Artin-Schelter regular algebras and the Steenrod algebra

J. H. Palmieri and J. J. Zhang

University of Washington

Los Angeles, 10 October 2010

Exercise

Let A(1) be the sub-Hopf algebra of the mod 2 Steenrod algebra generated by Sq¹ and Sq². Fill in this table:

Algebra# of gens
$$k[x,y]/(x^2,y^2)$$
2 $A(1)$?

Okay, that's easy, but perhaps it should be this table:

Algebra	?
$k[x,y]/(x^2,y^2)$	2
A(1)	?

Rephrasing: What is the generalization, when passing from finite-dimensional commutative algebras to finite-dimensional non-commutative algebras, of "the number of generators"?

Definition of AS regular algebra

Artin-Schelter regular algebras: Let k be a field. A k-algebra A is called Artin-Schelter regular if it is graded connected and the following three conditions hold:

- A has finite global dimension d,
- A is Gorenstein:

$$\operatorname{Ext}_{A}^{i}(k,A) = \begin{cases} k & \text{if } i = d, \\ 0 & \text{if } i \neq d, \end{cases}$$

 A has finite polynomial growth: there is positive number c such that dim A_n < c n^c for all n ≥ 0.

Examples of AS regular algebras

Every AS regular algebra has a dimension, the integer d in the definition. AS regular algebras of dimensions \leq 3 have been classified, and those of dimension 4 have been investigated.

Examples

- If $A = k[x_1, \ldots, x_d]$, then A is AS regular of dimension d.
- If g is a finite-dimensional Lie algebra of dimension d, then its enveloping algebra $U\mathfrak{g}$ is AS regular of dimension d.

AS regular algebras: view as non-commutative analogue of polynomial algebras.

 $(Noetherian) + (AS regular) + (dim \le 4) \implies integral domain$

Homomorphic images?

Question

What are the homomorphic images of AS regular algebras?

- The class includes all finite-dimensional algebras. (Use enveloping algebras.)
- If A is commutative, then A is the image of an AS regular algebra if and only if A is finitely generated.
- Thus, the question is really: What is the non-commutative generalization of "finitely generated commutative algebra"?
- No known alternate characterization.

We'll focus on the finite-dimensional case.

Any finite-dimensional algebra ${\cal B}$ has an AS regular algebra ${\cal R}$ with

- $R \twoheadrightarrow B$,
- if dim B = d, then R has dimension d.

Can we do better – that is, find an AS regular algebra of smaller dimension – by focusing on certain families of finite-dimensional algebras?

A theorem

Theorem

Let B be a finite-dimensional sub-Hopf algebra of the mod 2 Steenrod algebra, with dim B = d. Then there is an AS regular algebra of dimension $\log_2 d$ mapping onto it.

Odd primes: have partial analogue, maybe more.

The dimension $\log_2 d$ ought to be minimal:

Conjecture

Fix *B* as in the theorem with dim B = d. If *R* is AS regular with $R \rightarrow B$, then *R* has dimension at least $\log_2 d$.

Question: If *B* is any finite-dimensional Hopf algebra over a field of characteristic *p*, with dim B = d, is there an AS regular algebra of dimension $\log_p d$ mapping onto it?

Yes if the Hopf algebra satisfies a certain technical condition, unknown otherwise. More on this later.

Examples			
At the prin	me 2:		
Algebra	$d = \dim$	log ₂ d	
A(0)	2	1	
A(1)	8	3	
A(2)	64	6	
A(3)	1024	10	
A(n)	$2^{(n+1)(n+2)/2}$	(n+1)(n+2)/2	

Questions

- If B is a finite-dimensional Hopf algebra, is there an AS regular Hopf algebra mapping onto B by a Hopf algebra map? (We've been unable to find one for A(2).)
- If *B* is the homomorphic image of an AS regular algebra, then it has a numerical invariant: the minimal dimension of an AS regular algebra mapping onto it. Applications? Other interpretations?
- In the commutative case, this invariant just gives the minimal number of generators.
- So we get the question from the start: What is the generalization, when passing from finite-dimensional commutative algebras to finite-dimensional non-commutative algebras, of "the number of generators"?

Theorem

Let B be a finite-dimensional sub-Hopf algebra of the mod 2 Steenrod algebra, with dim B = d. Then there is an AS regular algebra of dimension $\log_2 d$ mapping onto it.

Proof.

- Filter *B* by powers of the augmentation ideal.
- The associated graded gr *B* is isomorphic to the restricted enveloping algebra of a restricted Lie algebra g with trivial restriction.
- Use basis, generators, and relations for gr $B \cong u\mathfrak{g}$ to write basis, generators, and relations for B.
- Throw out the restriction relations: Use generators and the "commutator relations" for B to define a new algebra A so that gr A ≅ Ug.
- If gr A is AS regular, so is A, with the same dimension.

Example

A(2), the algebra generated by Sq¹, Sq², and Sq⁴. Then gr $A(2) \cong u\mathfrak{g}$ where \mathfrak{g} is the 6-dimensional restricted Lie algebra defined as follows:

- The restriction is trivial.
- Basis: s_1 , s_2 , s_4 (the elements Sq¹, Sq², Sq⁴),

•
$$s_{12} = [s_1, s_2]$$
, $s_{24} = [s_2, s_4]$, $s_{124} = [s_{12}, s_4]$,

• all other brackets trivial, except $s_{124} = [s_1, s_{24}]$. We can write A(2) as follows:

$$A(2) \cong k \langle s_1, s_2, s_4 \rangle / (\text{relations}),$$

with s_{12} , s_{24} , and s_{124} defined as above, and relations of two types:

Example (continued)

 $A(2) \cong k \langle s_1, s_2, s_4 \rangle / (\text{relations}).$

Commutator relations:

$$[s_1, s_4] = s_2 s_{12}, \ [s_1, s_{24}] = s_{124}, \ [s_2, s_{24}] = s_1 s_{124}, \ [s_4, s_{24}] = s_2 s_1 s_{124},$$

and all other brackets trivial.

Restriction relations:

$$s_1^2 = 0, \ s_2^2 = s_1 s_{12}, \ s_4^2 = s_2 s_{24}, \ s_{12}^2 = 0 = s_{24}^2 = s_{124}^2.$$

The AS regular algebra R(2) mapping onto A(2) is obtained by deleting the restriction relations.

Applications

 An application of the proof: a family of bases, called commutator bases or PBW bases. The basis elements are ordered monomials in the iterated commutators (i.e., elements like s₁, s₁₂, s₁₂₄, ...). For example, a basis for A(1):

 $\{1,\ s_1,\ s_2,\ s_{12},\ s_{1}s_{2},\ s_{1}s_{12},\ s_{2}s_{12},\ s_{1}s_{2}s_{12}\}.$

• Understanding Ext? For example, we have

$$\begin{split} A(1) &\cong k \langle s_1, s_2 \rangle / ([s_1, s_{12}], [s_2, s_{12}], s_1^2, s_2^2 + s_1 s_{12}, s_{12}^2), \\ R(1) &\cong k \langle s_1, s_2 \rangle / ([s_1, s_{12}], [s_2, s_{12}]), \\ R(1) \twoheadrightarrow R(1) / (s_{12}^2) \\ &\twoheadrightarrow R(1) / (s_{12}^2, s_1^2) \\ &\twoheadrightarrow R(1) / (s_{12}^2, s_1^2, s_2^2 + s_1 s_{12}). \end{split}$$