Math 126D - Spring 2009
Practice Problems for Midterm 2

1. Let $\mathbf{r}(t)=\left\langle t^{3}, t^{2}, t^{3}-2 t\right\rangle$. Compute the curvature κ at the point $(-1,1,1)$.
2. Find the equation of the tangent plane of the function $F(x, y)=\frac{3 y-2}{5 x+7}$ at the point $(-1,1)$.
3. Suppose a particle is moving in 3-dimensional space so that its position vector is

$$
\mathbf{r}(t)=\left\langle t, t^{2}, \frac{1}{t}\right\rangle .
$$

(a) Find the tangential component of the particle's acceleration vector at time $t=1$.
(b) Find all values of t at which the particle's velocity vector is orthogonal to the particle's acceleration vector.
4. Let $f(x, y)=x e^{y}-\ln (x+y)$.
(a) Sketch the domain of f.
(b) Find $f_{x y}(x, y)$.
5. Find three positive numbers x, y and z whose sum is 100 and for which the product

$$
x y^{2} z^{3}
$$

is a maximum. (Remember to verify that your solution does give a maximum.)
6. While driving your car on a highway, you travel at a constant speed of $100 \pm 2 \mathrm{~km} /$ hour for 50 ± 1 seconds. Use differentials to estimate the uncertainty in the distance you travelled in these 50 seconds.
7. Evaluate the following double integrals.
(a) $\iint_{R} x y \sin \left(x^{2} y\right) d A, \quad R=[0,1] \times[0, \pi / 2]$
(b) $\iint_{D} y^{2} e^{x y} d A, \quad D=\{(x, y) \mid 0 \leq y \leq 3,0 \leq x \leq y\}$

