6 Linear Algebra and Matrix Analysis

Vector Spaces

Throughout this course, the base field F of scalars will be R or C. Recall that a vector
space is a nonempty set V' on which one defines the operations of addition (for v, w € V,
v+ w € V) and scalar multiplication (for & € F and v € V, av € V) which satisfy the
following axioms: for every x,y,z € V and A\, u € F

L z+y)+z=2+(y+2),

2. x+y=y-+ux,

3. 30 € V such that x +0 ==z,

4. Vz € V there exists z € V such that z + z = 0 (written z = —z),
5. Ax =z,

6. Mz +y) = Az + Ay,

7. A+ p)x = Az + pz,

8. AMpz) = (Ap)z, and

9. Iz ==x.

A subset W C V is a subspace if W is closed under addition and scalar multiplication,
so W inherits a vector space structure of its own.

Examples:
xy
(1) F» = | eachz;eFj n>1
Tn
(2) {0}
Z1
(3) F>* = T2 | reachz; €F
T 00
(4) £(F) C F*, where £/(F) = ¢ | 22 | : ) |a;| < o0
: =
x

£°(F) C F*°, where (*(F) = T2 | :sup|z;| < 0o
: j

?*(F) and ¢>°(FF) are clearly subspaces of F>°.
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I o0
Let 0 < p < 0o, and define /7(FF) = Ty | - Z\:rj\p < 00
: =

Since

[z +yl” < (Jaf+[y])? < (2max(|z], [y]))”
= 2Pmax(|z]?, [y[") < 2°(lz]" + |y[*),

it follows that ¢ (IF) is a subspace of F*°.

Egercise: Show that £(F) G £9(F) if 0 < p < ¢ < oo,

()

(6)

(7)

(8)
9)

Let X be a nonempty set; then the set of all functions f : X F has a natural
structure as a vector space over F: define f; + fo by (f1 + f2)(z) = fi(z) + fo(x), and

define af by (af)(z) = af(z).

For a metric space X, let C(X,F) be the set of all continuous F-valued functions on X.
C(X,F) is a subspace of the vector space defined in (5). Define C,(X,F) C C(X,TF) to
be the subspace of all bounded continuous functions f : X — T, and let C*(X,F) C
C(X,T) to be the subspace of all k£ times continuously differentiable functions f : X —
F. In the case where X = F we simplify this notation to C(F), Cy(F), and C*(F),
respectively.

Define P(F) C C(R,F) to be the space of all F-valued polynomials on R:

PF) ={ap+ a1z + -+ anz™:m >0, each a; € F}.
Each p € P(TF) is viewed as a function p : R — F given by p(z) = ag+a1x+- - -+ apmz™.
Define P,(F) C P(F) to be the subspace of all polynomials of degree < n.

Let V = {u € C*(F) : u" +u = 0}. It is easy to check directly from the definition that
V is a subspace of C?(FF). For F = C, one knows that

V ={aicosz + azsinz : a;,ay € C} = {b1e™ + bye ™ : by, by € C},

from which it is also clear that V is a vector space.

More generally, if L(u) = u™ + a,,_1u™ Y 4 --- + a1’ + apu is an m™ order linear
constant-coefficient differential operator, then V' = {u € C™(F) : L(u) = 0} is a vector
space. V can be explicitly described as the set of all linear combinations of certain
functions of the form z7e™ where j > 0 and r is a root of the characteristic polynomial
™ 4 Q1 7™ L 4 oo+ a7 4+ ag = 0. For details, see Chapter 3 of Birkhoff & Rota.

Convention: Throughout this course, if the field F is not specified, it is assumed to be C.
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Linear Independence, Span, Basis

Let V be a vector space. A linear combination of the vectors vi,...,v,, € V is a vector
v € V of the form v = ayv1 + -+ + @V, where each oy € F. Let S C V' be a subset of
V. S is called linearly independent if for every finite subset {vy,..., v} of S, the linear
combination Y ;" a;v; = 0 iff oy = - -+ = a, = 0. Otherwise, S is called linearly dependent.
Define the span of S (denoted Span(S)) to be the set of all linear combinations of all finite
subsets of S. (Note: A linear combination is by definition a finite sum.) If S = (), set
Span(S) = {0}. S is said to be a basis of V' if S is linearly independent and Span(S) = V.

Facts: (a) Every vector space has a basis; in fact if S is any linearly independent set in V', then
there is a basis of V' containing S. The proof of this in infinite dimensions uses Zorn’s lemma
and is nonconstructive. Such a basis in infinite dimensions is called a Hamel basis. Typically
it is impossible to identify a Hamel basis explicitly, and they are of little use. There are
other sorts of “bases” in infinite dimensions defined using topological considerations which
are very useful and which we will consider later.

(b) Any two bases of the same vector space V' can be put into 1—1 correspondence. Define
the dimension of V (denoted dimV') € {0,1,2,...} U {co} to be the number of elements in
a basis of V. The vectors ey, ...,e,, where

F 0
e;=| 1]« §™ entry,

0

form the standard basis of ", and dim[F" = n.

Remark. Any C-vector-space V may be regarded as an R-vector-space by restriction of
the scalar multiplication. It is easily checked that if V' is finite-dimensional with basis

{v1,...,v,} over C, then {vy,...,v,,%v1,...,70,} is a basis for V over R. In particular,
dimg V = 2dim¢ V.
The vectors ey, e, ..., € F* are linearly independent. However, Span{e;, e, ...} is the

proper subset of F*° consisting of all vectors with only finitely many nonzero components,
so {ey, eq,...} is not a basis of F*°. But {z™ : m € {0,1,2,...}} is a basis of P.
Now let V' be a finite-dimensional vector space, and {vy,...,v,} be a basis for V. Any

n
v € V can be written uniquely as v = ) z;v; for some z; € F. So we can define a map
i=1

T

from V into F"* by v — : |. The z;’s are called the coordinates of v with respect to the
Tn

basis {v1,...,v,}. This coordinate map clearly preserves the vector space operations and is

bijective, so it is an isomorphism of V' with " in the following sense.
Definition. Let V', W be vector spaces. A map L :V — W is a linear transformation if

Vo, v € VYV, a0 €F) L(av; + aove) = a L(v1) + g L(vg).



Vector Spaces 9

If in addition L is bijective, then L is called a (vector space) isomorphism.

Even though every finite-dimensional vector space V is isomorphic to F* (where n =
dim V'), the isomorphism depends on the choice of basis. Many properties of V' are inde-
pendent of the basis (e.g. dimV'). We could try to avoid bases, but it is very useful to use
coordinate systems. So we need to understand how coordinates change when the basis is
changed.

Change of Basis

Let V be a finite dimensional vector space. Let {vy,...,v,} and {w, ..., w,} be two bases for
V.ForveV,letz=(z1,...,2,)" and y = (y1,...,y)" denote the vectors of coordinates
of v with respect to the bases By = {vy,...,v,} and By = {wy,...,w,}, respectively. So
v =) Tivi = D5 yjw;. Express each w; in terms of {vi,..., v} 1wy = DL, aiv;
aip -+ Qin
(a;; € F). Let A= : € F*". Then
an1 *** Opn
n n n n
i=1 j=1 i=1 \j=1

SO T; = 2?21 a;;y;, i.e. £ = Ay. The matrix A is called the change of basis matrix.

Notation: Horn-Johnson uses My, ,(F) to denote F™*" = set of m x n matrices with entries
from F. H-J writes [v]g, for z, [v]s, for y, and g,[I]s, for A, so x = Ay becomes [v]s, =g,
[I]Bz [U]Bz'

Similarly, we can express each v; in terms of {wi,...,w,} 1 v; = > bjjw; (bi; € F).
bir -+ bin
Let B = : € ™*". Then y = Bx. We obtain that A and B are invertible
bpi -+ bon
and B = A™!.

Formal matriz notation: Write the basis vectors (vq - --v,) and (w; - - - wy,) formally in rows.
Then the equations w; = >, a;;v; become the formal matrix equation (w;---w,) =
(vy - - - v,) A using the usual matrix multiplication rules. In general, (v; - --v,) and (wy - - - wy,)
are not matrices (although in the special case where each v; and wj; is a column vector in
F*, we have W = VA where V,W € F**" are the matrices whose columns are the v;’s
and the w;’s, respectively). We also have the formal matrix equations v = (v; - --v,)z and
v = (wy - wy)y, 50
(Ul T Un)z = (wl T wn)y - (Ul et Un)Aya

which gives us x = Ay as before.

Remark. We can read the matrix equation W = V A as saying the 5" column of W is the
linear combination of the columns of V whose coefficients are in the j** column of A.
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Constructing New Vector Spaces from Given Ones

(1)

The intersection of any family of subspaces of V' is again a subspace: let {W, : v € G}

be a family of subspaces of V' (where G is an index set); then ﬂ W, is a subspace of
veG

V.

Sums of subspaces: If W1, Wy are subspaces of V| then
W1 +W2 = {’LU1+’U)2 Wy € Wl,UJQ € Wg}

is also a subspace, and dim(W; + Ws) + dim(W; N Wy) = dim W + dim W,. We
say that the sum W; + Wy is direct if W1 N Wy = {0} (equivalently: for each v €
Wiy + W, there are unique wy; € Wi and we € W; for which v = wy 4+ wy), and we
write W, & Wy for Wy + Wy, More generally, if Wy, ..., W,, are subspaces of V', then
Wi+ -+ W, ={wi +---+w, : wj € W;,;1 <j <n}is asubspace. We say that
the sum is direct if whenever w; € W; and Z?:l w; = 0, then each w; = 0, and we
write W1 @ - - - @ W,. Even more generally, if {IWW, : v € G} is a family of subspaces of

V', define Z7€G W, = span (UW7> . We say that the sum is direct if for each finite

veG
subset G' of G, whenever w, € W, fory € G’ and }___ w, = 0, then each w, = 0 for

v € G’ (equivalently: for each 8 € G, W5 N (Z%G,#ﬂ W,y) ={0}).

Direct Products: Let {V, : v € G} be a family of vector spaces over F. Define V' =

yé(G V., to be the set of all functions v: G — U V, for which (Vv € G) v(y) € V,,. We
veG
write v, for v(7), and we write v = (v,),eq, or just v = (v,). Define v +w = (v, + w,)
and av = (av,). Then V is a vector space over F. (Example: G = N = {1,2,...},
each V, =F. Then X V, =F®.)
n>1
(Ezternal) Direct Sums: Let {V,, : v € G} be a family of vector spaces over F. Define

@ V, to be the subspace of X V, consisting of those v for which v, = 0 except for
yeEG ye€G

finitely many v € G. (Example: For n = 0,1,2,... let V,, = span(z”) in P. Then
P = @ V,.) Technicality: we should technically assume that for v # 3, V,NVz = {0};

n>0
if not, rename the elements of each V., to make it true; the given definition avoids the

technicality by using the direct product.

Facts: (a) If G is a finite index set, X V., and @V, are isomorphic. (b) If each W, is a
subspace of V' and the sum Z’yEG W, is direct, then it is naturally isomorphic to the
external direct sum @W,.

Quotients: Let W be a subspace of V. Define on V' the equivalence relation v; ~ vy
if v; — vo € W, and define the quotient to be the set V/W of equivalence classes. Let
v+ W denote the equivalence class of v. Define a vector space structure on V/W by
defining oy (v; + W) 4+ an(va + W) = (ayv1 + aovg) + W. Define the codimension of W
in V by codim(W) = dim(V/W).
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Dual Vector Spaces

Definition. Let V' be a vector space. A linear functional on V is a function f : V — F
for which f(anvy + aovy) = a1 f(v1) + asf(ve) for vi,ve € V, o, a0 € F, ie., a linear
transformation from V' to the 1-dimensional vector space F.

Eramples:

(1) Let V. =T", and let f be a linear functional on V. Set f; = f(e;) for 1 < i < n. Then
for z = (z1,...,2,)" =Y 1 zi6; € T,

fl) =) wifle) =Y fiwi= (fi for - fn)-
i=1 =1

So the row vector (fi,..., f,) is the matrix of f using the standard basis {e,...,e,}
on " (and the basis {1} on F).

(2) Let V =TF>. Given N and some fi, fo,..., fx € F, we could define f(z) = Zf\il fix;
for x € F*. However, not all linear functionals on F> are of this form.

(3) Let V = ¢L(FF). If f € £>°(F), then for z € (1(F), >, | fizi| < (sup |fi]) Yooy |2i] < o0,
so the sum f(z) = Y ;o, fiz; converges absolutely, defining a linear functional on ¢'(IF).
Similarly, if V = ¢*(F) and f € ¢*(F), f(z) = Y., fiz; defines a linear functional on
(> (F).

(4) Let X C R" and zo € X. Then f(u) = u(zo) defines a linear functional on C'(X).

b

(5) If —oo < a<b<oo, f(u) = [ u(x)ds defines a linear functional on C([a,d]).

Definition. If V is a finite-dimensional vector space, the dual space of V' is the vector space
V* of all linear functionals on V', where (ayf1 + aofo)(v) = ay f1(v) + ag fa(v).

Remark. When V is infinite dimensional, the set of all linear functions is often called the
algebraic dual space of V', as it depends only on the algebraic structure of V. We will be
more interested in linear functionals related also to a topological structure on V. After
introducing norms (which induce metrics on V'), we will define V* to be the vector space of
all continuous linear functionals on V. (When V is finite dimensional, with any norm on V/,
every linear functional on V is continuous.)

Dual Basis in Finite Dimensions

Let V be a finite dimensional vector space, and let {v1,...,v,} be a basis for V. For
1 <4 < n, define linear functionals f; € V* by f;(v;) = 6;; (=1 for i = j,=0 for i # j). Let
v €V, and let = (x1,...,7,)7 be the vector of coordinates of v with respect to the basis
{vi,...,vn}, ie, v =" xv;. Then f;(v) = z;, i.e., f; maps v into its coordinate z; of v;.

Now if f € V*, let a; = f(v;); then

fv) = f(z Tv;) = Zazﬂ?i = Zaz’fi(v),
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so f =" a;fi. This representation is unique (exercise), so {fi,..., fn} is a basis for V*,
called the dual basis to {vy,...,v,}. We get dimV* =dim V.
fi
If we write the dual basis in a column : and the coordinates (a;---a,) of f =
Ja
fi
Yor . a;fi € V*in a row, then f = (ar---,a,) : |. The defining equation of the dual
Jn
basis is (matrix multiply, evaluate)
fi 1 O
(%) C () = —7
Jn O 1

Change of Basis and Dual Bases: Let {wy, ..., w,} be another basis of V related to {v1,...,v,}
by the change-of-basis matrix A, i.e., (wy -+ wy) = (vy - - -v,)A. Left-multiplying (x) by A~!
and right-multiplying by A gives

fi
A1 : (wy - wy) = 1.
fn
Therefore,
g1 f1 51
: =A""] satisfies ol (wyerwy) =1
In f In

and so {g1,...,9n} is the dual basis to {wy,...,w,}. If (by---b,) are the coordinates of
f € V* with respect to {g1,.-., 9.}, then

g1 fi
f=(b1-b) : = (by---b,)A™? : = (ay---ay) :
n Jn Jn
0 (by---b,)A™ = (ay---ay), ie., (by---b,) = (ay---a,)A, is the transformation law for the
coordinates of f with respect to the two dual bases {fi,..., fn} and {g1,...,9n}-

fr

7

Linear Transformations

Ezamples:

(1) Let T : F* — F™ be a linear transformation. For 1 < j < n, let
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(3)

(4)

Ifz=| : | €F, T(z)=T(Szje;) = Sz,;T(ey), ie.,

T =(t-ta) | 1 | =

So every linear transformation from F* to F™ is given by multiplication by a matrix
in Fmxm,

One can construct linear transformations G : F*° — F*° by matrix multiplication. Let

t11 tio
T = t21

be an infinite matrix for which each row has only finitely many nonzero entries. In
. 1 . L .

forming Tz for ¢ = . € F*®, each entry in T'x is given by a finite sum, so

Tz makes sense and T clearly defines a linear transformation from F*° to itself. The

shift operators (z1,Zs,...)" — (0,21, 2,...)7 and (zy,79,...)T — (v2,z3,...)7 are

examples of linear transformations on F* that can be written in this form. However,

not all linear transformations on F*° are of this form.

If sup |t;;| < oo and x € £, then for each i, 33°°, [t;jz;| < sup [tij] 357, |2 Tt follows
i i
that matrix multiplication Tz defines a linear transformation 7" : 1 — ¢°°.

There are many ways linear transformations arise on function spaces, e.g.,

(a) Let k € C([c,d] x [a,b]) where [a, b], [c, d] are closed bounded intervals. Define the
linear transformation L : Cla,b] — Cle¢,d] by L(u)(z) = fab k(x,y)u(y)dy. L is
called an integral operator and k(z,y) is called its kernel.

(b) Let m € Cla,b]. Then L(u)(z) = m(z)u(x) defines a multiplier operator L on
Cla, b].

(c) Let g : [¢,d] — [a,b]. Then L(u)(z) = u(g(x)) defines a composition operator
L : Cla,b] — Clec,d].

(d) u s ' defines a differential operator L : C'|a,b] — Cla, b).
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Matrices and Basis Transformations
Suppose V, W are finite-dimensional with bases {v1,...,v,}, {w1, ..., w,}, respectively and

suppose L : V' — W is linear. For 1 < j <n, we can write Lv; = Y .* | t;;w;. The matrix

ti1 -0 tin
T = : ; €

tml Tt tmn

is called the matrix of L with respect to the basis By = {v;,..., v}, Bo = {w;, ..., wy,} (H-J

x1
writes T = p,[L]p,). If v € V, : are the coordinates of v with respect to Bi, and
Tn
Y1
: are the coordinates of Lv with respect to By, then
Ym

zm:yiw,- =Ilv=1L (Xn: .’Ej’l)j) = Zm: (Xn:th]> w;,
i=1 j=1 1 \j=1

i=

so for 1 < i <m, y; = Y7 tizy, i.e. y =Tz Also, L(vi++-v,) = (w1 w,)T. Now
let B) = {v],...,v.} and B} = {w],...,w!, } be different bases for V, W, respectively, with
change-of-bases matrices A € F**" B € F™*™:

(vi---vn)=(v1---vy)A and (wi---w,) = (wy- - wy)B.

Then
L} ---v}) = (w1 wp)TA = (w)---wl,)B™'TA,

n

so the matrix of L in the new bases is
B [L]B’l =B 'TA= Bl [1]3232[[’]3131 [I]B’l'

In particular, if W =V, By = By, and B}, = B}, then B = A, so the matrix of L in the new
basis is A"'T'A. This matrix is said to be similar to T. The transformation T — AT A
is said to be a similarity transformation of A. A similarity transformation of a matrix
corresponds to the representation of the same linear transformation with respect to different
bases.

Linear transformations can be studied abstractly or in terms of matrix representations.
For L : V — W, the range R(L), null space N (L) (or kernel ker(L)), rank (L) = dim(R (L)),
etc., can be defined directly in terms of L, or in terms of matrix representations. If T' € F**"
is the matrix of L : V' — V in some basis, it is easiest to define det L =detT and tr L = tr 7.
Since det (A™'T A) = det T and tr (A~'T A) = tr (T'), these are independent of the choice of
basis.
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Vector Spaces of Linear Transformations

Let V, W be vector spaces. If Ly : V. — W, Ly : V — W are linear, define oL, +
agly 1V — W for ag,a9 € F by (a1L1 + agly)v = a1 L1(v) + asLs(v); so the space of
all linear transformations from V to W is naturally a vector space over F. If V., W are
finite-dimensional, we denote this vector space by B(V, W); in the infinite-dimensional case,
we will use this notation to mean all bounded linear transformations (to be defined) from V
to W with respect to norms on V', W.

Remark. For normed linear spaces, a linear operator is a bounded linear operator iff it is
continuous iff it is uniformly continuous. When V| W are finite dimensional normed linear
spaces, every linear transformation from V to W is continuous, and is therefore a bounded
linear transformation.

If V, W have dimensions n, m, respectively, then B(V, W) is isomorphic to F"*"  so
it has dimension nm. When V = W, we denote B(V, V) by B(V). Since the composition
Mo L:V — U of linear transformations L : V — W and M : W — U is also linear, B(V)
is naturally an algebra with composition as the multiplication operation.

Projections

Suppose Wi, W, are subspaces of V and V = W; @ W,. Then we say W; and W, are
complementary subspaces. Any v € V' can be written uniquely as v = w;, + wy with w; € Wy,
wy € Wy. So we can define maps P, : V — Wy, P, : V. — Wy by Plv = wy, Pov = wsy. It
is easy to check that P;, P, are linear. We usually regard P, P, as mapping V into itself
(as Wy C V, Wy C V). Py is called the projection onto Wi along Wy (similarly P; is the
projection onto W5 along 7). It is important to note that P; is not determined solely by the
subspace W; C V, but also depends on the choice of the complementary subspace W,. Since
a linear transformation is determined by its restrictions to direct summands of its domains,
P, is uniquely characterized as that linear transformation on V' which satisfies

P1 :0

Wa

:1‘ and P
Wi

Wi

It follows easily that
P:=pP, P!=P, P +P,=I, and PP,=PP =0.

In general, an element g of an algebra is call idempotent if ¢> = q. If P : V — V is a linear
transformation and P is idempotent, then P is a projection in the above sense: it is the
projection onto R(P) along N (P).

This discussion extends to the case in which V =W; & --- & W, for subspaces W;. We
can define projections P; : V' — W; in the obvious way: PF; is the projection onto W; along
Wi oW1 ®W;1 @ ---®W,,. Then

P’=Pfor1<i<m, Pi+-+P,=1I and PP =PP =0fori#j.

If V is finite dimensional, we say that a basis {wy, ..., wp,uy,...,u,} for V=W, @ W,
is adapted to the decomposition Wy @ Wy if {w,...,w,} is a basis for Wy and {uy,...,u,}
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is a basis for W,. With respect to such a basis, the matrix representations of P; and P, are

Lo and 00 , where the block structure is pxp px4q ,
0 0 0 1 gXp qXxXq

EE

* xR
I

abbreviated 5 [

Invariant Subspaces

We say that a subspace W C V is invariant under a linear transformation L : V — V if
L(W) C W. If V is finite dimensional and {w;,...,w,} is a basis for W, which we complete
to some basis {w1, ..., wp, U1, ..., uqs} of V, then W is invariant under L iff the matrix of L
in this basis is of the form
i.e., block upper-triangular.

We say that L : V — V preserves the decomposition W; @ --- @ W,, = V if each W is
invariant under L. In this case, L defines linear transformations L; : W; — W;, 1 < i < m,

and we write L =L, @& --- & L,,. Clearly L preserves the decomposition iff the matrix 7" of
L with respect to an adapted basis is of block diagonal form

o *x 3
* X

Ty 0

where the T;’s are the matrices of the L;’s in the bases of the W;’s.

Nilpotents

A linear transformation L : V' — V is called nilpotent if L™ = 0 for some r > 0. A basic
example is a shift operator on ": define Se; = 0, and Se; = e;_; for 2 < i < n. The matrix
of S'is

0 1 0
S=8, = 1 € Fn.
0 0

Note that S™ shifts by m : S™e; =0 for 1 < i < m, and S™e; = e;_,, form+1 <1 < n.
Thus S™ = 0. For 1 < m < n — 1, the matrix (S,)™ of S™ is zero except for 1’s on the m'™
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super-diagonal (i.e., the ij elements for j =i+ m (1 < i <n—m) are 1’s):

0 --- 0 1 «— (1,m + 1) element

<— (n —m,n) element.
S™ = (S,)" =

o O = O

0

Note, however that the shift operator on F*°: Se; = ¢;_; (i > 2), Se; = 0, is not nilpotent.

Structure of Nilpotent Operators in Finite Dimensions

Let V be finite dimensional and L : V — V be nilpotent. We will show that there is a
basis for V' in which L is a direct sum of shift operators. This decomposition results from
a direct sum decomposition of both the domain and range of L. The basic idea is to build
the decomposition by using the structure of the subspaces N'(L¥) in the domain of L and
the structure of the subspaces R(L¥) in the range of L. This is a key step in showing that
every matrix is similar to a matrix in Jordan form.

Since L is nilpotent there is an integer r such that L™ = 0 # L™~!. The proof proceeds by
successively considering the subspaces R(L"?) starting with j = 1 and decomposing along
these subspaces. Let v1,...,vy, be a basis for R(L™"!), and for 1 < i < #;, choose w; € V
for which

V; = erlwi_

Observe that
(1) V=N(L")=N(L"") @span{w,, ..., wy }.
We claim that the set
Sy ={L" wy, L™ 2wy, ..., wy, L' twy, L' 2wy, .. wa, ...y L7 twg,, L 2wy, . .., we, }

is linearly independent (note the cyclic nature of the decomposition already appearing in the
description of &). Indeed, suppose

1 r—1

Z Z cikLkwi =0.

i=1 k=0

Apply L™ ! to obtain
151
Z CZ'QLT_l’w,‘ = 0,
i=1

i.e.
151

Zc,-ovz- =0, s0cpo=0for1l<:s</.

i=1
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Now apply L"2 to the double sum to obtain

V2 2
_ r—1 _
0= E cal” w; = E Ci1V;,
=1 =1

so ¢;; = 0 for 1 <4 < ¢;. Successively applying lower powers of L shows that all ¢;; = 0.

Observe that for 1 < 4 < 4y, span{L"'w;, L" 2w, ..., w;} is invariant under L, and L
acts by shifting these vectors. It follows that on span(S;), L is the direct sum of ¢; copies
of the (r x r) shift S,, and in the basis

r—1 r—2 r—1 r—2 r—1 r—2
{L" wy, L' "wy, ..., wy, L' we, L “wa, ..., we, ..., L' we,, L' “wy, ..., wy}

for span(S;), L has the matrix
Sy 0

0 Sy
In general, span(S;) need not be all of V, so we aren’t done.
We know that {L"'wy, ..., L™ 'w,, } is a basis for R(L™'), and that

(2) {L" .o, L gy, L 2wy, . ., LT 2wy, )

are linearly independent vectors in R(L"~2) (indeed, we showed that all of the vectors in S
were linearly independent, and

L' 'w; = L' (Lw;) € R(L"™?) (1 <i < 4)).

Complete (2) to a basis of R(L"~?), if necessary, by adding vectors Uy, ..., uUs,. As before,
choose wy, 4, for which
LT_Q@eﬁj =u; (1 <7< 4).

We now further refine the direct sum decomposition in (1) using the vectors wy, +; and
the subspace N'(L"~?) to construct a direct sum decomposition of N'(L"™'). However, the
span of the vectors Wy, ;; may not be contained in the subspace N (L™™') which would
make this refined direct sum decomposition impossible to construct. We get around this
problem by replacing the vectors wy,,; (1 < j < £3) by vectors in N(L""'). This is done
by projecting each wy, ., onto N (L") along R(L™™!) in the following way. Recall that the
vectors v; = Lw; (1 <14 < /1) were chosen to form a basis for R(L"!). Now since

Ly = L' Vg, 4; € R(LTY),

there exist coefficients a;; € F (1 < i < ¢;)(1 < j < ;) such that

14
L’r—l ~ L _'Lr—l .
W, 45 = i w; .
=1

Set
{1

Wey 45 = Wey+j — Zaijwi and u; = L™ “wy,4; (1 <5 < 4).

=1
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Replacing the u;’s by the u;’s still gives a basis of R(L"~?) as above (exercise). Clearly
L™ wy ;=0 for 1 < j < 4y,
Observe that now we have the direct sum decomposition
N(L™Y = N(L"?) @ span{Lwy, . .., Lwy, , We, 11, - - -, We, 105}
refining that given in (1). We also have a basis for R(L"~?) of the form
{L" Yy, ..., L™ gy, L 2wy, ..., L™ 2wy, L™ 2we, 11, - - -, L' 2we, 14, }

for which
L™ Mg ;=0 (1 <5 < by).

We now repeat the argument given above for the set S, but for the set

Sy = { L 2wpi1, L Pwpyr, ..o we 41,
LT_Q’ng_Q, LT_3’(,U£1+2, ceey W42,
e
LT?QwﬁH—ﬂw Lri3w€1+¢25 T wﬂh‘-ﬁz}'

This gives that S; U S, is linearly independent, and L acts on span(Ss) as a direct sum of
¢y copies of the (r — 1) x (r — 1) shift S,_;. We can continue this argument, decreasing r
by one each time and end up with a basis of R(L’) =V in which L acts as a direct sum of
shift operators:

12 L2 Ly

N N

7 N 7 N f_/\_'\
L=5& 8505 1®& -85S ,0 -85 &S  (Note: S; =0¢€ F>*!)

Remarks.

(1) For 1 < j, let k; = dim(N'(L?)). It follows easily from the above that 0 < k; < kg <
o< kp =kyy1 =kryo=---=mn, and thus r < n.

(2) The structure of L is determined by knowing r and ¢,...,%,. These, in turn, are
determined by knowing ki, ..., k,.
Ezercise: express {q,...,¢, in terms of &k, ..., k,.
(3) General facts about nilpotent transformations follow from this normal form. For ex-
ample, if dimV =n and L : V — V is nilpotent, then
(i) L"=0
(ii) tr L =0
(iii) det L =0
(iv) det(I+ L) =1
(v) for any A € F, det (A\] — L) = A"
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Dual Transformations

Recall that if V' and W are finite dimensional vector spaces, we denote by V* and B(V, W)
the dual space of V' and the space of linear transformations from V' to W, respectively. In
the infinite dimensional case we will reserve this notation for the bounded linear functionals
and transformations with respect to norms on V' and W. So we now introduce the notation
V' for the algebraic dual of V' (all linear functionals on V'), and £(V, W) for the space of all
linear transformations from V to W.

Let L € L(V,W). We define the dual, or adjoint transformation L* : W' — V' by
(L*g)(v) = g(Lv) for g € W', v € V. Clearly L +— L* is a linear transformation from
LV,W) to LW' V"), and (Lo M)* = M*o L* it M € L(U,V).

When V|, W are finite dimensional we can choose bases for V and W along with corre-
sponding dual bases. Using these bases we can represent vectors in V., W, V*, W* by their
coordinate vectors

a=(ar---ay), and b= (b - by),

respectively. The linear operator L € £(V, W) can then be represented by a matrix 7' € Fm*"
for which y = T'z. Hence given g € W' having coordinates b = (b; - - - b,,) with respect to
the dual basis, we get

T

so L*g has coordinates (a; - - - a,) = (by - - - b,,)T. Thus L is represented by left-multiplication
by T on column vectors, and L* is represented by right-multiplication by 7" on row vectors.
Another common convention is to represent the dual coordinate vectors also as columns;
taking the transpose in the above gives

that is L* can also be represented through left-multiplication by 77 on column vectors. (77
is the transpose of T: (T7);; = t;i.)

We can take the dual of V' to obtain V”. There is a natural inclusion V- — V": ifv € V,
then f +— f(v) defines a linear functional on V’. This map is injective since if v # 0, there
is an f € V' for which f(v) # 0. (Proof: Complete {v} to a basis for V' and take f to be
the first vector in the dual basis.)

We identify V' with its image, so we can regard V C V", If V is finite dimensional, then
V = V" since dimV = dim V' = dim V", If V is infinite dimensional, however, then there
are elements of V" which are not in V.
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If S C V is a subset, we define the annihilator S+ C V' by
St={feV':(Vves) fv) =0}.

Clearly S+ = (span(S))t. Now S*+ C V" and if dimV < oo, we can identify V" =V as
above.

S+L = span(S).

Proposition. If dimV < oo, then
Proof. It follows immediately from the definition that span(S) c S**. To show S+ C
span(S), assume WLOG that S is a subspace. We claim that if W is an m-dimensional sub-
space of V and dim V' = n, then dim W+ = codimW = n — m: choose a basis {wy,...,w,}
for W, complete it to a basis {w1, ..., Wmi1,- .., w,} for V; then clearly the dual basis vec-
tors { fms1,-- ., fn} are a basis for W+, so dim W+ = n—m. Hence dim S*+ = n—dim S+ =
n — (n—dimS) = dim S, and we know S C S*++. O

In complete generality, we have

Proposition. Suppose L € L(V,W). Then N'(L*) = R(L)*.

Proof. Clearly both are subspaces of W'. Let g € W'. Then g € N (L*) <= L*g = 0 <
(Vv eV) (L*g)(v) =0<= (Vv e V) g(Lv) =0 <= g € R(L)*. O

We are often interested in identifying R(L) for some L € L(V,W). In the finite-
dimensional case, this amounts to determining those w € W for which v € V satisfying
Lv = w; choosing bases of V., W and coordinate vectors x € ", y € ™™ for v, w and letting
T be the matrix of L, this amounts to determining those y € F™ for which the linear system
Tx = y can be solved. Combining the two Propositions above, we see that if dim W < oo,
then R(L) = N (L*)*. Thus v € V satisfying Lv = w iff g(w) = 0 for all g € W* for which
L*g = 0. In terms of matrices, Tz = y is solvable iff

W
(bl A bm) =0
Ym
by
for all (b ---b,,) for which (by---b,)T = 0, or equivalently, 77 | : = 0. These are
bm

often called the compatibility conditions for solving the linear system Tz = y.

Bilinear Forms

A function ¢ : V xV — F is called a bilinear form if it is linear in each variable separately.

Ezxamples:
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(1) For any matrix A € F**", the function ¢(z,y) = >, > 7 ayzy; is a bilinear
form. In fact, all bilinear forms on F" are of this form, as ¢(>_ ze;, Y yje;) =
>oic1 2jor Tiyip(ei, e5); just set a;; = p(e;,e;). Similarly, for any finite-dimensional
V', we can choose a basis {vy,...,v,}; if ¢ is a bilinear form on V and v = Y z;v;,
w =Y y;v;, then p(v,w) = 330, D70 wiy;0(vi, v;) = a7 Ay where A € F™*" satisfies
a;; = p(vi, vj). Ais called the matriz of ¢ with respect to the basis {vq,...,v,}.

(2) One can also use infinite matrices (a;;);;>1 for V = F* as long as convergence con-
ditions are imposed. For example, if all |a;;| < M, then ¢(z,y) = 272, 377, ai;ziy;
defines a bilinear form on £ since 3372, 372 |ajziy;| < M3, i) (3252, |y5])- Sim-
ilarly if 7%, >°°° |aij| < oo, then we get a bilinear form on £

(3) If f,g € V', then ¢(z,y) = f(x)g(y) is a bilinear form.
(4) If V = Cla,b], then
(i) for k € C([a,b] X [a,b]), fkay Yo(y)dzdy
(ii) for h € C([a,b]), f h(x (z)dx
(iii) for zo € [a,b], u(zo) fa v(w)daz
are all examples of bilinear forms.

We say that a bilinear form is symmetric if (Vv,w € V) ¢(v,w) = ¢(w,v). In the
finite-dimensional case, this corresponds to the condition that the matrix A be symmetric,
i.e., A= AT, or (V’L,]) Q5 = Qjs-

Sesquilinear Forms

When F = C, we will more often use sesquilinear forms: ¢ : V xV — C is called sesquilinear
if ¢ is linear in the first variable and conjugate-linear in the second variable, i.e.,

o(v, cqwy + ws) = arp(viw) + Gp(v, wy).

For example, on C" all sesquilinear forms are of the form ¢(z,w) = > 7, >\, a;j2;w; for
some A € C"*". To be able to discuss bilinear forms over R and sesquilinear forms over
C at the same time, we will speak of a sesquilinear form over R and mean just a bilinear
form over R. A sesquilinear form is said to be Hermitian-symmetric (or sometimes just
Hermitian) if (Vv,w € V) p(v,w) = ¢(w,v) (when F = R, we say the form is symmetric).
This corresponds to the condition that A = A# where AH — AT (ie., (AH);; = Aj; is the
Hermitian transpose (or conjugate transpose) of A when F = C (in Which case the matrix
A € C™ " is called Hermitian), or the condition A = AT (i.e., A is symmetric) when F = R.

To a sesquilinear form, we can associate the quadratic form ¢(v,v). We say that ¢ is
nonnegative (or positive semi-definite) if (Vv € V) ¢(v,v) > 0, and that ¢ is positive (or
positive definite) if p(v,v) > 0 for all v # 0 in V. By an inner product on V, we will mean
a positive-definite Hermitian-symmetric sesquilinear form.

Eramples:
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(1) F* with the Euclidean inner product (z,y) = > ., ;7.

(2) Let V=T, and let A € F"*" be Hermitian-symmetric, and define

33 y)A - Z Z aljxly]

i=1 j=1

The requirement that (x,x)4 > 0 for z # 0 so that (-,-) 4 is an inner product serves to
define positive-definite matrices.

(3) If V is any finite-dimensional vector space, we can choose a basis and thus identify
V =2 F", and then transfer the Euclidean inner product to V' in the coordinates of this
basis. The resulting inner product depends on the choice of basis — in general there is
no canonical inner product on a general vector space. With respect to the coordinates
induced by a basis, any inner product on a finite-dimensional vector space V' is of the
form described in example (2) above.

(4) One can define an inner product on ¢* by (z,y) = >0, z;%. To see (from first
principles) that this sum converges absolutely, apply the finite-dimensional Cauchy-

Schwarz inequality to obtain
o
(o)
i=1

i=1 i1 i=1 i=1

Now let n — oo to deduce that the series Y .-, z;7; converges absolutely.

D=

(5) The L2-inner product on C([a,b]) is given by (u,v) = ff u(z)v(z)dz.

FEzercise. Show that the inner product defined in Example (5) above is indeed positive
definite on C(]a, b]).

An inner product on V determines an injection V' — V': if w € V, define w* € V' by
w*(v) = (v, w); since w*(w) = (w, w) it follows that w* = 0 = w = 0, so the map w — w*
is injective. The map w — w* is conjugate-linear (rather than linear, unless F = R) since
(aw)* = aw*. The image of this map is a subspace of V'. If dimV < oo, then this map is
surjective too since dimV = dim V’. In general, it is not surjective.

Let dimV < oo, and represent vectors in V' as elements of F" by choosing a basis. If

x1 1
v, w have coordinates : , : |, respectively, and the inner product has matrix

Tn UYn
A € F"*™ in this basis, then

w*(v) = (v, w) = Z (Z aijy_j> Z;.

=1
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It follows that w* has components b; = Z?:l a;;y; with respect to the dual basis. In terms

of matrices, the map w — w* is represented by

An inner product on V allows a reinterpretation of annihilators. If W C V' is a subspace,
define the orthogonal complement (read W “perp”)

Wr={veV:{vw)=0VweW)}

Clearly W+ is a subspace of V. The use of the same notation that we used for the annihilator
of W (a subspace of V') is justified by the observation that the image of this subspace W+ of
V under the map V' — V' discussed above is precisely the annihilator of W. If dimV < oo,
a dimension count and the obvious W N W+ = {0} show that V =W @& W+. So in a finite
dimensional inner product space, a subspace W determines a natural complement, namely
W+, The induced projection onto W (along W) is called the orthogonal projection onto
W.



