1. (14 points)
(a) (7 points) Evaluate the integral $\int \frac{1}{x^{3}-4 x^{2}} d x$. Show your work, and box your answer.

$$
\begin{aligned}
& \frac{1}{x^{3}-4 x^{2}}=\frac{1}{x^{2}(x-4)}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x-4} \quad \text { (Partial Fractions) } \\
& 1=A x(x-4)+B(x-4)+C x^{2} \\
& \text { Solving for } A, B, C: B=-\frac{1}{4}, C=1 / 16, A=-\frac{1}{16} \\
& \therefore \int \frac{1}{x^{3}-4 x^{2}} d x=\int \frac{-1 / 16}{x}+\frac{-1 / 4}{x^{2}}+\frac{1 / 16}{x-4} d x \\
&=-\frac{1}{16} \ln |x|=\frac{1}{4}\left(\frac{-1}{x}\right)+\frac{1}{16} \ln |x-4|+C \\
&=\left(\left.-\frac{1}{16} \ln |x|+\frac{1}{4 x}+\frac{1}{16} \ln |x-4|+C \right\rvert\,\right. \\
&=\frac{1}{4 x}+\frac{1}{16} \ln \left|\frac{x-4}{x}\right|+C=\frac{1}{4 x}+\ln \left(\sqrt[16]{\left.\left|\frac{x-4}{x}\right|\right)}+C\right.
\end{aligned}
$$

(b) (7 points) Evaluate the following improper integral, if it converges, or show why it diverges.

$$
\begin{aligned}
& \int_{0}^{\infty} \frac{e^{x}}{1+e^{2 x}} d x \\
& \int_{0}^{\infty} \frac{e^{x}}{1+e^{2 x}} d x=\int_{1}^{\infty} \frac{1}{1+u^{2}} d u=\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{1}{1+u^{2}} d u \\
& \begin{aligned}
u & =e^{x} \\
d u & =e^{x} d x \quad
\end{aligned} \quad=\left.\lim _{t \rightarrow \infty}(\arctan u)\right|_{1} ^{t} \\
& =\lim _{t \rightarrow \infty}[\arctan t-\underbrace{\arctan 1}] \\
& =\underbrace{\lim _{t \rightarrow \infty}(\arctan t)-\frac{\pi}{4}} \\
& =\frac{\pi}{2}-\frac{\pi}{4}
\end{aligned}
$$

Integral converges to $\frac{\pi}{4}$
2. (14 points)
(a) (7 points) Evaluate $\int_{0}^{\sqrt{3}} x \tan ^{-1}(x) d x$.

Give your answer in exact form (in terms of square roots and/or multiples of π).
Applying Intonation By Pacts with $u=\tan ^{-1} x \quad d v=x d x$
we jet:

$$
\left.\begin{array}{l}
=\left.\frac{x^{2}}{2} \tan ^{-1} x\right|_{0} ^{\sqrt{3}}-\frac{1}{2} \int_{0}^{\sqrt{3}} \frac{x^{2}}{1+x^{2}} d x \\
=(\frac{3}{2} \underbrace{\tan ^{-1} \sqrt{3}}-0)-\frac{1}{2} \int_{0}^{\sqrt{3}} 1-\frac{1}{1+x^{2}} d x \\
=\frac{3}{2} \frac{\pi}{3}-\left.\frac{1}{2}\left(x-\tan ^{-1} x\right)\right|_{0} ^{\sqrt{3}} \\
(\operatorname{x} \text { : long division } 1
\end{array}\right] \begin{aligned}
& \frac{\left(1+x^{2}\right)-1}{1+x^{2}}=1-\frac{1}{1+x^{2}} \\
& =\frac{3 \pi}{6}-\frac{1}{2} \sqrt{3}+\frac{1}{2} \frac{\pi}{3}=\frac{4 \pi}{6}-\frac{\sqrt{3}}{2}=\frac{2 \pi}{3}-\frac{\sqrt{3}}{2}
\end{aligned}
$$

(b) (7 points) Find the function $f(x)$ if $f^{\prime}(x)=\frac{1}{\left(r^{2}-x^{2}\right)^{3 / 2}}$ and $f(0)=0$.

The constant r should appear in your answer.
Applying Trig Sub with $x=r \sin \theta, d x=r \cos \theta d \theta$, we jet:

$$
\begin{aligned}
& \int \frac{1}{\left(r^{2}-x^{2}\right)^{3 / 2}} d x=\int \frac{1}{\left(r^{2}-r^{2} \sin ^{2} \theta\right)^{3 / 2}} r \cos \theta d \theta=\int \frac{1}{r^{3} \cos ^{3} \theta} r \cos \theta d \theta \\
&=\frac{1}{r^{2}} \int \sec ^{2} \theta d \theta \\
&=\frac{1}{r^{2}} \tan \theta+C \\
&=\frac{1}{r^{2}} \frac{x}{\sqrt{x^{2}-r^{2}}}+C \\
& f(x)=\frac{1}{r^{2}} \frac{x}{\sqrt{x^{2}-r^{2}}}+C \text { and }+(0)=0 \Rightarrow C=0 . \\
& \therefore f(x)=\frac{x}{r^{2}-x^{2}} \\
& \therefore f
\end{aligned}
$$

3. (13 points) The velocity of a particle is given by $v(t)=\sin ^{3}(\pi t) \mathrm{ft} / \mathrm{sec}$ where t is in seconds.
(a) (7 points) Assume the initial position of the particle is $s(0)=0 \mathrm{ft}$. Find the function $s(t)$ for the position of the particle at time t.

$$
\begin{aligned}
S(t) & =\int \sin ^{3}(\pi t) d t \quad \text { with } s(0)=0 \\
& =\int\left(1-\cos ^{2}(\pi t) \sin (\pi t) d t \quad u=\cos (\pi t)\right. \\
& =-\frac{1}{\pi} \int 1-u^{2} d u \quad d u=-\pi \sin (\pi t) d t \\
& =\frac{1}{\pi}\left(\frac{u^{3}}{3}-u\right)+C=\frac{1}{\pi}\left(\frac{\cos ^{3}(\pi t)}{3}-\cos (\pi t)\right)+C \\
S(0) & =0 \Leftrightarrow \quad \Leftrightarrow=\frac{1}{3 \pi} \\
\therefore S(t) & \left.=\frac{1}{\pi}\left(\frac{\cos ^{3}(\pi t)}{3}-\cos (\pi t)\right)+\frac{1}{3 \pi}-1\right)+C \quad \frac{1}{3 \pi} \cos ^{3}(\pi t)-\frac{1}{\pi} \cos (\pi t)+\frac{2}{3 \pi}
\end{aligned}
$$

(b) (6 points) Find the total distance traveled by the particle from $t=0$ to $t=\frac{3}{2}$ seconds.

We want: $\int_{0}^{3 / 2}|v(t)| d t=\int_{0}^{3 / 2}\left|\sin ^{3}(\pi t)\right| d t$
Over the interval $[0,3 / 2]: \sin ^{3}(\pi t)=0$ at $t=1$

$$
\text { it's } \geqslant 0 \text { on }[0,1] \text { and } \leq 0 \text { on }[1,3 / 2]
$$

so we jet:

$$
\int_{0}^{3 / 2}\left|\sin ^{3}(\pi t)\right| d t=\int_{0}^{1} \sin ^{3}(\pi t) d t+\int_{1}^{3 / 2}-\sin (\pi t) d t
$$

Using the antiderivatire found above:

$$
\begin{aligned}
& \cos (\pi)=-1 \\
& \cos \left(\frac{3 \pi}{2}\right)=0
\end{aligned}
$$

$$
\begin{aligned}
& =\left.\frac{1}{\pi}\left[\frac{\cos ^{3}(\pi t)}{3}-\cos (\pi t)\right]\right|_{0} ^{1}-\left.\frac{1}{\pi}\left[\frac{\cos ^{3}(\pi t)}{3}-\cos (\pi t)\right]\right|_{1} ^{3 / 2} \\
& =\frac{1}{\pi}\left[\left(\frac{-1}{3}+1\right)-\left(\frac{1}{3}-1\right)\right]-\frac{1}{\pi}\left[(0-0)-\left(\frac{1}{3}-1\right)\right] \\
& =\frac{1}{\pi}\left(\frac{4}{3}\right)-\frac{1}{\pi}\left(-\frac{2}{3}\right)=\frac{6}{3 \pi}=\frac{2}{\pi} \text { feet }
\end{aligned}
$$

4. (14 points) Let R be the region enclosed by: the x-axis, the line $y=5$, the line $x=-2$, and the portion of the curve $y=5 \tan (x)$ between $x=0$ and $x=\pi / 4$. The region R is rotated around the line $x=-2$ to form a solid of revolution. The units are meters. In parts (b) and (c) take g to be $9.8 \mathrm{~m} / \mathrm{sec}^{2}$ and take the density of water to be $1000 \mathrm{~kg} / \mathrm{m}^{2}$.
Write each of the following in terms of integrals, but do not evaluate the integrals.
(a) (7 points) the volume of the resulting container;
$\begin{aligned} \text { Disks: } V & =\int_{0}^{5} \pi \text { (radius }^{2} d y \\ & =\pi \int_{0}^{5}\left(\arctan \left(\frac{y}{5}\right)+2\right)^{2} d y\end{aligned} \rightarrow \leq y=5 \tan x$
(OR) Shells (in x): $V=\int_{-2}^{0} 2 \pi R_{1} h_{1} d x+\int_{0}^{\pi / 4} 2 \pi 1 R_{2} h_{2} d x$

$=\underbrace{\int_{-2}^{0} 2 \pi(x+2) 5 d x}_{\text {volume of eluder: } 20 \pi}+\int_{0}^{\pi / 4} 2 \pi(x+2)(5-5 \tan x) d x \quad \int_{-2} \quad{ }_{0}$
(b) (4 points) the amount of work (in Joules) required to empty the container of water, if water is filled up to the level of 3 meters, and there's an outtake pipe at height 4 meters;
Slice the water (intuval $[0.3]$) inter n horizontal slices. The th slice is a disk of thickness Δy and we have:

Weight of slice: $F_{i}=(9.8)(1000) \pi\left(2+\tan ^{-1}\left(\frac{y^{i}}{5}\right)\right)^{2} \Delta y$
Distance tu lift slice: $d_{i}=4-y_{i}$
Work $W=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} 9800 \pi\left(2+\tan ^{-1}\left(\frac{y_{i}}{5}\right)\right)^{2}\left(n-y_{i}\right) \Delta y$

$\therefore W=\int_{0}^{3} 9800 \pi\left[2+\tan ^{-1}\left(\frac{y}{5}\right)\right]^{2}(4-y) d y$
(c) (3 points) the amount of work (in Joules) required to empty the container of water if the container is filled to the top with water and the outtake pipe is at height 7 meters (above the x-axis).

A very similar process yields:

$$
\int_{0}^{5} 9800 \pi\left[2+\tan ^{-1}\left(\frac{y}{5}\right)\right]^{2}(7-y) d y
$$

5. (10 points) Find the coordinates (\bar{x}, \bar{y}) for the center of mass of the region shown below.

By symmetry: $\bar{x}=0$
Note: We will compute \bar{y} for the right half of the region since, by symmetry again, it will be the same as \bar{y} for the entire region.

There are many ways to compute \bar{y}. Here are a few:

Method I: $\bar{y}=\frac{1}{\text { area }} M_{x}=\frac{1}{7}\left[\int_{0}^{3} \frac{1}{2}(2)^{2} d x+\int_{3}^{4} \frac{1}{2}(-2 x+8)^{2} d x\right]$

$$
=\frac{1}{7}[\underbrace{}_{6}+\left.\left(\frac{2}{3} x^{3}-8 x^{2}+32 x\right)\right|_{3} ^{4}]
$$

$$
=\frac{1}{7}\left[6+\frac{2}{3}\right]=\frac{20}{21}
$$

Method II: Switch the axes and compute \bar{x} for the resulting region:

$$
\begin{aligned}
\text { original } \bar{y}=\operatorname{new} \bar{x} & =\frac{1}{\text { area }} \int_{0}^{2} x f(x) d x=\frac{1}{7} \int_{0}^{2} x\left(-\frac{1}{2} x+4\right) d x \rightarrow 2 \\
& =[\cdots] \\
& =[\cdots]
\end{aligned}
$$

Method III: Decompose the region into A \& A A and use

$$
\begin{aligned}
\bar{y}=\frac{A_{1} \bar{y}_{1}+A_{2} \bar{y}_{2}}{A_{1}+A_{2}} & =\frac{(6)(1)+(1)\left[\frac{1}{(1)} \int_{3}^{4} \frac{1}{2}(-2 x+8)^{2} d x\right]}{6+1} \\
& =\frac{(6)(1)+(1)\left(\frac{2}{3}\right)}{7}=\frac{20 / 3}{7}=\frac{20}{21}
\end{aligned}
$$

Either way, the ansuce is:

$$
(\bar{x}, \bar{y})=\left(0, \frac{20}{21}\right)
$$

6. (10 points) Find the explicit solution $y=y(x)$ to the initial value problem

$$
\frac{d y}{d x}=y^{2} e^{\sqrt{x}}, y(0)=\frac{1}{5}
$$

Separate the variables and inter rate:

$$
\begin{aligned}
& \int \frac{1}{y^{2}} d y=\int e^{\sqrt{x}} d x \quad \text { Rationaliung substitution } \\
& -\frac{1}{y}=2 \int u e^{u} d u \\
& -\frac{1}{y}=2 u e^{u}-2 \int e^{u} d u \\
& \begin{aligned}
& d x
\end{aligned}=\text { kudu }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{cc}
w=u & d v=e^{u} d u \\
d w=d u & v=e^{u}
\end{array} \\
& -\frac{1}{y}=2 u e^{u}-2 e^{u}+C \\
& -\frac{1}{y}=2 \sqrt{x} e^{\sqrt{x}}-2 e^{\sqrt{x}}+c \\
& y(0)=\frac{1}{5} \Rightarrow \quad-5=0-2+c \Rightarrow c=-3 \\
& \therefore-\frac{1}{y}=2 \sqrt{x} e^{\sqrt{x}}-2 e^{\sqrt{x}}-3 \\
& y=\frac{-1}{2 \sqrt{x} e^{\sqrt{x}}-2 e^{\sqrt{x}}-3}=\frac{1}{3+2 e^{\sqrt{x}}-2 \sqrt{x} e^{\sqrt{x}}}
\end{aligned}
$$

7. (13 points) Suppose you drop a stone of mass m from a great height in the earth's atmosphere, and the only forces acting on the stone are the earth's gravitational attraction and a retarding force due to air resistance, which is proportional to the velocity v. Take downward to be the positive direction. Then, since $F=m a$ and $a=d v / d t$, we have the differential equation:

$$
m \frac{d v}{d t}=m g-k v,
$$

where k is a positive constant. Suppose that the mass is $m=1 \mathrm{~kg}$, and take $g=9.8 \mathrm{~m} / \mathrm{sec}^{2}$.
(a) (6 points) Solve the differential equation to find a formula for $v(t)$. Your answer will involve k.

With $m=1 \mathrm{~kg}$ and $g=9.8$, we have: $\frac{d v}{d t}=9.8-k v$ Separating the variables and integrating: $\int \frac{1}{9.8-k v} d v=\int 1 d t$

$$
-\frac{1}{k} \ln |9.8-k v|=t+C
$$

Initial condition is: $V(0)=0 \quad$ ("drop"), so $-\frac{1}{k_{k}} \ln 9.8=c$
Replacing in the equation: $-\frac{1}{k} \ln |9.8-k v|=t-\frac{1}{k} \ln 9.8$
Solving |oi: $\ln |9.8-k v|=-k t+\ln 9.8 \Rightarrow|9.8-k v|=e^{-k t} \cdot e^{\ln 9.8}=9.8 e^{-k t}$ $9.8-k v= \pm 9.8 e^{-k t}$
$k v=9.8 \pm 9.8 e^{-k t} \Rightarrow v=\frac{9.8}{k}\left(1 \pm e^{-k t}\right)$
Using the initial condition $V(0)=0 t_{0}$ fix the sign, we get
$V=\frac{9.8}{k}\left(1-e^{-k t}\right)($ in m / s.
(b) (3 points) Compute the terminal velocity v_{∞} (the limiting velocity as $t \rightarrow \infty$).

Your answer will involve the positive constant k.

$$
\begin{aligned}
v_{\infty} & =\lim _{t \rightarrow \infty} \frac{9.8}{k}\left(1-e^{-k t}\right)=\frac{9.8}{k}(1-0) \\
& =\frac{9.8}{k} \mathrm{~m} / \mathrm{s} .
\end{aligned}
$$

(c) (4 points) If $v_{\infty}=70 \mathrm{~m} / \mathrm{sec}$, find the speed of the stone after 3 sec .

$$
\begin{aligned}
& 70=\frac{9.8}{k} \Rightarrow \quad k=\frac{9.8}{70}=0.14 \\
& \text { From (a) } v=\frac{9.8}{k}\left(1-e^{-k t}\right)=70\left(1-e^{-\frac{9.8}{70} t}\right) \\
& \text { At } t=3 \mathrm{sec}: \quad v=70\left(1-e^{\left.-\frac{9.8}{70(3)}\right)=\left(70\left(1-e^{-0.42}\right)(\cong 24 \mathrm{~m} / \mathrm{s})\right.}\right.
\end{aligned}
$$

8. (12 points) Suppose that the graph of f is as shown:

(a) (4 points) Compute the average value of this function over the interval $[0,10]$.

$$
\begin{aligned}
\text { fave } & =\frac{1}{10} \int_{0}^{10} f(x) d x= \\
& =\frac{1}{10} \text { (signed area between } y=f(x) \text { and the } x \text {-axis how } x=0 \text { to } x=10 \text {) } \\
& =\frac{1}{10}\left(3+5+\ngtr-\beta-\frac{2}{2}+\frac{3}{2}\right) \\
& =\frac{1}{10}(\gamma) \\
& =\frac{8}{10}=0.8
\end{aligned}
$$

(b) Define a new function $A(x)=\int_{x}^{x^{3}} f(t) d t$, where f is the same function as above.
i. (2 points) Compute $A(2)$.

$$
A(2)=\int_{2}^{8} f(t) d t=5+3-3=5
$$

$$
\begin{aligned}
& \text { ii. (6 points) Compute } A^{\prime}(2) \text {. } \\
& A^{\prime}(x)=\frac{d}{d x} \int_{x}^{x^{3}} f(t) d t=\frac{d}{d x}\left(\int_{x}^{0} f(t) d t+\int_{0}^{x^{3}} f(t) d t\right)
\end{aligned}
$$

$$
\begin{aligned}
& \therefore A^{\prime}(x)=-f(x)+3 x^{2} f\left(x^{3}\right) \\
& A^{\prime}(2)=-f(2)+12 f(8) \quad \text { (Reading y-values on staph) } \\
& =-2+12(-3)=-38
\end{aligned}
$$

