
Lecture 15

Semidefinite programming — Part 1/2
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Positive semi-definite matrices

◮ A matrix X ∈ Rn×n is symmetric if Xij = Xji for all
i, j ∈ [n]

◮ Fact. For a symmetric matrix, all Eigenvalues are real.

Definition
A symmetric matrix X ∈ Rn×n is positive semidefinite if all
its Eigenvalues are non-negative.

◮ We write X � 0 ⇔ X is PSD.

◮ For A,B ∈ Rn×n we write

〈A,B〉 :=
n∑

i=1

n∑

j=1

Aij ·Bij

as the Frobenius inner product.



Positive semi-definite matrices (2)

Lemma
For a symmetric matrix X ∈ Rn×n, the following is equivalent

a) aTXa ≥ 0 ∀a ∈ Rn.

b) X is positive semidefinite.

c) There exists a matrix U so that X = UUT .

d) There are u1, . . . , un ∈ Rr with Xij = 〈ui, uj〉 for i, j ∈ [n].



Positive semi-definite matrices (2)

Lemma
For a symmetric matrix X ∈ Rn×n, the following is equivalent

a) aTXa ≥ 0 ∀a ∈ Rn.

b) X is positive semidefinite.

c) There exists a matrix U so that X = UUT .

d) There are u1, . . . , un ∈ Rr with Xij = 〈ui, uj〉 for i, j ∈ [n].

Proof:
◮ Any symmetric real matrix is diagonalizable, that means

X = WDW T =
∑n

i=1 λiviv
T
i for diagonal D, orth. W .

Then
◮ a) ⇒ b). 0 ≤ vTi Xvi = λi‖vi‖22 = λi

◮ b) ⇒ c). X = WDW T = UUT for U := W
√
D.

◮ c) ⇔ d). Choose ui as ith row of U .
◮ c) ⇒ a). For any a ∈ Rn, aTXa = ‖Ua‖22 ≥ 0.



Positive semi-definite matrices 3

Definition
The cone of PSD matrices is

Sn
≥0 := {X ∈ Rn×n | X symmetric, X � 0}

= {X ∈ Rn×n | X symmetric,
〈
X, aaT

〉
≥ 0 ∀a ∈ Rn}
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Definition
The cone of PSD matrices is

Sn
≥0 := {X ∈ Rn×n | X symmetric, X � 0}

= {X ∈ Rn×n | X symmetric,
〈
X, aaT

〉
≥ 0 ∀a ∈ Rn}

◮ Fact: Sn
≥0 is convex.
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A semidefinite program

◮ A semidefinite program is of the form:

max 〈C,X〉
〈Ak, X〉 ≤ bk ∀k = 1, . . . ,m

X symmetric

X � 0

where C,A1, . . . , Am ∈ Rn×n.



A semidefinite program

◮ A semidefinite program is of the form:

max 〈C,X〉
〈Ak, X〉 ≤ bk ∀k = 1, . . . ,m

X symmetric

X � 0

where C,A1, . . . , Am ∈ Rn×n.

Less well behaved than LPs:

◮ Issue 1: Strong duality might fail.

◮ Issue 2: Possibly all solutions are irrational

◮ Issue 3: Possibly exact solutions have exponential
encoding length



Solvability of Semidefinite Programs

Theorem
Given rational input A1, . . . , Am, b1, . . . , bm, C,R and ε > 0,
suppose

SDP = max{〈C,X〉 | 〈Ak, X〉 ≤ bk ∀k; Xsymmetric; X � 0}

is feasible and all feasible points are contained in B(0, R).
Then one can find a X∗ with

〈Ak, X
∗〉 ≤ bk+ε, X∗ symmetric, X∗ � 0

such that 〈C,X∗〉 ≥ SDP−ε. The running time is polynomial
in the input length, log(R) and log(1/ε) (in the Turing
machine model).
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Vector programs

Idea:

◮ Y � 0 holds iff Yij = 〈vi, vj〉 for some vectors vi

SDP:

max
∑

i,j

CijYij

∑

i,j

Ak
ij · Yij ≤ bk ∀k

Y sym.

Y � 0

Vector program

max
∑

i,j

Cij 〈vi, vj〉
∑

i,j

Ak
ij · 〈vi, vj〉 ≤ bk ∀k

vi ∈ Rr ∀i

Observation
The SDP and the vector program are equivalent.



MaxCut

MaxCut
Input: An undirected graph G = (V,E)
Goal: Find the cut S ⊆ V that maximizes the number |δ(S)|
of cut edges.

Example:
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MaxCut

MaxCut
Input: An undirected graph G = (V,E)
Goal: Find the cut S ⊆ V that maximizes the number |δ(S)|
of cut edges.

Example:

S

◮ NP-hard to find a solution that cuts even 94% of what
the optimum cuts [Hastad 1997]

◮ Simple greedy algorithm cuts at least |E|/2 edges.



MaxCut SDP

SDP:

max
1

2

∑

{i,j}∈E

(1−Xij)

X � 0

Xii = 1 ∀i ∈ V

X ∈ Rn×n

Vector program

max
1

2

∑

{i,j}∈E

(1− 〈ui, uj〉)

‖ui‖2 = 1 ∀i ∈ V

ui ∈ Rr
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MaxCut SDP

SDP:

max
1

2

∑

{i,j}∈E

(1−Xij)

X � 0

Xii = 1 ∀i ∈ V

X ∈ Rn×n

Vector program

max
1

2

∑

{i,j}∈E

(1− 〈ui, uj〉)

‖ui‖2 = 1 ∀i ∈ V

ui ∈ Rr

Lemma
If S∗ ⊆ V is opt. solution for MaxCut, then SDP ≥ |δ(S∗)|.

Proof:
◮ We set r := 1 and define ui ∈ R1 by

ui :=

{

1 if i ∈ S∗

−1 if i ∈ V \ S∗



Example MaxCut SDP

Graph G

1
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4

5

◮ Optimum MaxCut = 4



Example MaxCut SDP

Graph G

1

2

3

4

5

SDP solution:

0 u1

u2

u3

u4

u5

◮ Optimum MaxCut = 4

◮ Choose ui ∈ R2 with ui := (cos(4iπ
4
), sin(4π

5
)) and we get

vector program solution of value 5 · 1
2
(1− cos(4

5
π) ≈ 4.522



The Hyperplane Rounding algorithm

(1) Solve the SDP

(2) Take a random standard Gaussian a ∈ Rr

(3) Define S := {i ∈ V | 〈a, ui〉 ≥ 0}

ui

uj



The Hyperplane Rounding algorithm

(1) Solve the SDP

(2) Take a random standard Gaussian a ∈ Rr

(3) Define S := {i ∈ V | 〈a, ui〉 ≥ 0}

b a

ui

uj



The Hyperplane Rounding algorithm (2)

Lemma
For {i, j} ∈ E one has Pr[{i, j} ∈ δ(S)] = 1

π
arccos(〈ui, uj〉).

0
ui

uj

θ



The Hyperplane Rounding algorithm (2)

Lemma
For {i, j} ∈ E one has Pr[{i, j} ∈ δ(S)] = 1

π
arccos(〈ui, uj〉).

Proof.

◮ The angle between vectors is exactly θ := arccos(〈ui, uj〉)
(as 〈ui, uj〉 = cos(θ)).

◮ Only projection of a into U := span{ui, uj} matters.

0
ui

uj

θ



The Hyperplane Rounding algorithm (2)

Lemma
For {i, j} ∈ E one has Pr[{i, j} ∈ δ(S)] = 1

π
arccos(〈ui, uj〉).

Proof.

◮ The angle between vectors is exactly θ := arccos(〈ui, uj〉)
(as 〈ui, uj〉 = cos(θ)).

◮ Only projection of a into U := span{ui, uj} matters.

◮ Then Pr[ui, uj separated] =
2θ
2π
.

0
ui

uj

θ

a⊥



The Hyperplane Rounding algorithm (3)

Theorem
One has E[|δ(S)|] ≥ 0.878 · SDP ≥ 0.878 · |δ(S∗)|.
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Theorem
One has E[|δ(S)|] ≥ 0.878 · SDP ≥ 0.878 · |δ(S∗)|.

◮ By linearity of expectation it suffices to show that
every edge {i, j} ∈ E one has

Pr[{i, j} ∈ δ(S)] ≥ 1
2
(1− 〈ui, uj〉) = contribution

to SDP obj.fct



The Hyperplane Rounding algorithm (3)

Theorem
One has E[|δ(S)|] ≥ 0.878 · SDP ≥ 0.878 · |δ(S∗)|.

◮ By linearity of expectation it suffices to show that
every edge {i, j} ∈ E one has

Pr[{i, j} ∈ δ(S)] ≥ 1
2
(1− 〈ui, uj〉) = contribution

to SDP obj.fct

◮ Set t := 〈ui, uj〉 and
1

π
arccos(t)
1

2
(1−t)

≥ 0.878 ∀t ∈ [−1, 1]

0.2
0.4
0.6
0.8
1.0

0 0.2 0.4 0.6 0.8 1.0−0.2−0.4−0.6−0.8−1.0

0.87

t

1

π
arccos(t)
1

2
(1−t)



Lecture 16

Semidefinite programming — Part 2/2



Grothendieck’s Inequality

For a matrix A ∈ Rm×n define

INT (A) := max
{ m∑

i=1

n∑

j=1

Aijxiyj | x ∈ {−1, 1}m, y ∈ {−1, 1}n
}

SDP (A) := max
{ m∑

i=1

n∑

j=1

Aij 〈ui, vj〉 | ‖ui‖2 = ‖vj‖2 = 1
}



Grothendieck’s Inequality

For a matrix A ∈ Rm×n define

INT (A) := max
{ m∑

i=1

n∑

j=1

Aijxiyj | x ∈ {−1, 1}m, y ∈ {−1, 1}n
}

SDP (A) := max
{ m∑

i=1

n∑

j=1

Aij 〈ui, vj〉 | ‖ui‖2 = ‖vj‖2 = 1
}

Theorem (Grothendieck’s Inequality)

For any matrix A ∈ Rm×n one has

INT (A) ≤ SDP (A) ≤ CG · INT (A)

where CG ≤ 1.783.

◮ Grothendieck proved that CG is indeed a constant
◮ [Krivine 1979] proved that CG ≤ 1.783



Hyperplane rounding

Random experiment:

(1) Given vectors ui, vj ∈ Rr.

(2) Sample a Gaussian g in Rr and set

xi := sign(〈ui, g〉) and yj := sign(〈vj, g〉)

u1

u2

v1

u3

v2

◮ Recall that

sign(z) :=

{

1 if z ≥ 0

−1 if z < 0
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u1
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Hyperplane rounding

Random experiment:

(1) Given vectors ui, vj ∈ Rr.

(2) Sample a Gaussian g in Rr and set

xi := sign(〈ui, g〉) and yj := sign(〈vj, g〉)

g

u1

u2

v1

u3

v2

+1

−1

◮ Recall that

sign(z) :=

{

1 if z ≥ 0

−1 if z < 0

◮ Question: How does E[Aijxiyj] relate to Aij 〈ui, vj〉?



Hyperplane rounding (2)

Lemma
Let u, v ∈ Rr with ‖u‖2 = ‖v‖2 = 1. Then

E
g Gaussian

[
sign(〈g, u〉) · sign(〈g, v〉)

]
=

2

π
arcsin(〈u, v〉)

◮ In words: Probability that u, v end up on the same side of
a hyperplane is exactly 2

π
arcsin(〈u, v〉)

0
u

v

θ

θ



Hyperplane rounding (2)

Lemma
Let u, v ∈ Rr with ‖u‖2 = ‖v‖2 = 1. Then

E
g Gaussian

[
sign(〈g, u〉) · sign(〈g, v〉)

]
=

2

π
arcsin(〈u, v〉)

◮ In words: Probability that u, v end up on the same side of
a hyperplane is exactly 2

π
arcsin(〈u, v〉)

◮ Set cos(θ) = 〈u, v〉. Then Pr[u, v separated] = θ
π

0
u

v

θ

θ



Hyperplane rounding (2)

Lemma
Let u, v ∈ Rr with ‖u‖2 = ‖v‖2 = 1. Then

E
g Gaussian

[
sign(〈g, u〉) · sign(〈g, v〉)

]
=

2

π
arcsin(〈u, v〉)

◮ In words: Probability that u, v end up on the same side of
a hyperplane is exactly 2

π
arcsin(〈u, v〉)

◮ Set cos(θ) = 〈u, v〉. Then Pr[u, v separated] = θ
π

◮ E[· · · ] = 1− 2Pr[u, v separated] = 1− 2θ
π
= 2

π
arcsin(〈u, v〉)

◮ Recall: arccos(t) = π
2
− arcsin(t)

0
u

v

θ

θ



Hyperplane rounding (3)

Lemma
Let u, v ∈ Rr with ‖u‖2 = ‖v‖2 = 1. Then

E
g Gaussian

[
sign(〈g, u〉) · sign(〈g, v〉)

]
=

2

π
arcsin(〈u, v〉)

2
π
t

1

−1

1−1

t

t 2
π
arcsin(t)

For t ≥ 0, 2
π
t ≤ 2

π
arcsin(t) ≤ t



Preliminary conclusion

We can conclude that:

◮ For Aij ≥ 0 and 〈ui, uj〉 ≥ 0 one has

E[Aijxiyj] ≥ 2
π
· Aij 〈ui, vj〉

◮ For Aij < 0 and 〈ui, uj〉 ≥ 0 one has

E[Aijxiyj] ≥ Aij 〈ui, vj〉



Preliminary conclusion

We can conclude that:

◮ For Aij ≥ 0 and 〈ui, uj〉 ≥ 0 one has

E[Aijxiyj] ≥ 2
π
· Aij 〈ui, vj〉

◮ For Aij < 0 and 〈ui, uj〉 ≥ 0 one has

E[Aijxiyj] ≥ Aij 〈ui, vj〉
Problem: Due to the non-linearity, this does bound INT (A)
in terms of SDP (A)!!



Tensors

Definition
A kth order tensor A ∈ Rn1×...×nk is a k-dimensional array of
numbers; we write A = (Ai1,...,ik)i1∈[n1],...,ik∈[nk].

◮ A vector a ∈ Rn is a 1-order tensor

◮ A matrix A ∈ Rn1×n2 is a 2-order tensor
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Tensors

Definition
A kth order tensor A ∈ Rn1×...×nk is a k-dimensional array of
numbers; we write A = (Ai1,...,ik)i1∈[n1],...,ik∈[nk].

◮ A vector a ∈ Rn is a 1-order tensor

◮ A matrix A ∈ Rn1×n2 is a 2-order tensor

◮ For two tensors A,B ∈ Rn1×...×nk we can define an inner
product

〈A,B〉 :=
∑

i1,...,ik

Ai1,...,ik ·Bi1,...,ik

◮ For vector u ∈ Rn and k ∈ N, define the tensor product

u⊗ . . .⊗ u := u⊗k := (ui1 · . . . · uik)i1∈[n],...,ik∈[n]



Tensors

Definition
A kth order tensor A ∈ Rn1×...×nk is a k-dimensional array of
numbers; we write A = (Ai1,...,ik)i1∈[n1],...,ik∈[nk].

◮ A vector a ∈ Rn is a 1-order tensor

◮ A matrix A ∈ Rn1×n2 is a 2-order tensor

◮ For two tensors A,B ∈ Rn1×...×nk we can define an inner
product

〈A,B〉 :=
∑

i1,...,ik

Ai1,...,ik ·Bi1,...,ik

◮ For vector u ∈ Rn and k ∈ N, define the tensor product

u⊗ . . .⊗ u := u⊗k := (ui1 · . . . · uik)i1∈[n],...,ik∈[n]

◮ Fact: For vectors u, v ∈ Rn one has
〈
u⊗k, v⊗k

〉
= 〈u, v〉k.



Tensors

Definition
We call a function f : R → R (real) analytic if it can be
written as a convergent power series f(x) =

∑∞
k=0 akx

k for all
x ∈ R.



Tensors

Definition
We call a function f : R → R (real) analytic if it can be
written as a convergent power series f(x) =

∑∞
k=0 akx

k for all
x ∈ R.

◮ For fixed r, we can define a Hilbert space /
infinite-dimensional vector space of the form

H = {(U0, U1, U2, U3, . . .) | Uk is a k-tensor of size rk}

using the natural inner product.



A vector transformation

Now we can “bend” any vectors to give any analytic function
that we like:

Lemma
Let f(x) =

∑∞
k=0 akx

k and fix a dimension r ∈ N. Then there
is a Hilbert space H and maps F,G : Rr → H so that

〈F (u), G(v)〉 = f(〈u, v〉) ∀u, v ∈ Rr

Moreover the length of the mapped vectors satisfies

‖F (u)‖22 = ‖G(u)‖22 =
∞∑

k=0

|ak| · ‖u‖2k2



A vector transformation (2)

Proof:

◮ The maps are

F (u) := (
√

|ak|·u⊗k)k∈Z≥0
, G(u) := (sign(ak)·

√

|ak|·u⊗k)k∈Z≥0



A vector transformation (2)

Proof:

◮ The maps are

F (u) := (
√

|ak|·u⊗k)k∈Z≥0
, G(u) := (sign(ak)·

√

|ak|·u⊗k)k∈Z≥0

◮ Then for vectors u, v ∈ Rr one has

〈F (u), G(v)〉 =
∑

k≥0

sign(ak) · (
√

|ak|)2 ·
〈
u⊗k, v⊗k

〉

=
∑

k≥0

ak · 〈u, v〉k = f(〈u, v〉).



A vector transformation (2)

Proof:

◮ The maps are

F (u) := (
√

|ak|·u⊗k)k∈Z≥0
, G(u) := (sign(ak)·

√

|ak|·u⊗k)k∈Z≥0

◮ Then for vectors u, v ∈ Rr one has

〈F (u), G(v)〉 =
∑

k≥0

sign(ak) · (
√

|ak|)2 ·
〈
u⊗k, v⊗k

〉

=
∑

k≥0

ak · 〈u, v〉k = f(〈u, v〉).

◮ We can verify that the lengths are

‖F (u)‖22 = ‖G(u)‖22 =
∑

k≥0

(
√

|ak|)2·‖u⊗k‖22 =
∑

k≥0

|ak|·‖u‖2k2

as claimed.



Applying the vector transformation

Lemma
Let r ∈ N. Then there are maps F,G : Rr → H so that

〈F (u), G(v)〉 = sin
(

β
π

2
〈u, v〉

)

where β = 2
π
ln(1 +

√
2) ≈ 1

1.783
. Moreover

‖F (u)‖22 = ‖G(u)‖22 = 1 for all u ∈ Rr with ‖u‖22 = 1.

Note that this is equivalent to

2

π
arcsin(〈F (u), G(v)〉) = β · 〈u, v〉



Applying the vector transformation (2)

Proof.

◮ Consider f(x) = sin(β π
2
x).



Applying the vector transformation (2)

Proof.

◮ Consider f(x) = sin(β π
2
x).

◮ Recall that
sin(x) =

∑

k≥0
(−1)k

(2k+1)!
x2k+1 = x− 1

3!
x3 + 1

5!
x5 − . . .

sinh(x) =
∑

k≥0
1

(2k+1)!
x2k+1



Applying the vector transformation (2)

Proof.

◮ Consider f(x) = sin(β π
2
x).

◮ Recall that
sin(x) =

∑

k≥0
(−1)k

(2k+1)!
x2k+1 = x− 1

3!
x3 + 1

5!
x5 − . . .

sinh(x) =
∑

k≥0
1

(2k+1)!
x2k+1

◮ Then for ‖u‖2 = 1,

‖F (u)‖22 =
∑

k≥0

∣
∣
∣

(−1)k

(2k + 1)!
·
(

β
π

2

)2k+1∣
∣
∣ = sinh

(

β
π

2

)
β:= 2

π
arcsinh(1)
= 1



Applying the vector transformation (2)

Proof.

◮ Consider f(x) = sin(β π
2
x).

◮ Recall that
sin(x) =

∑

k≥0
(−1)k

(2k+1)!
x2k+1 = x− 1

3!
x3 + 1

5!
x5 − . . .

sinh(x) =
∑

k≥0
1

(2k+1)!
x2k+1

◮ Then for ‖u‖2 = 1,

‖F (u)‖22 =
∑

k≥0

∣
∣
∣

(−1)k

(2k + 1)!
·
(

β
π

2

)2k+1∣
∣
∣ = sinh

(

β
π

2

)
β:= 2

π
arcsinh(1)
= 1

◮ One can check that

β =
2

π
arcsinh(1) =

2

π
ln(1 +

√
2) ≈ 1

1.783
.



Applying the vector transformation (3)

◮ Consider A ∈ Rm×n and ui, vj ∈ Rr with
‖ui‖2 = 1 = ‖vj‖2.

◮ Sample a Gaussian g in H and set

xi := sign(〈g, F (ui)〉) and yj := sign(〈g,G(vj)〉)



Applying the vector transformation (3)

◮ Consider A ∈ Rm×n and ui, vj ∈ Rr with
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◮ Sample a Gaussian g in H and set

xi := sign(〈g, F (ui)〉) and yj := sign(〈g,G(vj)〉)

◮ Then
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2

π
arcsin(〈F (ui), G(vi)〉) = β · 〈ui, vi〉
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◮ By linearity of expectation
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