Assignment 6. Due Friday, Feb. 27.

Reading: Course Notes, through p. 80 in chapter on Lebesgue integration. Jones, ch. 2.

- 1. A collection A_1, A_2, \ldots of measurable subsets of \mathbf{R}^n is said to be almost disjoint if $\lambda(A_j \cap A_k) = 0$ for $j \neq k$.
 - (a) Prove that if A_1, A_2, \ldots are almost disjoint then $\lambda(\bigcup_{k=1}^{\infty} A_k) = \sum_{k=1}^{\infty} \lambda(A_k)$.
 - (b) Conversely, suppose that the measurable sets A_1, A_2, \ldots satisfy $\lambda(\bigcup_{k=1}^{\infty} A_k) = \sum_{k=1}^{\infty} \lambda(A_k) < \infty$. Prove that the sets are almost disjoint. Does this remain true if the $< \infty$ above is replaced by the weaker hypothesis that $\lambda(A_k) < \infty$ for each k?
 - (c) Suppose A_1, A_2, \ldots are measurable sets and suppose that each point $x \in \mathbb{R}^n$ belongs to no more than d of the A_k 's, where d is a fixed positive integer. Prove that $\sum_{k=1}^{\infty} \lambda(A_k) \leq d\lambda(\bigcup_{k=1}^{\infty} A_k)$. [If you need a hint, see Jones pp. 58-59.]
- 2. Define the function f on (0,1) as follows:

$$f(0.a_1a_2a_3...) = \begin{cases} \frac{1}{n} & \text{if } n \text{ is the smallest integer so that } a_n = 7\\ 0 & \text{if } a_n \neq 7 \text{ for all } n \end{cases}$$

[Here $0.a_1a_2a_3...$ is the decimal expansion. In case of nonuniqueness – e.g., 0.5000... = 0.4999... – choose the terminating expansion.] Show that f is measurable. What is $\int_0^1 f(x) dx$? [The Taylor series for $\ln(1-x)$ will be useful.]

- 3. (a) Show that the function $\sin x/x$ is not integrable on $(0, \infty)$.
 - **(b)** Show that $\lim_{R\to\infty} \int_0^R \sin x/x \, dx$ exists.
 - (c) Show that if $f \geq 0$ is measurable on $(0, \infty)$, then $\lim_{R\to\infty} \int_0^R f(x) dx < \infty$ if and only if f is integrable on $(0, \infty)$.
- 4. Evaluate $\int_{-\infty}^{\infty} e^{-x^2} dx$ by computing $\iint_{\mathbf{R}^2} e^{-(x^2+y^2)} dx dy$ in two ways:
 - (a) by directly using Fubini's theorem, and
 - (b) by using polar coordinates in \mathbb{R}^2 .
- 5. For the function $f(x,y) = (x-y)/(x+y)^3$, show that the iterated integrals $\int_0^1 \left(\int_0^1 f(x,y) \, dy \right) \, dx$ and $\int_0^1 \left(\int_0^1 f(x,y) \, dx \right) \, dy$ both exist but are not equal. Show that this does not violate Fubini's theorem by showing that $\iint_{[0,1]\times[0,1]} |f(x,y)| \, dx \, dy = \infty$.