Homework #1 Math 126

These problems are based on the material in Section 1 of the Taylor Notes.

- 1. Find the first Taylor polynomial $T_1(x)$ for f(x) based at b and use the Tangent Line Error Bound to bound the error $|f(x) - T_1(x)|$ on the interval I where (a) $f(x) = e^x$ b = 0 I = [-1, 1]. (b) $f(x) = \ln(1+x)$ b = 0 $I = [-\frac{1}{2}, \frac{1}{2}]$. (c) $f(x) = \sin(x)$ b = 0 I = [-0.1, 0.1].
 - (d) $f(x) = x^{\frac{1}{3}}$ b = -8 I = [-9, -7].
- 2. For each function and base point, find the first Taylor polynomial based at b and then use the Tangent Line Error Bound to find an interval J containing b so that the error bound is at most 0.01 on J.
 - (a) $f(x) = \ln(x)$ b = 1. (b) $f(x) = \cos(x)$ $b = \frac{\pi}{6}$.
 - (c) $f(x) = x^{\frac{1}{3}}$ b = 8.
- 3. In math 124, we used the tangent line approximation to estimate a function. For example problem 50, page 269 in Stewart says:

Suppose that we don't have a formula for g(x) but we do know that g(2) = -4 and $g'(x) = \sqrt{x^2 + 5}$ for all x. Use a linear approximation to estimate g(1.95) and g(2.05).

Use the Tangent Line Error Bound to bound the error in these two approximate values.