Homework \#5 Math 126

In the following problems, find the Taylor series for $f(x)$ based at b. Each series can be derived from the basic series given in Examples 4.2. Give an interval I where the Taylor series converges. In problems 1-8 as was done in Homework \#4, use one Sigma (Σ) sign in your answer and then also write your answer in expanded form with the dot notation, including the first three not-zero terms. Note that there are some hints below.

1. $f(x)=-\ln (1-x)$ based at $b=0$. (you might want to compare your answer to this problem and the solution obtained in HW\#1 problem 4a.)
2. $f(x)=\frac{1}{(2 x-5)^{2}(3 x-1)}$ based at $b=0$.
3. $f(x)=x e^{x}$ based at $b=0$.
4. $f(x)=\ln \left(1+x^{2}\right)$ based at $b=0$.
5. $f(x)=\left\{\begin{array}{ll}\frac{\sin (x)}{x} & \text { if } x \neq 0 \\ 1 & \text { if } x=0 .\end{array}\right.$ based at $b=0$.

This function is used frequently in electrical engineering and signal processing. It is sometimes called $\operatorname{sinc}(x)$ and pronounced "sink".
6. $f(x)=\int_{0}^{x} \operatorname{sinc}(t) d t$ based at $b=0$
where the $\operatorname{sinc}(x)$ function is given in problem 5. This integral is called the sinc integral function.
7. $f(x)=\int_{0}^{x} \tan ^{-1}(t) d t$ based at $b=0$.
8. $f(x)=\frac{2 x}{1+x^{2}}$ based at $b=0$.

Do this problem in two ways: (a) Find the series for $1 /\left(1+x^{2}\right)$ then multiply it by $2 x$ and (b) Differentiate $\ln \left(1+x^{2}\right)$ and use problem 4. Your answer to (b) should agree with your answer to (a).
9. Find the fifth Taylor polynomial based at $b=0$ for $f(x)=e^{x} \sin x$ by multiplication of the series for e^{x} and $\sin x$ (you do not have to find the general term of the product).

Hints:

- For problem 1, first find the series for f^{\prime}. Note that this approach gives a larger interval I than obtained in the problems for section 3 (homework \#3).
- In problem 2, find the partial fraction expansion by first finding the partial fraction expansion for $1 /(2 x-5)(3 x-1)$, then multiply both sides of the equation by $1 /(2 x-5)$ and then expand $1 /(2 x-5)(3 x-1)$ again. Now add the Taylor series for each of the three functions.
- For problem 3, if $T_{n}(x)$ converges to e^{x} then $x T_{n}(x)$ coverges to $x e^{x}$ so you can multiply each term of the series for e^{x} by x.
- Problem 5: Notice that the series for $\operatorname{sinc}(x)$ converges for all x and so as a function of x, it has a derivative which is found by differentiating the series term-by-term. So the sinc function is differentiable even at 0 , in fact it has derivatives of all orders at 0 .

