Angular Derivatives and Lipschitz Majorants

Donald E. Marshall

ABSTRACT: It is an old problem, dating back at least to Ahlfors [1930], to give geometric con-
ditions on the boundary of a simply connected domain € near ( € 90f2 so that a conformal map
1 of € onto the unit disk or half plane extends to be “conformal” at {, in the sense that i has
a non-zero angular derivative at . In this paper, we solve a problem of Burdzy [1986] and [1987,
page 164] by giving geometric conditions for a certain class of regions. The main results, Theorem
9(ii) and Theorem 13(ii) are complementary to Burdzy’s work in [1986], and extend earlier work
of Rodin and Warschawski [1977]. We also give a classical analysis proof of Burdzy’s Theorem in
Theorem 13(i). The history of this subject is extensive. The interested reader might begin with
Warschawski [1967], Rodin-Warschawski [1977] , Baernstein [1988], and the references therein. We

will first review material needed to understand our result.
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§1 Background.

Throughout this paper, {2 will denote a simply connected domain in the complex plane and a

map defined on € will be called conformal if it is one-to-one and analytic.

Definition 1. We say that 0f2 has an inner tangent at ( € 052 if there is an angle 6y so that for
every (3 € (0,7/2) there is an € = £(3) > 0 and so that the truncated cone

P5(C) = {= : |arg(z — ) — fo] < B, 0 < |2 —¢| < ¢}

is contained in ). When 6y = w/2 we say that |' has a vertical inner normal.

Definition 2. If 92 has an inner tangent at ¢ € 0f2 and if ¢ is a conformal map defined on €,

then we say ¢ is semi-conformal at ( if ¢ has a non-tangential limit

( = lim ¢(z
#(¢) rg(C)ch“D( )
for every 3 € (0,7/2) and if
: e(2) — 9()
A= 1 R 1
‘ Fz(cl)ranzacarg z—=C @

exists for every € (0,7/2).

If ¢ is semi-conformal at ¢ then for |a — 6y| < 7/2, the image of the ray {z : arg(z — () = a} is
asymptotic to the ray {z : arg(w — ¢(¢)) = A¢+ a}, as z — ¢. Thus () has an inner tangent at
©(¢) and ¢! is semi-conformal at ¢(¢). If ¢ is a conformal map of the unit disk D onto a region ©
bounded by a Jordan curve I" and if I' has a tangent at w € I, then by Carathéodory’s theorem and
Lindeldf’s theorem (see e.g. Pommerenke [1975]), ¢ is semi-conformal at ( = ¢~!(w); moreover
convergence z — ( is not restricted to cones. However in general, ¢ can be semi-conformal at
¢ € OD even though I' does not have a tangent at ¢(().

The next theorem, due to Ostrowski, gives geometric conditions on region Q = ¢(H) equivalent
to the semi-conformality of ¢ at (, where H denotes the upper half plane {z : Imz > 0}. For
convenience, we will state the case when ¢ =0, ¢(0) = 0 and when the limit A = 0 in (1); for the

other cases, simply translate and rotate.

Theorem 3. (Ostrowski [1937]). Suppose Q is a simply connected domain in C. If the conformal
map ¢ of the upper half-plane H onto § is semi-conformal at 0 with ¢(0) = 0, and if the limit in

(1) is 0, then 02 has an inner tangent at 0 with a vertical inner normal and

lim dist(z, 092)

R32—0 x

=0. 2)

2



Conversely, if OS2 has an inner tangent at 0 with a vertical inner normal and satisfies (2) then we
can choose the conformal map ¢ of H onto €2 so that it is semi-conformal at 0 with non-tangential

limit equal to 0 and so that the limit in (1) is 0.

Figure 1

The “tines” of the comb in Figure 1 are located at z, — ¢ with z, = —2_, = 0, n € Z. If ¢
is a conformal map of the upper half plane onto the complement of the comb (including co) with

©»(0) = 0, then by Ostrowski’s theorem ¢ is semi-conformal at 0 if and only if lim, 40 Zpy1/z, = 1.

Definition 4. If 92 has an inner tangent at ¢ € 0f2 and if ¢ is a conformal map defined on €,
then we say ¢ has angular derivative ¢'({) at ¢ if ¢ has a non-tangential limit

¢ = lim ©o(z
©(C) FZ(QBHCW()

for every 3 € (0,7/2) and if

exists for every € (0,7/2).

It is not hard to show that ¢ has an angular derivative ¢'(¢) at ¢ if and only if ¢’ has non-
tangential limit ¢'({). See for example, Pommerenke [1975].

If © has a non-zero angular derivative at  then ¢ is semi-conformal at ¢, and ¢! has a non-
zero angular derivative at ¢((). Preserving angles in a region € is equivalent to having a non-zero
derivative in €, however it is possible for ¢ to be semi-conformal at { € 02 and not have an angular
derivative at (. A normal families argument does, however, give us some information about the
modulus of the difference quotient if ¢ is semi-conformal at . For if 9Q has an inner tangent with
vertical inner normal at 0 € 99 and if ¢ is conformal on Q and semi-conformal at 0, consider the

functions
o(r2) —g(0) i
N S R ()

fr(z) = log
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Then Im f, converges to 0, as r — 0, uniformly on compact subsets of the half-annulus
A={z:1/2<|2| < 2} nH.

Since Ref, (i) = 0,
‘ Tt
p(ri) — ¢(0)
uniformly on compact subsets of A. Thus if ¢ is semi-conformal at (, then ¢ has an angular

p(rz) = ¢(0)

= lim e/ =1 (3)

r—0

lim
r—0

derivative at 0 if and only if

lim
r—0

(4)

exists. This says that that there may be stretching or compression, but only in the radial direction.

re

p(ri) — ¢(0) ‘

The Angular Derivative Problem is to give Euclidean geometric conditions on the boundary
of a simply connected region € near { € 0Q which are equivalent to the existence of a non-zero
angular derivative at  for the conformal map of €2 onto the half-plane or the disc. The existence
of a non-zero angular derivative only depends on the geometry of €2 near ¢ and does not depend

on the choice of the conformal map.

Definition 5. If (2 is simply connected and if 0 € 052, we say € has a positive angular deriva-
tive at 0 if there is a conformal map ¢ of H onto Q which has non-tangential limit ¢(0) = 0 and

which has angular derivative ¢'(0) with 0 < ¢'(0) < oo.

By the remarks above, a characterization of simply connected domains with positive angular
derivative at 0 would solve the Angular Derivative Problem.

The angular derivative problem has been converted into a problem about extremal length,
which can be estimated in many cases by the geometry. If  and F are subsets of the closure, Q, of
Q, let ' denote the collection of locally rectifiable curves in €2 connecting F to F. The extremal

distance in Q between F and F is defined to be

2
) (infrer [, pldz])
2 s _= Su s
N ng Jor?dA

where |dz| denotes arc length measure, d A denotes Lebesgue area measure and where the supremum

(5)

is taken over all non-negative Borel functions p satisfying 0 < fQ p*dA < oo. (Such functions p
are called metrics.) For example, the extremal distance between the vertical ends of a rectangle,
with sides parallel to the axes, is the ratio of the length to the height. Since extremal distance is
conformally invariant, if . = {z : |z| = r} N H, then for ¢ > s, do(F:, Es) = %log %, where Q is
the half-annulus {z : s < |z| < ¢, Imz > 0}. The region € can also be taken to be the upper half
plane H. See Ahlfors [1973] for an introduction to extremal length.
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Theorem 6. (Jenkins-Oikawa [1977], Rodin-Warschawski [1976]) Suppose Q is a simply connected
domain containing the positive imaginary axis, with 0 € 0. Let E, denote the component of

{z 1 |z| = r} N Q containing ir, for r > 0. Then Q has a positive angular derivative at 0 if and only
if

(z) € has an inner tangent at 0 with a vertical inner normal and
t

S

. . 1
) hmOdQ(Et, E;) — - log

s<t—

= 0.

Condition (ii) says that the conformal map behaves like a constant multiple of z, asymptotically.
Note also that if (2) holds then by the argument used to establish (4), we can add the further
restriction to condition (ii) that s = 27" and ¢ = 2™™, n,m € {1,2,3,...} and the theorem still
holds.

82 Strip Domains.

It is convenient sometimes to transform both €2 and H to “strips”. The “standard strip”

S={z:|Imz| < n/2}

is mapped onto the upper half-plane H by the function 7(z) = ie~?. Then
Y(z) =1 opor(z) =mi/2 — log p(ie”?) (6)

is a conformal map of § onto a region Q with

Q={ie ":2€ Q).
Cones are replaced by half-strips

Ss ={z:|Imz| < 7/2 — 6 and Rez > 0},

for § € (0,7/2). Thus 0f2 has an inner tangent at 0 with a vertical normal if and only if for every
8 € (0,7/2) there is and z5 > 0 so that

Ts + 55 C ﬁ (7)
The conformal map ¢ of H onto €2 has a non-tangential limit 0 at { = 0 if and only if

Ret(z) — 400 as Rez — 400, z € S5 (8)
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for every § € (0,7/2). In this case, ¢ is semi-conformal at 0 if and only if

Jim Im?(z) — Imz (9)
ZESS

exits for every § € (0,7/2). Condition (2) in Ostrowski’s theorem is equivalent to

pim dist(z,09Q) = 0. (10)
z€88

Likewise ¢ has non-tangential limit 0 and non-zero angular derivative at 0 if and only if

Rell_rgoo P(z) —z (11)
2655

exists for every § € (0,7/2).
It has become the custom to consider slightly more general circumstances, by removing the

restriction that 7 be one-to-one.

Definition 7. If Q is simply connected and satisfies (7), let 1 be a conformal map of Q onto S
which satisfies (8). The region Q is said to have an angular derivative (at 4+o0c0) when (11) holds.

Clearly this definition does not depend on the choice of the map ¥ and hence is a property of
the region Q. A geometric characterization of regions with angular derivative at +o0o would give
a solution to the Angular Derivative Problem. Theorem 3 extends to this slightly more general
context, if we use (9) as the definition of semi-conformality and replace (2) with (10). Likewise
Theorem 6 extends by replacing (i) with (7) and replacing (ii) with

lim ds(Fs, Fy) —|t—s|/m=0, (12)

s,t—=+o0 Q

where F, denotes the component of {z € Q : Rez = z} containing z. This more general form of
Theorem 6, using (7) and (12), is in Jenkins-Oikawa [1977] and Rodin-Warschawski [1976].
For strip domains, there are some classical estimates of extremal distance which motivate our

results. If ¥ and F are the vertical sides of the rectangle
R={z:|lmz| < H, |Rez| < L},

then the extremal distance satisfies

dr(E,F)=L/H.
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By the conformal invariance of extremal distance, if 7 is a conformal map of a region U onto R

with ¢ (E£') = E and ¢(F') = F, then
dy(E', F'Y = L/H

and the metric p = |¢'| = |[VRet| is extremal in the sense that the supremum in (5) is achieved
with this metric.
Any metric p gives a lower bound for extremal distance. To motivate a choice of a metric

below, we first consider the special case of a quadrilateral
U={(z,y):ly—m(z) <b(z)/2, a <z <b},

of width #(z) and mid-line y = m(z). Let 0; = UN{z : Rez = z;}, j = 0,...,n, where
a=2z9 <z <...<z,=>b. By the serial rule (see Ahlfors [1973]),

n
dy (09,04) > Zd(ffj—hffj)-
i=1
The region between o;_; and o; is approximately at thin rectangle, if Az = z; — z;_; is small.

This rectangle can be mapped to a rectangle of height 1, centered on R by the linear map

z —1m(z;)
0(z;)

Since the image rectangle has width Az/6(z;), this suggests the (non-analytic) map

of U onto a rectangle of height 1 and length f; 9(1—t)dt. The extremal metric for dir (o9, 0,,) is given
by p(z) = |¢'(2)| = |VRep(z)| where ¢ is a conformal map of U onto a rectangle, so let

1
0(z)

where z = o + ty. If v is any curve connecting og to o, in U, then

[ ez > | e
[ o= | gy

7
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and so
b1
[ > —dzx.
di (o0, 0,) _/a 0($)d$ (14)

More generally, suppose Qis a simply connected domain containing the real line R. Let F,. denote

the component of {z € Q: Rez = z} containing z. Fix s < t < oo, and define a metric p4 by
9(1—35) if s<z<tand (z,y) € Fy
pA($7 y) =

0 elsewhere in Q.

Then by the argument above

ds(Fy, Fy) > /t dz. (15)

1
0(z)
This estimate is due to Ahlfors.

For regions of the form U = {(z,y) : |y — m(z)| < 0(z)/2, a < = < b} there is an upper
bound for dir(og, 0,) that complements (14). Notice that the extremal distance between the two
horizontal sides of the rectangle R, given above, is equal to the reciprocal of the extremal distance
between the vertical sides, by a rotation. Any metric gives a lower bound for the extremal distance
between the two components of dU \ (69 U 0,,) and thus gives an upper bound for the extremal

distance between og and o,,.

By (13), a natural choice for a metric is then

e =[5 (5552 | = ot ()

This metric was discovered by Beurling [1989].

If v is any curve in U connecting the curve y = m(z)+68(z)/2 to the curve y = m(z) — 0(z)/2,

then
/pB|dz| > /v(y_gm) dz| = 1. (17)
¥ ¥
Furthermore,
) boem+d (4 (y — m)0' + 6m’ 2
U,oBdA: o 0—2—}— o2 dydz
/b dz b m’(:v)2—|— %0'(,@2
= dx.
o 0(x) /o 0(x)
Thus



b dz b ﬁll($)2+ %9'(;@2
dy(og,04) g/a m—l—/ﬂ 502) dx.

For regions of the form Q = {z + iy : |y — m(z)| < (z)/2}, let F, = {z € Q: Rez = z}. Then

dﬁ(Fs,Ft)g/t da /m L? @, (18)

The inequality (18) was discovered by Warschawskl [1942], using the older length-area method.

for s < t,

These estimates of Ahlfors and Beurling can be used to give necessary and sufficient geometric
conditions for the existence of a positive angular derivative when 09 is sufficiently smooth. See

Rodin-Warschawski [1976].

Corollary 8. Suppose Qis a simply connected domain given by

Q= {z+iy: |y —m()| < 0(z)/2)

where lim ;4 oo m(z) = 0 and
/ (m")? + (") dz < oo. (19)
0

Then Q has an angular derivative at +oo if and only if

[ G —s) (20)

exists.

Proof. If (20) holds then lim,_, 4, #(s) = m. Indeed, if ¢ > 0, then for s and ¢ sufficiently large,
with s <t < s+ 1, by the Cauchy-Schwarz inequality and (19)

16(s) — 8(t)] < <.

If there is a sequence s, — 400 with 8(s,) > 7 + 2¢, then 6(t) > 7+ ¢ for s, <t < s, +1 and

[ E -
sn o) =w) (7 + 2¢)

contradicting (20). A similar argument works if there is a sequence s, — 400 with 8(s,) < 7 —2¢.

Thus (7) and (10) hold. As before, let F, = QN {z : Rez = z}. For s, sufficiently large, by (15)

hence

and (18) we have the estimates

fl _ R t()+$0(')2$
/ 0(m>dm5dﬂ<F“Fs)§/s 0" +f 0w
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Thus by the strip version of Theorem 6, Q has a angular derivative at +oo if and only if

I /t L _Doo (21)
S,tgrioo s \O(z) = =

§3 Area Estimates.

Condition (21) has a more geometric interpretation. If Qis a region containing the real line
R, let F,. denote the component of {z: Rez =r}nN Q containing r € R, and let
Q' = interior (U Fr> .
reR
For any region U, let
Ust=UnN{z:5 < Rez < t}.

Then the integral in (21) is related to the area measure of the difference between the standard strip

S and the region €' since

[[(-2)ers oo

(Alea (S\ Q' )s,t — Area(€2 Q' \S)s,t) .

Thus if € is a region containing R then by (15)
1 ~ ~
dg (P, 1Y) = (t = 5) /7 > = (Area(s\ ), — Area(@'\ 8),,) (23)

If (z) — 7 as © — 400 (as was the case in Corollary 8) then the inequality (22) is almost an

equality as s,t — oco. For example if
Area(S\ Q') 4+ Area(Q'\ S) < oo

then

o 1

lim
s,t—=00 s

The above discussion becomes even more significant if we apply it not to Q but to a smaller
region with Lipschitz boundary. If Qis a region containing R, let 75s denote the collection of

isosceles triangles contained in Q with base on R and sides with slope =M. Set

Qu = J{T:T € Tar}.
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An M-Lipschitz curve is the graph of a function A which satisfies
[h(s) = h(t)] < M[s — ]

for all s,t € R. Then Q37 is the largest subregion of Q containing R which is bounded by M-

Lipschitz curves.
Theorem 9. Suppose Qis a simply connected domain with R C Q and
90N {z:Rez < 0} = SN {z : Rez < 0}. (24)

Let Qu be the largest region bounded by M-Lipschitz curves contained in ﬁ, as defined above.
(i) If Area(S\ Qur) < 0o then Q has an angular derivative at +occ if and only if Area(Qy7\'S) < co.
(i) Suppose M > 8. If Area(Qy \'S) < oo, then Q has an angular derivative at +oo if and only

if Area(S\ Qar) < oo.

Q\ Qu

. o0
as

Figure 2

The statement (24) is inconsequential since the existence of an angular derivative at 400 is a
local property of 0€2 near +oo.

Statement (i) was proved by Burdzy [1986] in the form given in Theorem 13(i) below using
Brownian excursions. See also Carroll [1988] and Gardiner [1991]. Half of statement (i), in the
form given above, was also proved by Rodin-Warschawski [1986] and the other half was also proved
by Sastry [1995]. Statement (ii) and the proof of (i) below are new. Since there seems to be some
uncertainty (see e.g. Sastry [1995]) about the exact relationship between Theorem 9(i) and Theorem

13(i), we will first prove Theorem 9, then derive Theorem 13 from Theorem 9. If 7(2) = ie™7 is
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one-to-one on € (see section 2) then one can derive Theorem 9 (for (2) from Theorem 13 in a similar

manner, so long as 87 is replaced by a somewhat larger constant.

Proof. If Area(S\ Q) < oo and if Area(Q\'S) < oo then

o Jim dist(z, dS) =0, (25)

zE@QIM

and hence (7) holds. Conversely, if Q has an angular derivative at 400, then by Theorem 3, (25)
holds. Thus we may suppose for the remainder of the proof that (25) holds. If F, denotes the
component of N {z : Rez = s} containing s € R, then by (25) and the strip version of Theorem

6, Q has an angular derivative at +oo if and only if

Jim ds(Fs, Fy) — (t —s)/m = 0. (26)
s<1

To prove Theorem 9, we will obtain lower and upper bounds for the left side of (26) in Lemma 10
and Lemma 12 below.

Suppose that Qs is given by the two curves y = hi(z) + 7/2 and y = —he(z) — 7/2,
—00 < z < 400, where hy > —7/2 and hy > —7/2. By (25), lim, 4o hj(z) = 0. As before, for
any region U, let

Ust=UnN{z:5 < Rez < t}.

Lemma 10. (Sastry [1995]) Suppose |h;(z)| < #M? for s < z <t. Then
dﬁ(Fs, F)y—(t—-s)/nm< 4]\/{r—QHAre:«L(S \ Qar)s,e — mArea(QM \S)s.e

Sastry [1995] proved this lemma with different constants and used a piecewise constant metric.
We will use a metric of the form p = |Vu/, since it is much easier to estimate lengths as we have

seen for example in (17).

Proof. Since dg(Fs, Fy) < dﬁM(FS,Ft) =d (Fs, Fy), without loss of generality, we may

(Qar) e
suppose (for notational convenience) that Q = (QM)M. Set A =1/(2M?) and define

Up={(z,y) €Q:hi(z)>0and — Aoy +7/2 <y < hy +7/2}
U2:{($73/)€§ hi(z) <0and 2hy+7/2<y<hy+7/2}
USZ{(fUay)Gﬁihg(m)>Oand —hy — /2 <y < Ahy — 7/2}
Uy ={(z,y) € Q:ha(z) <0and —hy —7/2 <y < —2hy —7/2} and

12
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Figure 3

Consider the continuous map (z,y) — (2, u(z,y)) of Q onto S which fixes U* and is linear in

y on Q\ U*. Thus

Y for (z,y) e U™
(y— (b1 +7/2))/2M?* + 1) +7/2 for (z,y) € Uy
w(e,y) = { 2y — (hy +7/2)) +7/2 for (,y) € U

(y+hy +7/2)/2M* +1) —7/2  for (z,y) € Us

2y + hy +7/2) — /2 for (z,y) € Us.

Set p = |Vu| on (2. This metric is similar to Beurling’s metric in section 2, except that we fix

the region U*. Note that

1 on U*
|VU|2 < 4(1—}—M2) on Uy, UUy, .

(14 M?*)/(2M?* +1)* on Uy UUs
Thus

14 M?2

mArea(Ul U US)

/~ |Vu|*dydz — / dydz < 4(1+ M*)Area(Uy U Uy) +
Q s, 1

1
2M?
= (4M* + 2)Area(S,,;\ Q) —

Area(€\ Ss,t) — 2Area(Ss ¢ \ Q)

1 ~
mArea(Q \ Ss,t) .

If v is a curve connecting {y = hy(z) — 7/2} to {y = —hy(z) — 7/2} and contained in Q, then

/|Vu||dz| > /Vu-dz
2! 2
3

1

=T.




Thus
I5 [Vul*dydz
(it [, [Vulld=])?
1

2

d= (Fy, )

IA

INA

1 ~
27_|_2Area(ﬂ \ 85775)) .

(ﬂ(t — 5) + (4M? + 2)Arca(S, ¢\ Q) — 7

The next step is to derive a lower bound for extremal distance. Write 8S~2M\8S~2 = U;o; where
each o; is an open arc with endpoints zé-,z;’ € 9Q where Rezé < Rezj. Forv e C \ R, let T},
denote the triangle in 73 with vertex v. There is a unique v; with Rezé < Rev; < Rez] so that
2,
Bj ={z: |z — z}| < Rez} — Rez}}. Otherwise let B; = {2z : |z — zj| < Rez} — Rez}}.

2§ € OT,,. Then o; C 0T, and o, consists of at most two line segments. If [Imz}| < [Imz}], let

Figure 4

Lemma 11.

Area(B;) < %/Zegj |Imz| — %‘ de, z=uz+1y.

Proof. Suppose f is defined and continuous on [0, 1] with

1 0<z<a
f'(z) = {
-1 a<z<1
Then by elementary calculus
1
1
F@)lde > <.
0

If Imz > 0 on o, the map

(x y)_> $—Rez§ y—1/2
7 Rez; — Rezl ' M(Rez] — Rezt)
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transforms o; into the graph of one such f. Thus

M (Rez" — Rezt)? M
/ |Imz — z|dac > (Rez; ) = —Area(B;).
2€0; 2 8 87
The inequality of the lemma for Imz < 0 follows by a reflection about R. O

The quantity

[Tmz| — E‘ dz
2

LEO’j

is the total area “between” o; and JS.
The next lemma gives a lower bound for the extremal distance in Q using the geometry of Q.

When Q = Qyy, it follows immediately from (23).

Lemma 12. If ¢ > 0 there is an sy < oo so that for s < t < oo,

ds(Fy, Fy) — (t — s)/7 > Y82 Avea(S\ Qur)s, — 2EEBE Area(Qar \ S)sye — €.

Proof. If 0 < ¢ — s < &, then by (25) Area(Qas \ S)s,t — 0 and Area(S\ﬁM)w — 0 as s,t — o0,

and the inequality follows. Now suppose that ¢ — s > e. Let p be the metric on Q given by

1 forzéﬁMUUij
p= N
0 elsewhere on Q.

The metric p will provide the lower bound for the extremal distance. First we compute the p-area

of (QM)M. By Lemma 11

/~ pldzdy — / dzdy < Area(Qar \ S)s¢ — Area(S\ Qur)se + Z Area(B;)
(1) s, S5, J (27)

8T ~ 8T ~
< (14 M)Area(QM \S)s:—(1— M)Area(S \ Qar) s,z
Now suppose v is a curve in Q connecting F; to Fy, with s < ¢. Note that

4
Rez} — Rezé < M%%)j(ﬂlmd -7/2| =0 (28)

as 0; — 400, by (25). Thus by deleting an initial and terminal portion of =, if necessary, we may

suppose that v begins and ends in QU U]’ B; and that if v meets o, then s < Rezé < Rezj <t.
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v

Figure 5

Thus we can write ¥ = Ugyr where {v;} are disjoint subarcs of v such that either v, C
S~2M U U]’ Bj, or v, meets some o; and connects FReZ; to FReZ; with s < Rezé < Rez; <t If
Yi C Qp U Uj Bj, then f% pldz| is at least equal to the change in Rez along 7. If v connects

IR, to FReZ; and intersects o, then
length (v N (Qr U Bj)) > Rez} — Rezé.

Indeed, if zé is the center of B; and if ( € 7, N oj, then the shortest curve from FRez} to ( in Q
is the straight line from zé to ¢, since |Im¢| > |Imz§|. Since vy, must intersect 0B;, it must have
length at least the radius of B;, namely Rez} — Rezé. A similar argument works if 27 is the center
of B;.

Together with (28) this implies, for s,¢ sufficiently large, that

/p|dz|2t—s—€.
y

We conclude by (27) that fort —s > ¢,

(t—s—¢)?

ds(Fs, Fy) > = — .
m(t—s)+ (14 87 /M)Area(Qpr \ S)s: — (1 — 87 /M)Area(S \ Qar)s ¢

Since @y is Lipschitz and (25) holds, we have both Area(Qas \ S)st/(t —s) — 0 and Area(S\

QM)M/(t —8) — 0 as s,t — oo. Hence for s,t sufficiently large with t — s > ¢,

ds(Fy, Fy) — (t — s)/m > M=87 Area(S \ Qur)se — MEET Area(Qar \ S)sy — €.

0

We can now conclude the proof of Theorem 9. The condition Area(S\ QM) < oo is equivalent

to Area(S\ Qar)s — 0 as s, — 4o00. Likewise, the condition Area(Qyr\ S) < oo is equivalent to

16



Area(Qar\ S)ss — 0 as 5,1 — 400, Thus if Area(S\ Qpr) < oo and Area(€Q\S) < oo, by Lemma
10 and Lemma 12,
lim ds(Fs, Fy) — (t—s)/m=0,

s,t—=00 Q

and hence by the discussion at the beginning of the proof of the Theorem 9, Q has an angular
derivative at 4o00.

If Area(S\ Qur) < oo and if € has an angular derivative at +oo, then by (26) and Lemma 10,
Area(Qy\ S)s — 0 as s, — +o0, proving statement (i) of Theorem 9.

If M > 87 and if Area(y \'S) < oo then by (26) and Lemma 12, Area(S \ QM)SJ — 0 as
s,t = 400, completing the proof of Theorem 9. (|

Theorem 9 does not solve the Angular Derivative Problem, even for regions bounded by Lip-
schitz curves. For example, if Q = {(z,y) : |y — m(z)| < 1/2} is a strip of constant width with
|m'(z)| <1 and

| im@las =

then Q is bounded by two Lipschitz curves, but Area(S\ Q) = Area(2\ S) = co. Thus Theorem 9

does not apply. However if we also have m — 0 and
o0
/ |m! (z)|2dz < oo,
0

then by Corollary 8, Q has an angular derivative at 4oc.
Theorem 9 can be restated using Lipschitz majorants for the boundary of Q with 0 € 0.

Suppose 2 is a plane domain. Let
I'ar = {2z :Ilmz > MRez}
be the cone with vertex at 0 and with sides of slope =M, and let

OM=| {¢+Twm:¢+Tum CQ}.

If QM is not empty, it is bounded by the graph of an M-Lipschitz function hps. Set hpr = 400
if QM = (. We will call hys the smallest M-Lipschitz majorant of 0L, for if the graph of an
M-Lipschitz function h is contained in €2 then h > hjy.

17



Theorem 13. Let € be a simply connected domain with 0 € 092 and let hy; denote the smallest
M -Lipschitz majorant of 05).

(i) (Burdzy [1986]). Suppose
1
h
/ XhM>OMd$ < 00. (29)

1 z?
Then €2 has a positive angular derivative at 0 if and only if
' hw(2)
/_1 XhM<OTd$ > —00. (30)
(ii) There is an My < oo so that if M > M, and if hys satisfies (30) then  has a positive angular
derivative at 0 if and only if hys satisfies (29).

Theorem 13(ii) answers a question in Burdzy [1986] and Burdzy [1987] (Problem 11.7, page
164). In the next section we will give an example (suggested by Burdzy) where Theorem 9 (ii) and
Theorem 13 (ii) fail for small Mj.

Proof. Since the existence of an angular derivative is a local property depending only on 2 near
0, we may suppose that QN {z :|z] > 1} = {z € R:|z| > 1}. If hys satisfies (29) and (30) then
har(z)/x — 0 as @ — 0. For if hps(2,) > €|z,| > 0 then hps(2) > €|2,/2| on an interval centered
at z, of length |z,|e/M. This contradicts the integrability condition (29) if 2, — 0. A similar
argument holds if hyr(z,) < —¢|z,| < 0 using condition (30). Thus 92 has an inner tangent at 0
with a vertical inner normal.

Conversely, if 2 has a positive angular derivative at 0 then by Theorem 3, 0€2 has an inner
tangent with a vertical inner normal and (2) holds. This implies hps(z)/2 — 0 as 2 — 0. Thus we
may suppose, for the remainder of the proof that hy(z)/z — 0 as 2 — 0.

Let var denote the graph of hps. If N > M, then y3; NOQ C yx N O and hy < hpy. Write
'yM\aQ =Ujo;.

As in the proof of Theorem 9, each o; consists of two intervals, the leftmost with slope —M and

the rightmost with slope M, and endpoints zé, 27 € 0Q. For N > M there is a unique cone (; +I'y

with zé,z;’ € (¢ + 0I'y. Moreover the graph of hy(z) lies above (; + 0I'y and below ¢;, for
Rezé <z < Rez}. Thus max|hy| < C'max|hyl, for Rezé < 2 < Rez}, where C' is a constant

depending only on M and N. In particular, for N > M, hx(z)/z — 0 as 2 — 0.
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Suppose first that (29) holds and that © has a positive angular derivative at 0. Since

lim hpr(z)/2 =0,

z—0

the graph of Ay, for small z, is transformed by the map
p(z) =7mi/2 - log =

to two M' Lipschitz curves, where M’ is a constant depending only on M. Set Q= »(2). These
curves must then be contained in the region Qy¢ D Qar. Since hp(z)/z — 0, condition (29)
implies

lim Area(S;:\ W) =0,

s,t—=+0o0
where W is the image of the region {z + iy : |z| < 1,y > max(h,,(z),0)} by the map ¢. Since
W C Qupr, (29) implies
Area(S\ Qap) < oc.

By Theorem 9 (i), Area(Qy \ S) < co. Since ¢~!(Qap) contains the graph of hys, and since
hay(z)/z — 0, as  — 0, we must have (30).

There is a constant My so that the region above the graph of has, M > My, contains @_I(QN)
where N = 87+ 1. Suppose now that M > My, that condition (30) holds and that € has a positive
angular derivative at 0. As above this implies Area(Qx\S) < co. By Theorem 9, Area(S\Qy) < co.
As above, this implies (29).

Finally suppose that both (29) and (30) hold.

Lemma 14. Suppose 0 < M < N < oo and suppose f and g are continuous on [a,b] with
fla) =g(a), f(b) = g(b),

—-M fora<z<c
f'(fC)Z{
M forc<z<b
and
—N fora<z<d
9’(»"6)2{
N ford<az <b

There is a constant C' depending only on M and N so that if g < h < f on [a,b], then

/ bz < © / /() da

Before proving the lemma, let us use it to complete the proof of Theorem 13. As above, let yas

and vy denote the graphs of has and hy, respectively, where N > M. Write yar = (yar N0Q) U; 05
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where each ¢; consists of two line segments of slope M on the interval I; = [a;,b;]. As noted
above, the endpoints of ¢; belong to 0€2.
By the lemma with a = a;, b =0b;, f = hpr and h = hny we have

/I_ (@) |dz < C/I. [ (@) da.

Since hpy(z)/z — 0 as z — 0, we must have (b; — a;)/a; — 0 as b; — 0, and hence

B (Y | e | 2

Since yar N0 C yn N0, we have hy = hpr on R\ U;1;. Thus

/th dz <C/ |hM
J =1

In other words, (29) and (30) hold with M replaced by N, for all N > M.

Choose M’ and N > M’ so that 4,9_1(§M,) contains the graph of hps and lies above the graph
of hx. By (29) Area(S\ Q) < 0o and by (30) with M replaced by N, Area(Qp \ S) < co. By

Theorem 9, € has a positive angular derivative at 0. (|

Proof of Lemma 14. If max|f| > 2M(b— a) then min |f] > max|f| — M(b—a) > L max|f], and

hence
’ 1
[ 1r@lde > 5 max| 1l - o).
If max |f| < 2M (b — a) then as in the proof of Lemma 11,
’ 1 1
[ 1#@)de 2 G b - a)? > 5 max|fl(b - o)
Since max | f| < max|g| < 4% max | f| and g < h < f, we have
4N
Al < ﬁmaxlfl-

We conclude that
4N
/ |h|dw<—max|f|(b—a ) < 6—/ 1f(2)|da.

Corollary 15. Let 2 be a simply connected domain containing the upper half plane H, with
0 € 09 and let hps be the smallest M-Lipschitz majorant of 0€2. Then € has a positive angular

1
h ;
/ w(2) dx > —oo.
—1

derivative at 0 if and only if

72
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This Corollary follows immediately from Theorem 13(i). See also Rodin-Warschawski [1977]

for other equivalent conditions.

Corollary 16. Let € be a simply connected domain contained in the upper half plane H with
0 € 0. Suppose the smallest M-Lipschitz majorant of 052, hyy, is not identically +oco. Then Q
has a positive angular derivative at 0 if and only if

/1 hM(x)dac < oo.

1352

This Corollary follows immediately from Theorem 13(ii) and Proposition 17 below. See also
Rodin-Warschawski [1977] for other equivalent conditions. Each of these Corollaries has a version

for strip regions that follows immediately from Theorem 9.
84 Further Results.

Burdzy (private communication) suggested the following example where Theorem 9 (ii) fails
for small M. A similar example fails for the half plane version, Theorem 13. Suppose 0 < &, — 0,

and "% = co. For § > 0, let

z for0<z<e,
28, — T fore, <z <2,+46

z—2(E,+90) for2e,+6<z<2e,+9)

0 elsewhere on R.

Then the curve y = h,(2) is 1-Lipschitz. Set

Q, = {($,y) hn(m) - 77/2 <y< 71'/2}
and set s = —1 and ¢ = +1. Using the constant metric p = 1, we obtain the lower bound

(67 —0%)2
~ — — > .
dﬂn(FsaFt) (t S)/ﬂ-— 7T(27T—€%+52)

By Lemma 10, since 052 is 1-Lipschitz,

6 2 1 2
d’dn(Fs,Ft) - (t—S)/ﬂ' g Fe’fn - 6?6 .

Thus we can choose § = ¢, with ¢, < 4, < 6¢, so that for s = —1 and t = +1,

dg (Fs, Fy) = (t —s)/m.
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We can then choose the conformal map ¢, of Q,, onto S so that 0 converges to the identity map,
uniformly on

(S\{lz+ mi/2| < 1/K})n{|]z| < K}

for all K > 0.
Define
h(x) = hy, (2 - 2n;)

for2n; —1 <z <2n;+1, j=1,2,..,set h(z) = 0 elsewhere in R and set

Q=A{(z,y):h(z) —7/2 <y < w/2}.
Then we can choose n; — oo so that Q has an angular derivative at +o0o. Note that for M < 1/13,
Qu CS
and
Area(S\ Q) = Zsi = +o0.
Thus Theorem 9 (ii) cannot hold with M = 1/13.

Lemma 14 can be improved to give the next Proposition.

Proposition 17. Let Q be a simply connected domain with 0 € 00 and for M < oo, let hps
denote the smallest M-Lipschitz majorant of 02. Then

[ il o

-1 $2

holds for some M > 0 if and only if it holds for all M > 0.

Proposition 17 follows from the next Lemma as in the proof of Theorem 9. A similar statement

holds for strip regions using areas.

Lemma 18. Suppose 0 < M < N < oo and suppose f and g are continuous on [a,b] with
fla) =g(a), f(b) = g(b),

—-M fora<z<c
f'(w)Z{
M forc<z<b
and
—N fora<z<d
9’(96):{
N ford<az <b
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There is a constant C' depending only on M and N so that if g < h < f on [a,b], then

g/ [f(@)lda < / h(x)|da < C/: |f(2)lda.

Proof. The upper bound follows from Lemma 14. To prove the lower bound, first suppose that
min g < 0. Write

{z € (a,0) 1 g(z) > 0} = (a,a1) U (a4, b),
and

{z € (a,0): f(z) <0} = (a, a3),
where @ < a1 < az <az <ay <b. Set
g(z)  ifg(x) >0
hi(z) =140 if g(z) <0< f(x)

flz) i f(z) < 0.

/: |h(2)\do > / [ (@) da.

Thus we may assume h = hy, and the result reduces to a problem comparing areas of triangles.

/ b (2)|de = /:lg(x)dm: |f2(f2|2 = %/ |f(z)dz.

A similar inequality holds for the (possibly empty) interval (as,b). Since |h1| = |f| on (a2, as), the
lower bound follows in this case with 1/C' = M/N.

Then

Note

The second case to consider is when min g > 0. In this case

/ab (h(z)ldo > / lg(2)

and the latter integral is at least one half of the area of the trapezoid with base [a,b] and sides of
height f(a) and f(b). The area of the trapezoid is larger than the area under the curve y = f(z)
and hence the lower bound follows in this case with 1/C' = 1/2.

Finally, if f(a) < 0 and f(b) < 0, then |h| > |f| and the lower bound holds with C' = 1. O

Applying Lemma 18 in the context of strip regions, we have

Area(S\ Q) + Area(Qa \ S) < o0

23



holds for some M if and only if it holds for all M > 0.
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