
Math 126 Daily Fake Exam Problems Spring 2016

The deal: every day I’ll post an exam-like problem at the start of class, along with the
answer to the problem from the previous class. Please attempt these problems!

DFEP #1: Friday, April 8th.

(a) Give the equation of a plane containing the line
x− 2

4
=

y

−2
=
z + 6

3
and the

point (6, 1, 5).

(b) Find the intersection of this plane with the line
x+ 1

−6
=
y − 5

2
= z − 7.
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DFEP #1 Solution:

(a) We want a plane through the line
x− 2

4
=

y

−2
=
z + 6

3
and the point (6, 1, 5).

Certainly this plane contains the line’s direction vector 〈4,−2, 3〉. It also contains
the points (2, 0,−6) and (6, 1, 5), which means it contains the vector 〈4, 1, 11〉.
So to find the normal vector, we can take the cross product 〈4,−2, 3〉 × 〈4, 1, 11〉
to get 〈−25,−32, 12〉. The plane with normal vector 〈−25,−32, 12〉 through the
point (6, 1, 5) has equation

−25x− 32y + 12z = −25(6)− 32(1) + 12(5)

or
−25x− 32y + 12z = −122

(b) Let’s write that line in parametric form: x = −1 − 6t, y = 5 + 2t, z = 7 + t.
Plugging that into the equation of the plane yields

−25(−1− 6t)− 32(5 + 2t) + 12(7 + t) = −122

which we can solve to get t = −71/98 ≈ −0.7245, so the point of intersection is
(x, y, z) = (3.347, 3.551, 6.276).

DFEP #2: Monday, April 11th.

Suppose a = 〈−1, 8, 4〉. Find a vector b so that:

• The angle between a and b is 60◦,

• b is perpendicular to k, and

• ||b|| = 4.
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DFEP #2 Solution:

Let’s say that b = 〈x, y, z〉. We know that b · k = 0, so z = 0.

We also know that a · b = −x + 8y + 4z = −x + 8y. But on the other hand, a · b =
||a|| · ||b|| cos(60◦). Since ||a|| = 9 and ||b|| = 4, that means −x + 8y = 18, or
x = 8y − 18.

Finally, since ||b|| = 4, we know that x2 + y2 = 16, so (8y − 18)2 + y2 = 16, which
simplifies to 65y2 − 288y + 308 = 0.

Solving that tells us that y =
288±

√
2882 − 4 · 65 · 308

130
≈ 2.627 or 1.804.

And since x = 8y − 18, that means we have two possible answers:

b = 〈3.016, 2.627, 0〉 or b = 〈−3.570, 1.804, 0〉

DFEP #3: Wednesday, April 13th:

Consider the vector function r = 〈t+ 1, 2t, 3t+ 2t2〉.

(a) Does the curve defined by r intersect the following line? If so, where?

x− 15

2
= y − 10 = 8− z

(b) Suppose r intersects the surface 5x2 + Cy2 + 2z2 = 1 in the yz-plane.

Solve for the constant C.

(c) Describe the surface from part (b). Your answer should be a short phrase.
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DFEP #3 Solution:

(a) We want to find the intersection of the vector functions 〈t + 1, 2t, 3t + 2t2〉 and
〈15 + 2s, 10 + s, 8− s〉. So we set their components equal:

t+ 1 = 15 + 2s 2t = 10 + s 3t+ 2t2 = 8− s

Yikes, let’s ignore that second equation for now. Solving the first and third gives
a quadratic 4t2 + 7t − 30 = 0, which factors as (4t + 15)(t − 2) = 0. So we have
either t = 2, s = −6 or t = −15/4, s = −71/8. Plugging those into the second
equation, we have t = 2, s = −6 as the only solution.

So where’s the point? Plug t or s into the corresponding vector function to get
(3, 4, 14) as the intersection.

(b) Okay, r = 〈t+1, 2t, 3t+2t2〉 intersects the yz-plane when x = 0, so t = −1, which
is at the point (0, 1

2
,−1). Since this intersects the curve 5x2 + Cy2 + 2z2 = 1, we

have C
(
1
2

)2
+ 2 = 1, so C = −4.

(c) The curve 5x2− 4y2 + 2z2 = 1 is a hyperboloid of one sheet, centered around the
y-axis.

DFEP #4: Friday, April 15th.

Consider the curve defined by the vector function r = 〈t+ 6, t3, et
2−6t+8〉.

(a) Find all points where the curve intersects the plane z = 1.

(b) Find the (acute) angle between the curve and plane at each point from part (a).
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DFEP #4 Solution:

(a) The curve defined by 〈t+ 6, t3, et
2−6t+8〉 intersects z = 1 when its z-component is

1, which means that et
2−6t+8 = 1. Therefore t2 − 6t+ 8 = 0, so t = 2 or t = 4.

To find the points of intersection, we plug t = 2 and t = 4 back into the vector
function to get (8, 8, 1) and (10, 64, 1).

(b) We’ll need to know the tangent vectors for the points from part (a). The derivative
r′(t) = 〈1, 3t2, (2t− 6)et

2−6t+8〉.
At t = 2, this is the vector 〈1, 12,−2〉, and at t = 4 it’s 〈1, 48, 2〉.
To find the angle between the curve and the plane, we’ll start by finding the angles
between the normal vector and the tangent vector:

〈1, 12,−2〉 · 〈0, 0, 1〉 = ||〈1, 12,−2〉|| · 1 cos(θ), so θ = cos−1(−2/
√

149) ≈ 99.43◦.
But, wait, that’s the angle between the curve and the normal vector. The angle
between the curve and the plane is 90◦ less, or 9.43◦.

A similar calculation for the other point gives 2.39◦.

DFEP #5: Monday, April 18th.

Consider the polar curve r = cos2(θ).

1. Find all intersections of this curve with the line x =
1

4
.

2. Find all points on the curve where the tangent line is horizontal.
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DFEP #5 Solution:

(a) Okay, so we have the curve r = cos2(θ), and we want to know where x =
1

4
.

But x = r cos(θ), so r cos(θ) =
1

4
, which means cos3(θ) =

1

4
.

That means θ = cos−1
(

1
3
√

4

)
is one solution. Since cos(θ) = cos(−θ), we know

− cos−1
(

1
3
√

4

)
is another solution. In both cases, x =

1

4
, and y = r sin(θ) =

± cos2
(

cos−1
(

1
3
√

4

))
sin

(
cos−1

(
1
3
√

4

))
, which simplifies (using a comparison

triangle) to ±
√

42/3 − 1

4
. The two points, then are(

1

4
,

√
42/3 − 1

4

)
and

(
1

4
,−
√

42/3 − 1

4

)
.

(b) We want to know when the tangent line is horizontal. That tells us:

dr

dθ
sin(θ) + r cos(θ) = 0.

But
dr

dθ
= −2 sin(θ) cos(θ), so we want to solve:

−2 sin2(θ) cos(θ) + cos3(θ) = 0

That factors to:

cos(θ)
(
cos2(θ)− 2 sin2(θ)

)
= 0

Now, cos(θ) = 0 when θ = ±π/2, but at those points the denominator of
dy

dx
is

also zero, and in fact the tangent line is not horizontal. So we’re left looking for
the points where cos2(θ)− 2 sin2(θ) = 0.

That happens when tan2(θ) =
1

2
, so θ = tan−1

(
1√
2

)
(along with its reflections

over the x- and y-axes).

Plugging this in to get x and y gives the points

(
±2
√

2

3
√

3
,± 2

3
√

3

)
.
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DFEP #6: Friday, April 22nd.

Give an equation for the normal plane to the following curve at the point

(
27, 5,

1

26

)
:

x = 2t − t y = t2 − 4t z =
1

1 + t2
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DFEP #6 Solution:

We want the normal plane to

〈
2t − t, t2 − 4t,

1

1 + t2

〉
at

(
27, 5,

1

26

)
, which is at t = 5.

So we just need to know the tangent vector at t = 5, and that will give us the normal
vector to the plane.

That tangent vector is

〈
ln(2)2t − 1, 2t− 4,

−2t

(1 + t2)2

〉
, which at t = 5 is:

〈
32 ln(2)− 1, 6,

−5

338

〉
So the normal plane is:

(32 ln(2)− 1)(x− 27) + 6(y − 5)− 5

338

(
z − 1

26

)
= 0

DFEP #7: Monday, April 25th.

Consider the vector function r(t) = 〈arctan(t), 3t2 − 4t+ 1, ln(t2)〉.
Compute the curvature of r(t) when t = 1.
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DFEP #7 Solution:

Recall that we can find κ by computing
|r′(t)× r′′(t)|
|r′(t)|3

.

r(t) = 〈arctan(t), 3t2 − 4t+ 1, ln(t2)〉.

r′(t) =

〈
1

1 + t2
, 6t− 4,

2

t

〉
.

r′′(t) =

〈
−2t

(1 + t2)2
, 6,
−2

t2

〉
.

We want the curvature at t = 1, so r′(1) = 〈0.5, 2, 2〉, and r′′(1) = 〈−0.5, 6,−2〉.
r′(1)× r′′(1) = 〈−16, 0, 4〉, so |r′(1)× r′′(1)| =

√
272, and |r′(1)| =

√
8.25.

So κ =

√
272

(
√

8.25)3
≈ 0.696.

DFEP #8: Wednesday, April 27th.

The position of a bee over time on the interval [0,∞) is given by the vector function
r(t) = 〈cos(πt), t4− 4t3 + 4t2,

√
t〉. Compute the tangential and normal acceleration of

the bee after t = 4 seconds.
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DFEP #8 Solution:

We are given the position vector r = 〈cos(πt), t4−4t3+4t2,
√
t〉 and we want tangential

and normal acceleration after t = 4 seconds.

First, we need r′(t) = 〈−π sin(πt), 4t3 − 12t2 + 8t, 1/(2
√
t)〉 (so r′(4) = 〈0, 96, 1/4〉) as

well as r′′(t) = 〈−π2 cos(πt), 12t2−24t+8,−1/(4
√
t3)〉 (so r′′(4) = 〈−π2, 104,−1/32〉).

The usual formulas tell us aT and aN :

aT =
r′(4) · r′′(4)

|r′(4)|
=

9983.99219√
962 + (1/4)2

≈ 103.9996

and

aN =
|r′(4)× r′′(4)|
|r′(4)|

=
|〈−29,−π2/4, 96π2〉|√

962 + (1/4)2
≈ 9.8742

DFEP #9: Friday, April 29th.

The force exerted on a 5 kg ball after t seconds, in Newtons, is given by the vector
function F(t) = 〈5 cos(t) sin(t), 10e5t, 45t2〉.
The initial velocity (in meters per second) and position (in meters) of the ball are the
by the vectors v(0) = 〈3,−2, 6〉 and r(0) = 〈4, 1, 0〉.
Compute the position of the ball r(t) (in meters) after t seconds.
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DFEP #9 Solution:

First, we compute the acceleration by dividing the force F(t) by the mass 5 to get

a(t) = 〈cos(t) sin(t), 2e5t, 9t2〉

Integrating once gives

v(t) =

〈
sin2(t) + C1,

2

5
e5t + C2, 3t

3 + C3

〉
and since v(0) = 〈3,−2, 6〉 we can solve for the constants to get

v(t) =

〈
sin2(t) + 3,

2

5
e5t − 12

5
, 3t3 + 6

〉
.

Integrate again (using the half-angle formula to integrate sin2(t)) and we have

r(t) =

〈
1

2
t− 1

4
sin(2t) + 3t+ C4,

2

25
e5t − 12

5
t+ C5,

3

4
t4 + 6t+ C6

〉
and, one more time, we can use r(0) = 〈4, 1, 0〉 to solve for the constants:

r(t) =

〈
1

2
t− 1

4
sin(2t) + 3t+ 4,

2

25
e5t − 12

5
t+

23

25
,
3

4
t4 + 6t

〉
DFEP #10: Monday, May 2nd.

Compute the all the partial derivatives (one for each variable) of the given functions:

(a) f(x, y) = x2y3 − xy + 5x3

(b) g(x, y) =
x2 + 1

xy + y2

(c) h(x, y, z) = (2 + arctan(x+ y2))z
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DFEP #10 Solution:

I don’t really have anything to say about this one. Here are some derivatives.

(a) fx(x, y) = 2xy3 − y + 13x2

fy(x, y) = 3x2y2 − x

(b) gx(x, y) =
2x(xy + y2)− y(x2 + 1)

(xy + y2)2

gy(x, y) =
−(x2 + 1)(x+ 2y)

(xy + y2)2

(c) hx(x, y, z) =
z(2 + arctan(x+ y2))z−1

1 + (x+ y2)2

hy(x, y, z) =
2yz(2 + arctan(x+ y2))z−1

1 + (x+ y2)2

hz(x, y, z) = (2 + arctan(x+ y2))z ln(2 + arctan(x+ y2))

DFEP #11: Wednesday, May 4th.

Consider the surface z = x3ey − 8 cos(y) + 4x sin(y).

Let P be the point where this surface intersects the x-axis.

Find the equation for the plane tangent to the surface at the point P .
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DFEP #11 Solution:

We want the tangent plane to z = x3ey − 8 cos(y) + 4x sin(y) at the point where it
intersects the x-axis.

At that point, the y- and z-coordinates are zero, so we have 0 = x3 − 8, so x = 2. So
the point is (2, 0, 0).

What’s the normal vector? We need the partial derivatives:

∂z

∂x
= 3x2ey + 4 sin(y) = 12

∂z

∂y
= x3ey + 8 sin(y) + 4x cos(y) = 16

So we get the plane z = 12(x− 2) + 16y.

DFEP #12: Friday, May 6th.

Find all critical points of the function f(x, y) = x+ 3y− ex − y3, and classify them as
local minima, local maxima, or saddle points.
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DFEP #12 Solution:

We need the critical points of f(x, y) = x + 3y − ex − y3, so we want to solve the
equations:

fx(x, y) = 1− ex = 0

fy(x, y) = 3− 3y2 = 0

Which has two solutions: (0, 1) and (0,−1). Let’s check D(x, y) at each point:

The second derivatives are fxx(x, y) = −ex, fyy(x, y) = −6y, and fxy(x, y) = 0.

So D(0, 1) = 6 and D(0,−1) = −6. Since fxx(x, y) < 0 for all (x, y), that means (0, 1)
is a local maximum and (0,−1) is a saddlepoint.

DFEP #13: Monday, May 9th.

Compute the average value of f(x, y) = y sin(2y) cos(xy) over the region [0, 2]×[0, π/4].
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DFEP #13 Solution:

We want to compute ∫ 2

0

∫ π/4

0

y sin(2y) cos(xy) dy dx

Oh, wait, that seems maybe impossible. Let’s flip it around:

∫ π/4

0

∫ 2

0

y sin(2y) cos(xy) dx dy

That’s easier: y sin(2y) is a constant, and the antiderivative of cos(xy) with respect to
x is sin(xy)/y. So we get:

∫ π/4

0

(
sin(2y) sin(xy)

]2
0

)
dy

That’s just ∫ π/4

0

sin2(2y) dy =

∫ π/4

0

1

2
(1− cos(4y)) dy

which comes out to π/8. And since we want the average value over a rectangle of area
π/2, we divide this by π/2 to get 1/4.

DFEP #14: Wednesday, May 11th.

Compute the double integral:

∫ e9

0

∫ 3

√
ln(y)

2xyex
2

dx dy
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DFEP #14 Solution:

Okay, this is pretty easy as is:

∫ e9

0

∫ 3

√
ln(y)

2xyex
2

dx dy =

∫ e9

0

(
yex

2
)]3
√

ln(y)

dy =

∫ e9

0

(ye9 − y2) dy

which we can evaluate as
e9

2
y2 − 1

3
y3
]e9
0

=
e27

6

But you should totally try reversing the order of integration anyway, for practice.
You’ll get:

∫ 3

0

∫ ex
2

0

2xyex
2

dy dx

which also comes out to
e27

6
.

DFEP #15: Friday, May 13th.

Compute the area inside the cardioid r = sin(θ) + 1 but outside the circle x2 + y2 = 1.
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DFEP #15 Solution:

Here’s a picture:

x

y

We want to integrate 1 over this domain. θ runs from 0 to π, and for any given θ, r
runs from 1 to 1 + sin(θ). So we want:

∫ π

0

∫ 1+sin(θ)

1

r dr dθ =

∫ π

0

(
1

2
r2
)]1+sin(θ)

1

dθ =
1

2

∫ π

0

(sin2(θ) + 2 sin(θ)) dθ

This becomes

1

2

∫ π

0

(
1

2
(1− cos(2θ)) + 2 sin(θ)

)
dθ =

1

2

(
x

2
− 1

4
sin(2θ)− 2 cos(θ)

)]π
0

which simplifies to
π

4
+ 2.
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DFEP #16: Monday, May 23rd.

Consider the function f(x) = ln(2x− 5).

(a) Find the second Taylor polynomial T2(x) for f(x) centered at b = 3.

(b) Use your answer from part (a) to approximate ln(1.04).

(c) Use Taylor’s inequality to give an error bound for your answer from part (b).
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DFEP #16 Solution:

(a) We want T2(x) centered at b = 3 for the function ln(2x − 5). The first few
derivatives are:

f(x) = ln(2x− 5) f ′(x) =
2

2x− 5
f ′′(x) =

−4

(2x− 5)2

Plugging in x = 3 we find f(3) = 0, f ′(3) = 2, and f ′′(3) = −4. So:

T2(x) = 0 + 2(x− 3) +
1

2
(−4)(x− 3)2 = 2(x− 3)− 2(x− 3)2

(b) We want to approximate ln(1.04). Well, that’s ln(2(3.02)−5), so it’s f(3.02). We
can approximate it as

T2(3.02) = 2(3.02− 3)− 2(3.02− 3)2 = .04− 2(.0004) = .0392

(c) To find an error bound, we’ll need to know f ′′′(x) =
16

(2x− 5)3
.

On the interval [3, 3.02], this is largest when the denominator is smallest, so the
maximum is at x = 3 and we get M = 16. So the error is bounded by:

|T2(3.02)− f(3.02)| ≤ 1

6
(16)|3.02− 3|3 ≈ .00002133

DFEP #17: Wednesday, May 25th.

Let Tn(x) be the nth Taylor polynomial for f(x) = sin(4x) centered at b = 0.

Use Taylor’s inequality to find an interval I = [−a, a] so that the error |Tn(x)− f(x)|
on the interval I less than or equal to 0.01. Your answer will depend on n.
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DFEP #17 Solution:

If f(x) = sin(4x), then f ′(x) = 4 cos(4x), f ′′(x) = −16 sin(4x), f ′′′(x) = −64 cos(4x),
and in general f (n)(x) = ±4n sin(x) or ±4n cos(x).

We could spend a while worrying about whether the nth derivative is positive or
negative and whether it’s sin(4x) or cos(4x), but remember that our goal is to find an
error bound, so we only need the maximum of |f (n+1)(x)|. Since both | sin(4x)| and
| cos(4x)| have maximum values of 1, we end up with M = 4n+1.

So, on the interval [−a, a], the nth Taylor polynomial has error bound

|Tn(x)− f(x)| ≤ 1

(n+ 1)!
4n+1an+1

If we want this to be less than or equal to 0.01, then we set

1

(n+ 1)!
4n+1an+1 ≤ 0.01

and solve to get

a ≤ n+1

√
(n+ 1)!

100 · 4n+1

DFEP #18: Friday, May 27th.

Let f(x) = sin(2x3).

(a) Find the Taylor series for f(x) centered at b = 0. Write your answer in Σ-notation.

(b) Compute f (45)(0).
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DFEP #18 Solution:

(a) We know the Taylor series for sin(x) centered at b = 0 is
∞∑
k=0

(−1)k
x2k+1

(2k + 1)!
.

Substituting in 2x3 for x, we get

sin(2x3) =
∞∑
k=0

(−1)k
(2x3)2k+1

(2k + 1)!
=
∞∑
k=0

(−1)k
22k+1x6k+3

(2k + 1)!

(b) We want to know f (45)(0), which will require us to know the x45 term from the
previous series. Since the kth term of the sum is x6k+3, we get x45 when 6k + 3

is 45, so k = 7. That term is
−215x45

15!
. We set that equal to the x45 term of a

general Taylor series centered at b = 0:

−215x45

15!
=
f (45)(0)x45

45!

Solve (canceling factors of x45) to get f (45)(0) =
−21545!

15!
.

DFEP #19: Wednesday, June 1st.

Let f(x) = x arctan(2x4).

(a) Write the Taylor series for f(x) centered at b = 0 in Σ-notation.

(b) Find the interval of convergence for your answer from part (a).
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