Math 126D - Spring 2009
 Practice Problems for Midterm 1

1. Find the equation of the plane containing the line of intersection of the two planes

$$
x+y+z+5=0 \text { and } 3 x+2 y-z+2=0
$$

and the point $(1,2,1)$.
2. Find the point of intersection of the two lines

$$
x=4-t, y=6+2 t, z=-1+3 t \text { and } x=1+2 t, y=14-8 t, z=7-4 t .
$$

3. Let S be the surface defined as the set of points p (in three-dimensional space) such that the distance from p to the plane $y=5$ equals the distance from p to the line

$$
y=1, z=2 .
$$

(a) Find an equation for S.
(b) Find the equation of the trace of S in the plane $z=6$. Describe the trace (i.e. what kind of curve is it?).
4. Consider the curve defined by the vector equation

$$
\vec{r}(t)=\left\langle 4 t, 5 t^{3}, 2 t^{2}\right\rangle
$$

(a) Find the unit tangent vector $\vec{T}(t)$ at the point where $t=1$.
(b) Find the parametric equations of the tangent line the curve at the point where $t=1$.
5. Does the curve defined by the polar equation

$$
r=\sec \theta+\tan \theta
$$

intersect the vertical line $x=2$? Explain.
6. Compute the distance from the point $(1,2,3)$ to the plane $3 x+2 y+z=1$.
7. Find a vector function $\mathbf{r}(t)$ that represents the curve of intersection of the surfaces $9 x^{2}+(z-1)^{2}=4$ and $y=5 x^{2}$.
8. Let $\mathbf{r}(t)=\left\langle t^{3}, t^{2}-3 t\right\rangle$. Find the arclength of this curve between the points $(-1,4)$ and $(1,-2)$. Set up the integral, but do not evaluate.

