LECTURE 15

SEMIDEFINITE PROGRAMMING — PART 1/2



Positive semi-definite matrices

» A matrix X € R™" is symmetric if X;; = Xj; for all
i,j € [n]
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Positive semi-definite matrices

» A matrix X € R™" is symmetric if X;; = Xj; for all
i,j € [n]
» Fact. For a symmetric matrix, all Eigenvalues are real.

Definition

A symmetric matrix X € R"*" is positive semidefinite if all
its Eigenvalues are non-negative.

» We write X > 0« X is PSD.
» For A, B € R™" we write

<A, B> = zn:zn:A” : Bij

i=1 j=1

as the Frobenius inner product.



Positive semi-definite matrices (2)

Lemma

For a symmetric matric X € R™ ", the following is equivalent
a) a’ Xa > 0Va € R",
b) X is positive semidefinite.

c¢) There exists a matriz U so that X = UUT.

d) There are uy,...,u, € R" with X;; = (w;,u;) fori,j € [n].




Positive semi-definite matrices (2)

Lemma

For a symmetric matric X € R™ ", the following is equivalent
a) a’ Xa > 0Va € R",
b) X is positive semidefinite.

c¢) There exists a matriz U so that X = UUT.

d) There are uy,...,u, € R" with X;; = (w;,u;) fori,j € [n].

ot

Proof:
» Any symmetric real matrix is diagonalizable, that means
X =WDWT =3%"" Nvv] for diagonal D, orth. W.
Then

> a) = b). 0 <ol Xv, = \|vi3 =N

» b)=c). X =WDWT =UU" for U := Wv/D.
» ¢) < d). Choose u; as ith row of U.

» ¢) = a). For any a € R", o’ Xa = ||Ual|3 > 0.



Positive semi-definite matrices 3

Definition
The cone of PSD matrices is
S%p = {X € R™" | X symmetric, X = 0}
= {X e R | X symmetric, <X, aaT> > 0Va € R"}
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Definition
The cone of PSD matrices is
8% = {X € R™" | X symmetric, X = 0}
= {X e R | X symmetric, <X, aaT> > 0Va € R"}

» Fact: S% is convex.



Positive semi-definite matrices 3

Definition
The cone of PSD matrices is

8% = {X € R™" | X symmetric, X = 0}
= {X e R | X symmetric, <X, aaT> > 0Va € R"}

v

» Fact: S% is convex.




A semidefinite program

» A semidefinite program is of the form:

max (C, X)
(A, X) < b Vk=1,...,m
X symmetric
X =0

where C, Ay, ..., A, € R"™™",



A semidefinite program

» A semidefinite program is of the form:

max (C, X)
(A, X) < b Vk=1,...,m
X symmetric
X =0

where C, Ay, ..., A, € R"™™",

Less well behaved than LPs:
» Issue 1: Strong duality might fail.
» Issue 2: Possibly all solutions are irrational

» Issue 3: Possibly exact solutions have exponential
encoding length



Solvability of Semidefinite Programs

Theorem

Given rational input Ay,..., Ay, b1,..., by, C, R and e > 0,
suppose

SDP = max{(C, X) | (A, X) < b Vk; X symmetric; X = 0}

is feasible and all feasible points are contained in B(0, R).
Then one can find a X* with

(A, X*) < bpte, X* symmetric, X* = 0
such that (C, X*) > SDP—¢c. The running time is polynomial

in the input length, log(R) and log(1/e) (in the Turing
machine model).




Vector programs
Idea:

» Y > 0 holds ift V}; = (v;,v;) for some vectors v;



Vector programs
Idea:

» Y > 0 holds ift V}; = (v;,v;) for some vectors v;

SDP:
maxZCin;j
ALYy < by Yk
irj
Y sym.
Y = 0
Observation

Vector program
max Z Cij (vi, vj)
Z A

(v, v;) < by VE

v, € R" Vi

The SDP and the vector program are equivalent.




MaxCut

MaxCuT

Input: An undirected graph G = (V, E)

Goal: Find the cut S C V that maximizes the number [0(.5)]
of cut edges.

Example:
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MaxCut

MaxCuT

Input: An undirected graph G = (V, E)

Goal: Find the cut S C V that maximizes the number [0(.5)]
of cut edges.

Example:

» NP-hard to find a solution that cuts even 94% of what
the optimum cuts [Hastad 1997]
» Simple greedy algorithm cuts at least |E|/2 edges.



MaxCut SDP

SDP:
1
max 5 Z (1 _XZ_]>
{i,j}€E
X =0
X E RTLXTL

Vector program

s>
{U}GE

luillo = 1 VieV
u; € R"

max

UZ, U,]



MaxCut SDP

SDP: Vector program
1
max 3 Z (1-X45) | max = Z — (ui, uj))
{i,j}€E {1 jIeE
X E RTLXTL
Lemma

If S* CV is opt. solution for MaxCut, then SDP > |§(S*)|.




MaxCut SDP

SDP: Vector program
1
max 3 Z (1-X45) | max = Z — (ui, uj))
{i,j}€E {1 jIeE
X E RTLXTL
Lemma

If S* CV is opt. solution for MaxCut, then SDP > |§(S*)|.

Proof:
» We set r := 1 and define u; € R! by
1 if1€ 5"
—1 ifieV\S5*

U; ‘=



Example MaxCut SDP

Graph G
2

5

» Optimum MaxCut = 4



Example MaxCut SDP

Graph G SDP solution:
2 Uy
3 Uz
1 0 U1
4 Us
5 Uus

» Optimum MaxCut = 4

» Choose u; € R? with u; := (cos(%2), sm(457r)) and we get

vector program solution of value 5 - $(1 — cos(3m) ~ 4.522



The Hyperplane Rounding algorithm

(1) Solve the SDP
(2) Take a random standard Gaussian a € R"
(3) Define S :={i € V| (a,u;) > 0}

A
N’

:



The Hyperplane Rounding algorithm

(1) Solve the SDP
(2) Take a random standard Gaussian a € R"
(3) Define S :={i € V| (a,u;) > 0}

)
=



The Hyperplane Rounding algorithm (2)

Lemma
For {i,j} € E one has Pr[{i, j} € 6(5)] = Tarccos({u;, u;)). J

A
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» The angle between vectors is exactly 6 := arccos((u;, u;))
(as (u;,u;) = cos(#)).
» Only projection of a into U := span{u;, u;} matters.

A



The Hyperplane Rounding algorithm (2)

Lemma
For {i,j} € E one has Pr[{i, j} € 6(5)] = Tarccos({u;, u;)). J

Proof.
» The angle between vectors is exactly 6 := arccos((u;, u;))
(as (u;,u;) = cos(#)).
» Only projection of a into U := span{u;, u;} matters.

AQ -~

» Then Prlu;, u; separated] = 5.

\



The Hyperplane Rounding algorithm (3)

Theorem
One has E[|6(S)|] > 0.878 - SDP > 0.878 - |6(S*)|. ’
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contribution
to SDP obj.fct



The Hyperplane Rounding algorithm (3)

Theorem
One has E[|6(S)|] > 0.878 - SDP > 0.878 - |6(S*)|. J

» By linearity of expectation it suffices to show that
every edge {i,j} € E one has

Pr({i,j} € 6(9)] 2 5(1 = (us, uy)) =

%arccos(t)

contribution
to SDP obj.fct

> 0878 Vte[—1,1]

» Set t := (u;, uj) and Tt

-1.0 -0.8 -0.6 =04 -02 0 02 04 06 08 1.0
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Grothendieck’s Inequality

For a matrix A € R™*" define

INT(A) = maX{ZZAijmiyj |z e {-1,1}",y € {1, 1}”}

i=1 j=1

SDP(4) = max{ >3 Ay (us,vy) | lfuilla = flesllo = 1}

i=1 j=1



Grothendieck’s Inequality

For a matrix A € R™*" define

INT(A) = maX{ZZAijmiyj |z e {-1,1}",y € {1, 1}”}

i=1 j=1

SDP(4) = max{ >3 Ay (us,vy) | lfuilla = flesllo = 1}

i=1 j=1

Theorem (Grothendieck’s Inequality)

For any matriz A € R™ " one has

INT(A) < SDP(A) < Cg - INT(A)

where Cg < 1.783.

» Grothendieck proved that C is indeed a constant
» [Krivine 1979] proved that Ce < 1.783



Hyperplane rounding

Random experiment:
(1) Given vectors u;,v; € R".
(2) Sample a Gaussian g in R” and set

z; = sign((u;, g)) and  y; = sign((v;, 9))

U1
Uy
us
V2
U2
» Recall that
. 1 ifz>0
81gn(z) . -1 ifz2<0



Hyperplane rounding

Random experiment:
(1) Given vectors u;,v; € R".
(2) Sample a Gaussian g in R” and set

x; = sign((u;,9)) and y; :=sign((v;, g))
vy
51 —|—1

\
Vs
» Recall that

. 1 ifz>0
sign(z) = -1 if2<0



Hyperplane rounding

Random experiment:
(1) Given vectors u;,v; € R".
(2) Sample a Gaussian g in R” and set

x; = sign((ug, g)) and ;= sign({vy, 9))
‘o
: Uy —|—1
>
U2

» Recall that

. 1 ifz>0
Sen(2) =931 .o

» Question: How does E[A;;z;y;] relate to A;; (u;, v;)?



Hyperplane rounding (2)

Lemma
Let u,v € R” with ||u|lz = ||v||a = 1. Then

E  [sign({g, ) - sign((g,0))] = = aresin((u,v))

g Gaussian

» In words: Probability that u,v end up on the same side of
a hyperplane is exactly Zarcsin((u,v))




Hyperplane rounding (2)

Lemma
Let u,v € R” with ||u|lz = ||v||a = 1. Then

: : 2 :
E_[sign({g,w) - signllg,e))] = Zarcsin((u,v)
g aussian
» In words: Probability that u,v end up on the same side of
a hyperplane is exactly Zarcsin((u,v))

» Set cos(f) = (u,v). Then Pr[u, v separated] = 2

™




Hyperplane rounding (2)

Lemma
Let u,v € R” with ||u|lz = ||v||a = 1. Then

E  [sign({g, ) - sign((g,0))] = = aresin((u,v))

g Gaussian

v

In words: Probability that u,v end up on the same side of
a hyperplane is exactly Zarcsin((u,v))

Set cos(#) = (u,v). Then Pru, v separated] =
> E[--] =1 —2Pr[u,v separated] = 1 — 2 = Zarcsin({u, v))
Recall: arccos(t) = § — arcsin(t)

v
EEES

v




Hyperplane rounding (3)

Lemma
Let u,v € R” with ||u|lz = ||v||a = 1. Then

E  [sign({g, ) - sign((g,0))] = = aresin((u,v))

g Gaussian

1+ by
-2/ zaresin(t)
/// /’/‘
7 ~4
S
| 2= | L
I I
7
-1 ~- 1
e
7
/// //
/’/ //
7
7
e
'
e -1 4+

For ¢t > 0, %t < %arcsin(t) <t



Preliminary conclusion

We can conclude that:
» For A;; > 0 and (u;, u;) > 0 one has
E[Ajziy;] > 2 - Aij (i, v;)
» For A;; < 0 and (u;,u;) > 0 one has
E[Aiziy;] = Aij (ui, vj)



Preliminary conclusion

We can conclude that:
» For A4;; >0 and (ui, uj) > 0 one has
E[Ajzy;] > 2 - Ay (Um vj)
» For A;; <0 and <uz,uj) > 0 one has
ElAyziy;] > Aij (wi, v5)
Problem: Due to the non-linearity, this does bound INT'(A)
in terms of SDP(A)!!



Tensors

Definition

A kth order tensor A € R™ > " ig a k-dimensional array of
numbers; we write A = (A;, i, )iielnl,....ix€lnil-

» A vector a € R" is a 1-order tensor

» A matrix A € R™M*™ is a 2-order tensor



Tensors

Definition

A kth order tensor A € R™ > " ig a k-dimensional array of
numbers; we write A = (A;, i, )iielnl,....ix€lnil-

» A vector a € R™ is a 1-order tensor
» A matrix A € R™M*™ is a 2-order tensor

» For two tensors A, B € R™**"™ we can define an inner
product

(A, B) = Z Aisoin - Bin ik
i1 ik



Tensors

Definition

A kth order tensor A € R™ > " ig a k-dimensional array of
numbers; we write A = (A;, i, )iielnl,....ix€lnil-

A vector a € R™ is a 1-order tensor

A matrix A € R™"*"2 ig 5 2-order tensor

v

v

» For two tensors A, B € R™**"™ we can define an inner
product

(A, B) = Z Ay Biyiy
01500k
» For vector u € R™ and k € N, define the tensor product

UR...Qu:=u® = (Uiy « v .- Uik>i1€[n]v~~~:ik€["]



Tensors

Definition

A kth order tensor A € R™ > " ig a k-dimensional array of
numbers; we write A = (A;, i, )iielnl,....ix€lnil-

» A vector a € R" is a 1-order tensor

A matrix A € R™"*"2 ig 5 2-order tensor

v

\4

For two tensors A, B € R™**"™ we can define an inner
product

(A, B) = Z Aisoin - Bin ik
i1 ik

v

For vector u € R™ and k € N, define the tensor product

UR ... Qu:=u®F .= (Wiy = o Wiy )ir e, ineln]

Fact: For vectors u,v € R™ one has <u®k,v®k> = (u,v)k.

v



Tensors

Definition

We call a function f: R — R (real) analytic if it can be
written as a convergent power series f(z) = >, axz” for all
r €R.




Tensors

Definition

We call a function f: R — R (real) analytic if it can be
written as a convergent power series f(z) = >, axz” for all
r €R.

» For fixed r, we can define a Hilbert space /
infinite-dimensional vector space of the form

H={(U° U U? U3 ..) | U"is a k-tensor of size r*}

using the natural inner product.



A vector transformation

Now we can “bend” any vectors to give any analytic function
that we like:

Lemma

Let f(z) =Y 32, arz® and fix a dimension r € N. Then there
1s a Hilbert space H and maps F,G : R" — H so that

(F(u),G(v)) = f((u,v)) Vu,v€R

Moreover the length of the mapped vectors satisfies

o0

IE@)I; = IG5 = laxl - ull3*

k=0




A vector transformation (2)
Proof:

» The maps are

F(u) == (V]a|-u® rezsy,  G(u) = (sign(ar)-v/|ax|-u®")iezs,



A vector transformation (2)
Proof:
» The maps are
F(u) == (V]a|-u® rezsy,  G(u) = (sign(ar)-v/|ax|-u®")iezs,

» Then for vectors u,v € R" one has

(F(u),G(v)) = Y sign(ar) - (V]an])? - (u®, %)

k>0

= Zak : <U,U>k = f(<u7v>)

k>0



A vector transformation (2)
Proof:
» The maps are
F(u) == (V]a|-u® rezsy,  G(u) = (sign(ar)-v/|ax|-u®")iezs,

» Then for vectors u,v € R" one has

(F(u),G(v)) = Y sign(ar) - (V]an])? - (u®, %)

k>0

= Zak : <U,U>k = f(<u7v>)

k>0

» We can verify that the lengths are

IE@)ll; = 1G(@)llF = > (VakD)> [u®I3 = D laxl-lul3*

k>0 k>0

as claimed. ]



Applying the vector transformation

Lemma
Let r € N. Then there are maps F,G : R"™ — H so that

(F(u), G(v)) = sin (83 (u,0) )

where [ = %ln(l +2) = ﬁ. Moreover
IF@)IE = TG)IE =1 for all u € R with |Ju]}} = 1.

Note that this is equivalent to




Applying the vector transformation (2)

Proof.
» Consider f(x) = sin(f5x).

2



Applying the vector transformation (2)

Proof.
» Consider f(x) = sin(85x).
» Recall that
sin(x) = Zk>0 2ki)1k),x2k+1 =z — %x:s + éa:g’ —
sinh(z) = )45 2kil)!x2k+1



Applying the vector transformation (2)

Proof.
» Consider f(x) = sin(85x).
» Recall that
sin(x) = Zk>0 2ki)1k),x2k+1 =z — %x:s + éa:g’ —
sinh(z) = )45 2kil)!x2k+1

» Then for ||ulls =1,

Il = X o g (05)

B: —7arcs1nh( )

= sinh (62> =




Applying the vector transformation (2)

Proof.
» Consider f(x) = sin(85x).
» Recall that
sin(x) = Zk>0 2ki)1k),x2k+1 =z — %x:s + éa:g’ —
sinh(z) = )45 2kil)!x2k+1

» Then for ||ulls =1,

2k+1 B_farcsmh( )
() = Z\ P (93) " s ()
» One can check that
8 2 oxcs h(1) 2 (1+2)
= —arcsin =—In N —.
T - 1.783



Applying the vector transformation (3)

» Consider A € R™™ and u;,v; € R” with
[uill2 =1 = [|v;[2.

» Sample a Gaussian g in H and set

;= sign({g, F(w:))) and y; = sign({(g, G(v;)))



Applying the vector transformation (3)

» Consider A € R™™ and u;,v; € R” with
[uill2 =1 = [|v;[2.
» Sample a Gaussian g in H and set
z; = sign((g, F'(u;))) and y; :=sign((g, G(v;)))
» Then

Elriy;] = ~arcsin((F (), (o)) = B (s, )



Applying the vector transformation (3)

» Consider A € R™™ and u;,v; € R” with
[uill2 =1 = [|v;[2.
» Sample a Gaussian g in H and set
z; = sign((g, F'(u;))) and y; :=sign((g, G(v;)))
» Then

Elriy;] = ~arcsin((F (), (o)) = B (s, )

» By linearity of expectation

E [ZZAljxlyj} - \’; Z Az] ul7v]
i=1 j=1 1 =1 j=1




