Homework

Churchill and Brown Complex Variables, 6th edition
Homework prior to 2-12-96 (I didn't record the dates they were assigned):


p.5 1d,3,4
p.11 1,2,19
p.17 1,2,13
p.22 2,6,8
p.25 1,2,3,4
p.31 1b,c2,3,12
p.42 1g,2b,4,9a,10 plus find map of S^2 to C (stereogr.proj)
explicitly
p.47 1d,2,9
p.54 1d,2d,10 
p.62 1d,2c,5,6,10b,14,18
p.67 4,6,8
p.72 9a, 17
p.74 8,9,14a plus describe the map sin(z) in a manner similar to
cos(z), as done in class (use (z+1/z)/2 and e^z and iz)
See Math 427 homepage for pictures.
p.79 lost
p.84 lost
p.92 1c,2
p.102 1c,6,10,13,14,17
p.119 1,2,4f,5c,6,9
p.128 1b,1d,2a,2b,3
p.136 1,4,6,10+ do Morera replacing arbitrary curves with rectangles,
      with sides parallel to the axes.


Homework beginning 2-12-96:
2-12: p. 142  7,9; p. 149  3,8
2-14: p. 156  1,4,9,10
2-16: p. 172  4,10,11a,12
2-19: Holiday
2-21: p. 188  1d,2b,2d; p. 197  3a,3b,3c,3d,4,5
2-23: p. 188  9; p. 197  6c
2-26: p. 188 4ab; p. 197  1b
2-28: p. 218 2,5; p. 208 3,5
3-1:  p. 214 2,8;
3-4:  p. 226 3,7,8
3-6:  p. 233 1b,2,6,8
3-8:  Suppose a is a point in the unit disk D. Prove there 
      exists a unique one-to-one analytic map f of D onto 
      D with f(a)=0 and f'(a)>0.

      Find all one-to-one and analytic maps of the upper half
      plane H={z: Im z > 0} onto itself.


Return to Math 427 Homepage