Homework \#2 Math 126

These problems are based on the material in Sections 2 and 3 of the Taylor Notes.

1. Find the second Taylor polynomial $T_{2}(x)$ for $f(x)$ based at b and use the Quadratic Approximation Error Bound to bound the error $\left|f(x)-T_{2}(x)\right|$ on the interval I where
(a) $f(x)=e^{x} \quad b=0 \quad I=[-1,1]$.
(b) $f(x)=\ln (1+x) \quad b=0 \quad I=\left[-\frac{1}{2}, \frac{1}{2}\right]$.
(c) $f(x)=\sin (x) \quad b=0 \quad I=[-0.1,0.1]$.
(d) $f(x)=x^{\frac{1}{3}} \quad b=-8 \quad I=[-9,-7]$.
2. For each function and base point, find the second Taylor polynomial based at b and then use the Quadratic Approximation Error Bound to find an interval J containing b so that the error bound is at most 0.01 on J. Your intervals J should be bigger than the answers you obtained to problem 2 on Homework \#1.
(a) $f(x)=\ln (x) \quad b=1$.
(b) $f(x)=\cos (x) \quad b=\frac{\pi}{6}$.
(c) $f(x)=x^{\frac{1}{3}} \quad b=8$.
3. (a) Find the $5^{\text {th }}$ Taylor polynomial for $f(x)=x^{5}-3 x^{4}+5 x^{2}+6 x-2$ based at $b=1$.

Problem 3(a) gives a method for writing a polynomial in powers of $(x-1)$ instead of powers of x. It is sometimes useful if you are interested in the values of the polynomial near $x=1$. Another technique would be to substitute $u=x-1$ or $x=u+1$, multiply out the polynomial, collect together powers of u and then substitute back $u=x-1$. Using Taylor polynomials is a bit easier.
(b) If f is the polynomial in part (a), why is the $n^{t h}$ Taylor polynomial equal to f whenever $n \geq 5$? Hint: See Taylor's Inequality. Can you make a similar statement for any polynomial?
4. (a) Find the $n^{\text {th }}$ Taylor polynomial $T_{n}(x)$ for $f(x)=\ln (1-x)$ based at $b=0$.
(b) Using Taylor's Inequality, find n so that $T_{n}(x)$ so that $\left|T_{n}(x)-\ln (1-x)\right|<0.01$ on the interval $[-0.5,0.5]$.
(c) On the smaller interval $I=[-0.1,0.1]$, how close is T_{n} (from part (b)) to $\ln (1-x)$?
(d)-(f) Repeat parts (a), (b), and (c) for the function $f(x)=\sqrt{1+x}$ based at $b=0$.

