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You're my better half
a tale of complimentary complementary sequences
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An integer sequence is an ordered list of integers.

Examples.

(1,2,3,4,5,6,…)
(2,4,6,8,10,12,…) = (2n)∞

n=1

(1,4,9,16,25,36,…) = (n2)∞
n=1

(1,3,6,10,15,21…)
(1,1,2,3,5,8,13…)

= (n(n + 1)/2)∞
n=1
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(Fibonacci numbers)
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A real number is irrational if it cannot be written as the ratio of two counting numbers. 

Examples.

2 =
a
b

is impossible if we require a and b to be counting numbers

π =
a
b

is impossible if we require a and b to be counting numbers

e =
a
b

is impossible if we require a and b to be counting numbers

ϕ =
a
b

is impossible if we require a and b to be counting numbers

Proving a number is irrational is generally hard. 

For instance, we don't know if  is irrational.e + π
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(1, 2, 4, 5, 7, 8, 9, 11, 12, 14, 15, 16, 18, 19,(⌊n ⋅ 2⌋)
∞

n=1
= ...)

Consider multiples of 2

0 2 2 2 3 2 4 2 5 2 7 2 8 26 2 9 2 10 2 11 2 12 2 13 2 14 2

A mystery: what numbers are skipped?

0 1 2 4 5 7 9 118 12 14 15 16 18 19
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Finding the missing numbers

Construct the analogous sequence of multiples of 
2

2 − 1

(
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Every positive integer appears once and only once!

Finding the missing numbers
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How do we know Rayleigh's theorem is true?

Given the Beatty sequences of interest,  and , we(⌊n ⋅ x⌋)∞
n=1 (⌊n ⋅ x/(x − 1)⌋)∞

n=1

• Show no counting number appears in both sequences (no collisions)


• Show every counting number appears in one of the sequences (no whiffs)

We demonstrate the proof for , our initial example, to minimize variables.x = 2

Important point: if , then :z = x/(x − 1) 1/x + 1/z = 1

1

2
+

1
2

2 − 1

=
1

2
+

2 − 1

2
=

1 + 2 − 1

2
=

2

2
= 1
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Suppose there exists a counting number  with y ⌊n ⋅ 2⌋ = y = ⌊m ⋅ 2/( 2 − 1)⌋

n ⋅ 2

m ⋅ 2/( 2 − 1)
y

Then, we conclude y < n ⋅ 2 < y + 1 y < m ⋅
2

2 − 1
< y + 1and

•  and  are both irrational;


• any nonzero integer multiple of an irrational is also irrational. 

2 2/( 2 − 1)
Why are the inequalities strict?
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f(n)
f(n) + n f↓(n) + n



Try it yourself with the increasing sequence f(n) = n2

Theorem [Lambek/Moser]. Given an increasing integer sequence , the two 
integer sequences  and  are complementary.

f(n)
f(n) + n f↓(n) + n

or

your favorite increasing integer sequence!
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Bonus: Beatty Sequences and a Game

Wythoff's game (equivalent version)

Players alternate moving queen on  board:m × n

3

Valid moves:

1. Any number of spaces right

2. Any number of spaces down

3. Any number of spaces SE diagonal

Player who moves queen to bottom right square wins!
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This tree encodes the "base-3/2 representations"

of counting numbers - each number is given as a

sum of powers of 3/2, with coefficients 0, 1, or 2.
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Tom Edgar : edgartj@plu.edu

Thanks for listening!
If you have questions, I am happy to answer them.
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