Homework \#1 Math 126

These problems are based on the material in Section 1 of the Taylor Notes.

1. Find the first Taylor polynomial $T_{1}(x)$ for $f(x)$ based at b and use the Tangent Line Error Bound to bound the error $\left|f(x)-T_{1}(x)\right|$ on the interval I where
(a) $f(x)=e^{x} \quad b=0 \quad I=[-1,1]$.
(b) $f(x)=\ln (1+x) \quad b=0 \quad I=\left[-\frac{1}{2}, \frac{1}{2}\right]$.
(c) $f(x)=\sin (x) \quad b=0 \quad I=[-0.1,0.1]$.
(d) $f(x)=x^{\frac{1}{3}} \quad b=-8 \quad I=[-9,-7]$.
2. For each function and base point, find the first Taylor polynomial based at b and then use the Tangent Line Error Bound to find an interval J containing b so that the error bound is at most 0.01 on J.
(a) $f(x)=\ln (x) \quad b=1$.
(b) $f(x)=\cos (x) \quad b=\frac{\pi}{6}$.
(c) $f(x)=x^{\frac{1}{3}} \quad b=8$.
3. In math 124 , we used the tangent line approximation to estimate a function. For example problem 50, page 269 in Stewart says:

Suppose that we don't have a formula for $g(x)$ but we do know that $g(2)=-4$ and $g^{\prime}(x)=\sqrt{x^{2}+5}$ for all x. Use a linear approximation to estimate $g(1.95)$ and $g(2.05)$.
Use the Tangent Line Error Bound to bound the error in these two approximate values.

