Homework \#4 Math 126

These problems use the techniques of section 5 except for differentiation and integration of series. Each problem can be derived from the basic series given in Examples 4.2.
(a) In problems 1-6, find the Taylor series for $f(x)$ based at b. Your answer should have one Sigma (Σ) sign. On some problems you might want to describe the coefficients using a multi-part notation as in Example 5.5.
(b) Then write the solution in expanded form: $a_{0}+a_{1}(x-b)+a_{2}(x-b)^{2}+\ldots$ where you write at least the first three non-zero terms explicitly.
(c) Then give an interval I where the Taylor series converges. Note that there are some hints below.

1. $f(x)=\cos \left(3 x^{2}\right)$ based at $b=0$.
2. $f(x)=\sin ^{2}(x)$ based at $b=0$.
3. $f(x)=e^{4 x-5}$ based at $b=2$.
4. $f(x)=\sin (x)$ based at $b=\frac{\pi}{6}$.
5. $f(x)=\frac{1}{4 x-5}-\frac{1}{3 x-2}$ based at $b=0$.
6. $f(x)=\frac{x}{(2 x+1)(3 x-1)}$ based at $b=1$.
7. The "sinh" and "cosh" functions are used, for example, in electrical engineering, and are defined by $\sinh (x)=\left(e^{x}-e^{-x}\right) / 2$, and $\cosh (x)=\left(e^{x}+e^{-x}\right) / 2$. Do questions (a) and (b) above for the function $h(x)=2 \sinh (3 x)-4 \cosh (3 x)$ based at $b=0$.
8. Find the $6^{\text {th }}$ degree Taylor polynomial for $f(x)=\sin (3 x-5)$ based at $b=0$, without differentiating.

Hints:
Change the base from b to 0 by substituting $u=x-b$.
Be sure that the terms in your answers are numbers (coefficients) times powers of $x-b$.
Use the double angle formula in problem 2.
Use partial fractions in problem 6.
Use the addition formulae for $\sin (A \pm B)$ in problems 4 and 8 .

