−1]. Furthermore, the hyperplane Zir = 0 is isomorphic to
the subvariety

V

(〈
yw
yv

: µ(σir+1(w)) > 0

〉)
⊂ Ya,Q ∩D+(yv).

Hence, Ya,Q∩D+(yv) is a dense open subset of Si0∪Si1∪· · ·∪Si` . Since the open subvarieties
{D+(yv) ∩ Ya,Q : v well-spaced} cover Ya,Q, this completes the proof. �

4. A K/k twist of Ya

Let K/k be a cyclic Galois extension of degree n, and let RK := R ⊗k K. Fix a basis
{α0, . . . , αn−1} of K as a k-vector space, as well as a generator τ of Gal(K/k).

Let T be a set of representatives for the orbits of Vnunder the action of the shift operator σ.
Consider the K-isomorphism ψ : ProjK[{zv : v ∈ Vn}]→ ProjK[{yv : v ∈ Vn}] determined
by

yv 7→ α0zv + α1zσ(v) + · · ·+ αn−1zσn−1(v) for v ∈ T,

yσi(v) 7→
n−1∑
j=0

τ i(αj)zσj(v) for v ∈ T and i = 1, . . . , n− 1.

Define X0
K,a := ψ−1RK

(Ya). Abusing notation, we write τ for the endomorphism of ProjR[{zv :

v ∈ Vn}]×R RK given by id×τ . Let φ : PNR → PNR be the automorphism of Lemma 3.1. The
following diagram commutes

ProjRK [{zv : v ∈ Vn}]
ψRK //

τ

��

ProjRK [{yv : v ∈ Vn}]
φRK

��
ProjRK [{zv : v ∈ Vn}]

ψRK // ProjRK [{yv : v ∈ Vn}]

(4.1)

By Lemma 3.1, the map φ preserves Ya. Together with the commutativity of the above
diagram, this implies that X0

K,a descends to a R-scheme.

5. Proof of Theorem 1.1

Let K/k be a cyclic Galois extension of degree n and let P (x) ∈ k[x] be a separable
polynomial of degree dn or dn− 1 for some d.

Lemma 5.1. There exists a smooth projective variety X = XK/k,P (x) → P1
k such that XA1

∼=
X0
K,P (x) and that XP1\{0} ∼= X0

K,P (1/x′)x′dn, where x′ = 1/x.

Proof. We will construct X by glueing YP (x) and YP (1/x′)x′dn over Spec k[x±1] and Spec k[x′±1],
in a way which is compatible with the map ψ from §4. Let yv denote the coordinates on
YP (x) and let y′v denote the coordinates on YP (1/x′)x′dn . By Lemma 2.1(2), the morphism

YP (1/x′)x′dn ×A1 Spec k[x′, x′−1]→ YP (x) ×A1 Spec k[x, x−1]
7



where yv 7→ (x′)dλ(v)y′v and x 7→ 1/x′ is well-defined and is an isomorphism. Since λ(v) =
λ(σ(v)), this morphism is compatible with ψ and thus gives a glueing of X0

K,P (x) and

X0
K,P (1/x′)x′dn . �

Proposition 5.2. The variety X is a smooth proper compactification of X0, the generic
fiber of X → P1 is a Severi-Brauer variety, and the degenerate fibers of X → P1 lie
over V (P (x0/x1)x

dn
1 ) and consist of the union of n rational varieties all conjugate under

Gal(K/k).

Proof. The compatibility (4.1) together with Proposition 3.3 and Corollary 3.4 implies that

(X ×P1 A1) ∩D+(z(1,1,...,1)) ∼= X0,

which gives the first claim. The second claim is immediate from the construction of X, and
the third claim follows from Proposition 3.5 and the compatibility (4.1). �

Proposition 5.2 completes the proof of Theorem 1.1. �
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