Lecture 15
 Semidefinite programming - Part $1 / 2$

Positive semi-definite matrices

- A matrix $X \in \mathbb{R}^{n \times n}$ is symmetric if $X_{i j}=X_{j i}$ for all $i, j \in[n]$

Positive semi-definite matrices

- A matrix $X \in \mathbb{R}^{n \times n}$ is symmetric if $X_{i j}=X_{j i}$ for all $i, j \in[n]$
- Fact. For a symmetric matrix, all Eigenvalues are real.

Positive semi-definite matrices

- A matrix $X \in \mathbb{R}^{n \times n}$ is symmetric if $X_{i j}=X_{j i}$ for all $i, j \in[n]$
- Fact. For a symmetric matrix, all Eigenvalues are real.

Definition

A symmetric matrix $X \in \mathbb{R}^{n \times n}$ is positive semidefinite if all its Eigenvalues are non-negative.

- We write $X \succeq 0 \Leftrightarrow X$ is PSD.

Positive semi-definite matrices

- A matrix $X \in \mathbb{R}^{n \times n}$ is symmetric if $X_{i j}=X_{j i}$ for all $i, j \in[n]$
- Fact. For a symmetric matrix, all Eigenvalues are real.

Definition

A symmetric matrix $X \in \mathbb{R}^{n \times n}$ is positive semidefinite if all its Eigenvalues are non-negative.

- We write $X \succeq 0 \Leftrightarrow X$ is PSD.
- For $A, B \in \mathbb{R}^{n \times n}$ we write

$$
\langle A, B\rangle:=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} \cdot B_{i j}
$$

as the Frobenius inner product.

Positive semi-definite matrices (2)

Lemma

For a symmetric matrix $X \in \mathbb{R}^{n \times n}$, the following is equivalent a) $a^{T} X a \geq 0 \forall a \in \mathbb{R}^{n}$.
b) X is positive semidefinite.
c) There exists a matrix U so that $X=U U^{T}$.
d) There are $u_{1}, \ldots, u_{n} \in \mathbb{R}^{r}$ with $X_{i j}=\left\langle u_{i}, u_{j}\right\rangle$ for $i, j \in[n]$.

Positive semi-definite matrices (2)

Lemma

For a symmetric matrix $X \in \mathbb{R}^{n \times n}$, the following is equivalent
a) $a^{T} X a \geq 0 \forall a \in \mathbb{R}^{n}$.
b) X is positive semidefinite.
c) There exists a matrix U so that $X=U U^{T}$.
d) There are $u_{1}, \ldots, u_{n} \in \mathbb{R}^{r}$ with $X_{i j}=\left\langle u_{i}, u_{j}\right\rangle$ for $i, j \in[n]$.

Proof:

- Any symmetric real matrix is diagonalizable, that means $X=W D W^{T}=\sum_{i=1}^{n} \lambda_{i} v_{i} v_{i}^{T}$ for diagonal D, orth. W.
Then
- $a) \Rightarrow b) .0 \leq v_{i}^{T} X v_{i}=\lambda_{i}\left\|v_{i}\right\|_{2}^{2}=\lambda_{i}$
- b) $\Rightarrow c) . X=W D W^{T}=U U^{T}$ for $U:=W \sqrt{D}$.
- c) $\Leftrightarrow d)$. Choose u_{i} as i th row of U.
- c) $\Rightarrow a)$. For any $a \in \mathbb{R}^{n}, a^{T} X a=\|U a\|_{2}^{2} \geq 0$.

Positive semi-definite matrices 3

Definition

The cone of PSD matrices is

$$
\begin{aligned}
\mathbb{S}_{\geq 0}^{n} & :=\left\{X \in \mathbb{R}^{n \times n} \mid X \text { symmetric, } X \succeq 0\right\} \\
& =\left\{X \in \mathbb{R}^{n \times n} \mid X \text { symmetric, }\left\langle X, a a^{T}\right\rangle \geq 0 \forall a \in \mathbb{R}^{n}\right\}
\end{aligned}
$$

Positive semi-definite matrices 3

Definition

The cone of PSD matrices is

$$
\begin{aligned}
\mathbb{S}_{\geq 0}^{n} & :=\left\{X \in \mathbb{R}^{n \times n} \mid X \text { symmetric, } X \succeq 0\right\} \\
& =\left\{X \in \mathbb{R}^{n \times n} \mid X \text { symmetric, }\left\langle X, a a^{T}\right\rangle \geq 0 \forall a \in \mathbb{R}^{n}\right\}
\end{aligned}
$$

- Fact: $\mathbb{S}_{\geq 0}^{n}$ is convex.

Positive semi-definite matrices 3

Definition

The cone of PSD matrices is

$$
\begin{aligned}
\mathbb{S}_{\geq 0}^{n} & :=\left\{X \in \mathbb{R}^{n \times n} \mid X \text { symmetric, } X \succeq 0\right\} \\
& =\left\{X \in \mathbb{R}^{n \times n} \mid X \text { symmetric, }\left\langle X, a a^{T}\right\rangle \geq 0 \forall a \in \mathbb{R}^{n}\right\}
\end{aligned}
$$

- Fact: $\mathbb{S}_{\geq 0}^{n}$ is convex.

A semidefinite program

- A semidefinite program is of the form:

$$
\begin{aligned}
\max \langle C, X\rangle & \\
\left\langle A_{k}, X\right\rangle & \leq b_{k} \quad \forall k=1, \ldots, m \\
X & \quad \text { symmetric } \\
X & \succeq 0
\end{aligned}
$$

where $C, A_{1}, \ldots, A_{m} \in \mathbb{R}^{n \times n}$.

A semidefinite program

- A semidefinite program is of the form:

$$
\begin{aligned}
\max \langle C, X\rangle & \\
\left\langle A_{k}, X\right\rangle & \leq b_{k} \quad \forall k=1, \ldots, m \\
X & \quad \text { symmetric } \\
X & \succeq 0
\end{aligned}
$$

where $C, A_{1}, \ldots, A_{m} \in \mathbb{R}^{n \times n}$.
Less well behaved than LPs:

- Issue 1: Strong duality might fail.
- Issue 2: Possibly all solutions are irrational
- Issue 3: Possibly exact solutions have exponential encoding length

Solvability of Semidefinite Programs

Theorem

Given rational input $A_{1}, \ldots, A_{m}, b_{1}, \ldots, b_{m}, C, R$ and $\varepsilon>0$, suppose

$$
S D P=\max \left\{\langle C, X\rangle \mid\left\langle A_{k}, X\right\rangle \leq b_{k} \forall k ; \text { X symmetric } ; X \succeq 0\right\}
$$

is feasible and all feasible points are contained in $B(\mathbf{0}, R)$.
Then one can find a X^{*} with

$$
\left\langle A_{k}, X^{*}\right\rangle \leq b_{k}+\varepsilon, X^{*} \text { symmetric, } X^{*} \succeq 0
$$

such that $\left\langle C, X^{*}\right\rangle \geq S D P-\varepsilon$. The running time is polynomial in the input length, $\log (R)$ and $\log (1 / \varepsilon)$ (in the Turing machine model).

Vector programs

Idea:

- $Y \succeq 0$ holds iff $Y_{i j}=\left\langle v_{i}, v_{j}\right\rangle$ for some vectors v_{i}

Vector programs

Idea:

- $Y \succeq 0$ holds iff $Y_{i j}=\left\langle v_{i}, v_{j}\right\rangle$ for some vectors v_{i}

SDP:

$$
\max \sum_{i, j} C_{i j} Y_{i j}
$$

$$
\sum_{i, j} A_{i j}^{k} \cdot Y_{i j} \leq b_{k} \quad \forall k
$$

$$
Y \quad \text { sym. }
$$

$$
Y \succeq 0
$$

Vector program

$$
\begin{aligned}
\max \sum_{i, j} C_{i j}\left\langle v_{i}, v_{j}\right\rangle & \\
\sum_{i, j} A_{i j}^{k} \cdot\left\langle v_{i}, v_{j}\right\rangle & \leq b_{k} \quad \forall k \\
v_{i} & \in \mathbb{R}^{r} \quad \forall i
\end{aligned}
$$

Observation
The SDP and the vector program are equivalent.

MaxCut

> MaxCut
> Input: An undirected graph $G=(V, E)$
> Goal: Find the cut $S \subseteq V$ that maximizes the number $|\delta(S)|$ of cut edges.

Example:

MaxCut

> MaxCut
> Input: An undirected graph $G=(V, E)$
> Goal: Find the cut $S \subseteq V$ that maximizes the number $|\delta(S)|$ of cut edges.

Example:

MaxCut

> MaxCut
> Input: An undirected graph $G=(V, E)$
> Goal: Find the cut $S \subseteq V$ that maximizes the number $|\delta(S)|$ of cut edges.

Example:

- NP-hard to find a solution that cuts even 94% of what the optimum cuts [Hastad 1997]
- Simple greedy algorithm cuts at least $|E| / 2$ edges.

MaxCut SDP

MaxCut SDP

SDP:
$\begin{aligned} \max & \frac{1}{2} \sum_{\{i, j\} \in E}\left(1-X_{i j}\right) \\ X & \succeq 0 \\ X_{i i} & =1 \quad \forall i \in V \\ X & \in \mathbb{R}^{n \times n}\end{aligned}$

Vector program

$$
\begin{aligned}
\max & \frac{1}{2} \sum_{\{i, j\} \in E}\left(1-\left\langle u_{i}, u_{j}\right\rangle\right) \\
\left\|u_{i}\right\|_{2} & =1 \quad \forall i \in V \\
u_{i} & \in \mathbb{R}^{r}
\end{aligned}
$$

Lemma
If $S^{*} \subseteq V$ is opt. solution for MaxCut, then $S D P \geq\left|\delta\left(S^{*}\right)\right|$.

MaxCut SDP

SDP:
$\max \frac{1}{2} \sum_{\{i, j\} \in E}\left(1-X_{i j}\right)$
$X \succeq 0$
$X_{i i}=1 \quad \forall i \in V$
$X \in \mathbb{R}^{n \times n}$

Vector program

$$
\begin{aligned}
\max & \frac{1}{2} \sum_{\{i, j\} \in E}\left(1-\left\langle u_{i}, u_{j}\right\rangle\right) \\
\left\|u_{i}\right\|_{2} & =1 \quad \forall i \in V \\
u_{i} & \in \mathbb{R}^{r}
\end{aligned}
$$

Lemma

If $S^{*} \subseteq V$ is opt. solution for MaxCut, then $S D P \geq\left|\delta\left(S^{*}\right)\right|$.

Proof:

- We set $r:=1$ and define $u_{i} \in \mathbb{R}^{1}$ by

$$
u_{i}:= \begin{cases}1 & \text { if } i \in S^{*} \\ -1 & \text { if } i \in V \backslash S^{*}\end{cases}
$$

Example MaxCut SDP

- Optimum MaxCut $=4$

Example MaxCut SDP

SDP solution:

- Optimum MaxCut $=4$
- Choose $u_{i} \in \mathbb{R}^{2}$ with $u_{i}:=\left(\cos \left(\frac{4 i \pi}{4}\right), \sin \left(\frac{4 \pi}{5}\right)\right)$ and we get vector program solution of value $5 \cdot \frac{1}{2}\left(1-\cos \left(\frac{4}{5} \pi\right) \approx 4.522\right.$

The Hyperplane Rounding algorithm

(1) Solve the SDP
(2) Take a random standard Gaussian $a \in \mathbb{R}^{r}$
(3) Define $S:=\left\{i \in V \mid\left\langle a, u_{i}\right\rangle \geq 0\right\}$

The Hyperplane Rounding algorithm

(1) Solve the SDP
(2) Take a random standard Gaussian $a \in \mathbb{R}^{r}$
(3) Define $S:=\left\{i \in V \mid\left\langle a, u_{i}\right\rangle \geq 0\right\}$

The Hyperplane Rounding algorithm (2)

Lemma
For $\{i, j\} \in E$ one has $\operatorname{Pr}[\{i, j\} \in \delta(S)]=\frac{1}{\pi} \arccos \left(\left\langle u_{i}, u_{j}\right\rangle\right)$.

The Hyperplane Rounding algorithm (2)

Lemma

$$
\text { For }\{i, j\} \in E \text { one has } \operatorname{Pr}[\{i, j\} \in \delta(S)]=\frac{1}{\pi} \arccos \left(\left\langle u_{i}, u_{j}\right\rangle\right) \text {. }
$$

Proof.

- The angle between vectors is exactly $\theta:=\arccos \left(\left\langle u_{i}, u_{j}\right\rangle\right)$

$$
\left(\text { as }\left\langle u_{i}, u_{j}\right\rangle=\cos (\theta)\right) \text {. }
$$

- Only projection of a into $U:=\operatorname{span}\left\{u_{i}, u_{j}\right\}$ matters.

The Hyperplane Rounding algorithm (2)

Lemma

```
For \(\{i, j\} \in E\) one has \(\operatorname{Pr}[\{i, j\} \in \delta(S)]=\frac{1}{\pi} \arccos \left(\left\langle u_{i}, u_{j}\right\rangle\right)\).
```


Proof.

- The angle between vectors is exactly $\theta:=\arccos \left(\left\langle u_{i}, u_{j}\right\rangle\right)$ (as $\left.\left\langle u_{i}, u_{j}\right\rangle=\cos (\theta)\right)$.
- Only projection of a into $U:=\operatorname{span}\left\{u_{i}, u_{j}\right\}$ matters.
- Then $\operatorname{Pr}\left[u_{i}, u_{j}\right.$ separated $]=\frac{2 \theta}{2 \pi}$.

The Hyperplane Rounding algorithm (3)

Theorem
One has $\mathbb{E}[|\delta(S)|] \geq 0.878 \cdot S D P \geq 0.878 \cdot\left|\delta\left(S^{*}\right)\right|$.

The Hyperplane Rounding algorithm (3)

Theorem
One has $\mathbb{E}[|\delta(S)|] \geq 0.878 \cdot S D P \geq 0.878 \cdot\left|\delta\left(S^{*}\right)\right|$.

- By linearity of expectation it suffices to show that every edge $\{i, j\} \in E$ one has

$$
\operatorname{Pr}[\{i, j\} \in \delta(S)] \geq \frac{1}{2}\left(1-\left\langle u_{i}, u_{j}\right\rangle\right)=\begin{gathered}
\text { contribution } \\
\text { to SDP obj.fct }
\end{gathered}
$$

The Hyperplane Rounding algorithm (3)

Theorem

One has $\mathbb{E}[|\delta(S)|] \geq 0.878 \cdot S D P \geq 0.878 \cdot\left|\delta\left(S^{*}\right)\right|$.

- By linearity of expectation it suffices to show that every edge $\{i, j\} \in E$ one has
$\operatorname{Pr}[\{i, j\} \in \delta(S)] \geq \frac{1}{2}\left(1-\left\langle u_{i}, u_{j}\right\rangle\right)=\begin{gathered}\text { contribution } \\ \text { to SDP obj.fct }\end{gathered}$
- Set $t:=\left\langle u_{i}, u_{j}\right\rangle$ and $\frac{\frac{1}{\pi} \arccos (t)}{\frac{1}{2}(1-t)} \geq 0.878 \quad \forall t \in[-1,1]$

Lecture 16
 Semidefinite programming - Part $2 / 2$

Grothendieck's Inequality

For a matrix $A \in \mathbb{R}^{m \times n}$ define
$\operatorname{INT}(A):=\max \left\{\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j} x_{i} y_{j} \mid x \in\{-1,1\}^{m}, y \in\{-1,1\}^{n}\right\}$
$S D P(A):=\max \left\{\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j}\left\langle u_{i}, v_{j}\right\rangle \mid\left\|u_{i}\right\|_{2}=\left\|v_{j}\right\|_{2}=1\right\}$

Grothendieck's Inequality

For a matrix $A \in \mathbb{R}^{m \times n}$ define

$$
\begin{aligned}
& I N T(A):=\max \left\{\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j} x_{i} y_{j} \mid x \in\{-1,1\}^{m}, y \in\{-1,1\}^{n}\right\} \\
& S D P(A):=\max \left\{\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j}\left\langle u_{i}, v_{j}\right\rangle \mid\left\|u_{i}\right\|_{2}=\left\|v_{j}\right\|_{2}=1\right\}
\end{aligned}
$$

Theorem (Grothendieck's Inequality)

For any matrix $A \in \mathbb{R}^{m \times n}$ one has

$$
I N T(A) \leq S D P(A) \leq C_{G} \cdot I N T(A)
$$

where $C_{G} \leq 1.783$.

- Grothendieck proved that C_{G} is indeed a constant
- [Krivine 1979] proved that $C_{G} \leq 1.783$

Hyperplane rounding

Random experiment:
(1) Given vectors $u_{i}, v_{j} \in \mathbb{R}^{r}$.
(2) Sample a Gaussian g in \mathbb{R}^{r} and set

$$
x_{i}:=\operatorname{sign}\left(\left\langle u_{i}, g\right\rangle\right) \text { and } y_{j}:=\operatorname{sign}\left(\left\langle v_{j}, g\right\rangle\right)
$$

- Recall that

$$
\operatorname{sign}(z):= \begin{cases}1 & \text { if } z \geq 0 \\ -1 & \text { if } z<0\end{cases}
$$

Hyperplane rounding

Random experiment:
(1) Given vectors $u_{i}, v_{j} \in \mathbb{R}^{r}$.
(2) Sample a Gaussian g in \mathbb{R}^{r} and set

$$
x_{i}:=\operatorname{sign}\left(\left\langle u_{i}, g\right\rangle\right) \text { and } y_{j}:=\operatorname{sign}\left(\left\langle v_{j}, g\right\rangle\right)
$$

- Recall that

$$
\operatorname{sign}(z):= \begin{cases}1 & \text { if } z \geq 0 \\ -1 & \text { if } z<0\end{cases}
$$

Hyperplane rounding

Random experiment:
(1) Given vectors $u_{i}, v_{j} \in \mathbb{R}^{r}$.
(2) Sample a Gaussian g in \mathbb{R}^{r} and set

$$
x_{i}:=\operatorname{sign}\left(\left\langle u_{i}, g\right\rangle\right) \text { and } y_{j}:=\operatorname{sign}\left(\left\langle v_{j}, g\right\rangle\right)
$$

- Recall that

$$
\operatorname{sign}(z):= \begin{cases}1 & \text { if } z \geq 0 \\ -1 & \text { if } z<0\end{cases}
$$

- Question: How does $\mathbb{E}\left[A_{i j} x_{i} y_{j}\right]$ relate to $A_{i j}\left\langle u_{i}, v_{j}\right\rangle$?

Hyperplane rounding (2)

Lemma
Let $u, v \in \mathbb{R}^{r}$ with $\|u\|_{2}=\|v\|_{2}=1$. Then

$$
\underset{g \text { Gaussian }}{\mathbb{E}}[\operatorname{sign}(\langle g, u\rangle) \cdot \operatorname{sign}(\langle g, v\rangle)]=\frac{2}{\pi} \arcsin (\langle u, v\rangle)
$$

- In words: Probability that u, v end up on the same side of a hyperplane is exactly $\frac{2}{\pi} \arcsin (\langle u, v\rangle)$

Hyperplane rounding (2)

Lemma
Let $u, v \in \mathbb{R}^{r}$ with $\|u\|_{2}=\|v\|_{2}=1$. Then

$$
\underset{g}{\mathbb{E}} \underset{\text { Gaussian }}{\mathbb{E}}[\operatorname{sign}(\langle g, u\rangle) \cdot \operatorname{sign}(\langle g, v\rangle)]=\frac{2}{\pi} \arcsin (\langle u, v\rangle)
$$

- In words: Probability that u, v end up on the same side of a hyperplane is exactly $\frac{2}{\pi} \arcsin (\langle u, v\rangle)$
- Set $\cos (\theta)=\langle u, v\rangle$. Then $\operatorname{Pr}[u, v$ separated $]=\frac{\theta}{\pi}$

Hyperplane rounding (2)

Lemma

Let $u, v \in \mathbb{R}^{r}$ with $\|u\|_{2}=\|v\|_{2}=1$. Then

$$
\underset{g}{\mathbb{E}} \underset{\operatorname{Eaussian}}{ }[\operatorname{sign}(\langle g, u\rangle) \cdot \operatorname{sign}(\langle g, v\rangle)]=\frac{2}{\pi} \arcsin (\langle u, v\rangle)
$$

- In words: Probability that u, v end up on the same side of a hyperplane is exactly $\frac{2}{\pi} \arcsin (\langle u, v\rangle)$
- Set $\cos (\theta)=\langle u, v\rangle$. Then $\operatorname{Pr}[u, v$ separated $]=\frac{\theta}{\pi}$
- $\mathbb{E}[\cdots]=1-2 \operatorname{Pr}[u, v$ separated $]=1-\frac{2 \theta}{\pi}=\frac{2}{\pi} \arcsin (\langle u, v\rangle)$
- Recall: $\arccos (t)=\frac{\pi}{2}-\arcsin (t)$

Hyperplane rounding (3)

Lemma
Let $u, v \in \mathbb{R}^{r}$ with $\|u\|_{2}=\|v\|_{2}=1$. Then
$\underset{g \text { Gaussian }}{\mathbb{E}}[\operatorname{sign}(\langle g, u\rangle) \cdot \operatorname{sign}(\langle g, v\rangle)]=\frac{2}{\pi} \arcsin (\langle u, v\rangle)$

For $t \geq 0, \frac{2}{\pi} t \leq \frac{2}{\pi} \arcsin (t) \leq t$

Preliminary conclusion

We can conclude that:

- For $A_{i j} \geq 0$ and $\left\langle u_{i}, u_{j}\right\rangle \geq 0$ one has $\mathbb{E}\left[A_{i j} x_{i} y_{j}\right] \geq \frac{2}{\pi} \cdot A_{i j}\left\langle u_{i}, v_{j}\right\rangle$
- For $A_{i j}<0$ and $\left\langle u_{i}, u_{j}\right\rangle \geq 0$ one has $\mathbb{E}\left[A_{i j} x_{i} y_{j}\right] \geq A_{i j}\left\langle u_{i}, v_{j}\right\rangle$

Preliminary conclusion

We can conclude that:

- For $A_{i j} \geq 0$ and $\left\langle u_{i}, u_{j}\right\rangle \geq 0$ one has $\mathbb{E}\left[A_{i j} x_{i} y_{j}\right] \geq \frac{2}{\pi} \cdot A_{i j}\left\langle u_{i}, v_{j}\right\rangle$
- For $A_{i j}<0$ and $\left\langle u_{i}, u_{j}\right\rangle \geq 0$ one has $\mathbb{E}\left[A_{i j} x_{i} y_{j}\right] \geq A_{i j}\left\langle u_{i}, v_{j}\right\rangle$
Problem: Due to the non-linearity, this does bound $\operatorname{INT}(A)$ in terms of $S D P(A)!!$

Tensors

Definition

A k th order tensor $A \in \mathbb{R}^{n_{1} \times \ldots \times n_{k}}$ is a k-dimensional array of numbers; we write $A=\left(A_{i_{1}, \ldots, i_{k}}\right)_{i_{1} \in\left[n_{1}\right], \ldots, i_{k} \in\left[n_{k}\right]}$.

- A vector $a \in \mathbb{R}^{n}$ is a 1 -order tensor
- A matrix $A \in \mathbb{R}^{n_{1} \times n_{2}}$ is a 2 -order tensor

Tensors

Definition

A k th order tensor $A \in \mathbb{R}^{n_{1} \times \ldots \times n_{k}}$ is a k-dimensional array of numbers; we write $A=\left(A_{i_{1}, \ldots, i_{k}}\right)_{i_{1} \in\left[n_{1}\right], \ldots, i_{k} \in\left[n_{k}\right]}$.

- A vector $a \in \mathbb{R}^{n}$ is a 1 -order tensor
- A matrix $A \in \mathbb{R}^{n_{1} \times n_{2}}$ is a 2 -order tensor
- For two tensors $A, B \in \mathbb{R}^{n_{1} \times \ldots \times n_{k}}$ we can define an inner product

$$
\langle A, B\rangle:=\sum_{i_{1}, \ldots, i_{k}} A_{i_{1}, \ldots, i_{k}} \cdot B_{i_{1}, \ldots, i_{k}}
$$

Tensors

Definition

A k th order tensor $A \in \mathbb{R}^{n_{1} \times \ldots \times n_{k}}$ is a k-dimensional array of numbers; we write $A=\left(A_{i_{1}, \ldots, i_{k}}\right)_{i_{1} \in\left[n_{1}\right], \ldots, i_{k} \in\left[n_{k}\right]}$.

- A vector $a \in \mathbb{R}^{n}$ is a 1 -order tensor
- A matrix $A \in \mathbb{R}^{n_{1} \times n_{2}}$ is a 2 -order tensor
- For two tensors $A, B \in \mathbb{R}^{n_{1} \times \ldots \times n_{k}}$ we can define an inner product

$$
\langle A, B\rangle:=\sum_{i_{1}, \ldots, i_{k}} A_{i_{1}, \ldots, i_{k}} \cdot B_{i_{1}, \ldots, i_{k}}
$$

- For vector $u \in \mathbb{R}^{n}$ and $k \in \mathbb{N}$, define the tensor product

$$
u \otimes \ldots \otimes u:=u^{\otimes k}:=\left(u_{i_{1}} \cdot \ldots \cdot u_{i_{k}}\right)_{i_{1} \in[n], \ldots, i_{k} \in[n]}
$$

Tensors

Definition

A k th order tensor $A \in \mathbb{R}^{n_{1} \times \ldots \times n_{k}}$ is a k-dimensional array of numbers; we write $A=\left(A_{i_{1}, \ldots, i_{k}}\right)_{i_{1} \in\left[n_{1}\right], \ldots, i_{k} \in\left[n_{k}\right]}$.

- A vector $a \in \mathbb{R}^{n}$ is a 1 -order tensor
- A matrix $A \in \mathbb{R}^{n_{1} \times n_{2}}$ is a 2 -order tensor
- For two tensors $A, B \in \mathbb{R}^{n_{1} \times \ldots \times n_{k}}$ we can define an inner product

$$
\langle A, B\rangle:=\sum_{i_{1}, \ldots, i_{k}} A_{i_{1}, \ldots, i_{k}} \cdot B_{i_{1}, \ldots, i_{k}}
$$

- For vector $u \in \mathbb{R}^{n}$ and $k \in \mathbb{N}$, define the tensor product

$$
u \otimes \ldots \otimes u:=u^{\otimes k}:=\left(u_{i_{1}} \cdot \ldots \cdot u_{i_{k}}\right)_{i_{1} \in[n], \ldots, i_{k} \in[n]}
$$

- Fact: For vectors $u, v \in \mathbb{R}^{n}$ one has $\left\langle u^{\otimes k}, v^{\otimes k}\right\rangle=\langle u, v\rangle^{k}$.

Tensors

Definition

We call a function $f: \mathbb{R} \rightarrow \mathbb{R}$ (real) analytic if it can be written as a convergent power series $f(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$ for all $x \in \mathbb{R}$.

Tensors

Definition

We call a function $f: \mathbb{R} \rightarrow \mathbb{R}$ (real) analytic if it can be written as a convergent power series $f(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$ for all $x \in \mathbb{R}$.

- For fixed r, we can define a Hilbert space / infinite-dimensional vector space of the form

$$
H=\left\{\left(U^{0}, U^{1}, U^{2}, U^{3}, \ldots\right) \mid U^{k} \text { is a } k \text {-tensor of size } r^{k}\right\}
$$

using the natural inner product.

A vector transformation

Now we can "bend" any vectors to give any analytic function that we like:

Lemma

Let $f(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$ and fix a dimension $r \in \mathbb{N}$. Then there is a Hilbert space H and maps $F, G: \mathbb{R}^{r} \rightarrow H$ so that

$$
\langle F(u), G(v)\rangle=f(\langle u, v\rangle) \quad \forall u, v \in \mathbb{R}^{r}
$$

Moreover the length of the mapped vectors satisfies

$$
\|F(u)\|_{2}^{2}=\|G(u)\|_{2}^{2}=\sum_{k=0}^{\infty}\left|a_{k}\right| \cdot\|u\|_{2}^{2 k}
$$

A vector transformation (2)

Proof:

- The maps are

$$
F(u):=\left(\sqrt{\left|a_{k}\right|} \cdot u^{\otimes k}\right)_{k \in \mathbb{Z} \geq 0}, \quad G(u):=\left(\operatorname{sign}\left(a_{k}\right) \cdot \sqrt{\left|a_{k}\right|} \cdot u^{\otimes k}\right)_{k \in \mathbb{Z} \geq 0}
$$

A vector transformation (2)

Proof:

- The maps are
$F(u):=\left(\sqrt{\left|a_{k}\right|} \cdot u^{\otimes k}\right)_{k \in \mathbb{Z}_{\geq 0}}, \quad G(u):=\left(\operatorname{sign}\left(a_{k}\right) \cdot \sqrt{\left|a_{k}\right|} \cdot u^{\otimes k}\right)_{k \in \mathbb{Z} \geq 0}$
- Then for vectors $u, v \in \mathbb{R}^{r}$ one has

$$
\begin{aligned}
\langle F(u), G(v)\rangle & =\sum_{k \geq 0} \operatorname{sign}\left(a_{k}\right) \cdot\left(\sqrt{\left|a_{k}\right|}\right)^{2} \cdot\left\langle u^{\otimes k}, v^{\otimes k}\right\rangle \\
& =\sum_{k \geq 0} a_{k} \cdot\langle u, v\rangle^{k}=f(\langle u, v\rangle)
\end{aligned}
$$

A vector transformation (2)

Proof:

- The maps are
$F(u):=\left(\sqrt{\left|a_{k}\right|} \cdot u^{\otimes k}\right)_{k \in \mathbb{Z}_{\geq 0}}, \quad G(u):=\left(\operatorname{sign}\left(a_{k}\right) \cdot \sqrt{\left|a_{k}\right|} \cdot u^{\otimes k}\right)_{k \in \mathbb{Z} \geq 0}$
- Then for vectors $u, v \in \mathbb{R}^{r}$ one has

$$
\begin{aligned}
\langle F(u), G(v)\rangle & =\sum_{k \geq 0} \operatorname{sign}\left(a_{k}\right) \cdot\left(\sqrt{\left|a_{k}\right|}\right)^{2} \cdot\left\langle u^{\otimes k}, v^{\otimes k}\right\rangle \\
& =\sum_{k \geq 0} a_{k} \cdot\langle u, v\rangle^{k}=f(\langle u, v\rangle)
\end{aligned}
$$

- We can verify that the lengths are

$$
\|F(u)\|_{2}^{2}=\|G(u)\|_{2}^{2}=\sum_{k \geq 0}\left(\sqrt{\left|a_{k}\right|}\right)^{2} \cdot\left\|u^{\otimes k}\right\|_{2}^{2}=\sum_{k \geq 0}\left|a_{k}\right| \cdot\|u\|_{2}^{2 k}
$$

as claimed.

Applying the vector transformation

Lemma

Let $r \in \mathbb{N}$. Then there are maps $F, G: \mathbb{R}^{r} \rightarrow H$ so that

$$
\langle F(u), G(v)\rangle=\sin \left(\beta \frac{\pi}{2}\langle u, v\rangle\right)
$$

where $\beta=\frac{2}{\pi} \ln (1+\sqrt{2}) \approx \frac{1}{1.783}$. Moreover
$\|F(u)\|_{2}^{2}=\|G(u)\|_{2}^{2}=1$ for all $u \in \mathbb{R}^{r}$ with $\|u\|_{2}^{2}=1$.
Note that this is equivalent to

$$
\frac{2}{\pi} \arcsin (\langle F(u), G(v)\rangle)=\beta \cdot\langle u, v\rangle
$$

Applying the vector transformation (2)

Proof.

- Consider $f(x)=\sin \left(\beta \frac{\pi}{2} x\right)$.

Applying the vector transformation (2)

Proof.

- Consider $f(x)=\sin \left(\beta \frac{\pi}{2} x\right)$.
- Recall that

$$
\begin{aligned}
& \sin (x)=\sum_{k \geq 0} \frac{(-1)^{k}}{(2 k+1)!} x^{2 k+1}=x-\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5}-\ldots \\
& \sinh (x)=\sum_{k \geq 0}^{(2 k+1)!} x^{2 k+1}
\end{aligned}
$$

Applying the vector transformation (2)

Proof.

- Consider $f(x)=\sin \left(\beta \frac{\pi}{2} x\right)$.
- Recall that

$$
\begin{aligned}
& \sin (x)=\sum_{k \geq 0} \frac{(-1)^{k}}{(2 k+1)!} x^{2 k+1}=x-\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5}-\ldots \\
& \sinh (x)=\sum_{k \geq 0} \frac{1}{(2 k+1)!} x^{2 k+1}
\end{aligned}
$$

- Then for $\|u\|_{2}=1$,

$$
\|F(u)\|_{2}^{2}=\sum_{k \geq 0}\left|\frac{(-1)^{k}}{(2 k+1)!} \cdot\left(\beta \frac{\pi}{2}\right)^{2 k+1}\right|=\sinh \left(\beta \frac{\pi}{2}\right) \stackrel{\beta:=\frac{2}{\pi} \operatorname{arcsinh}(1)}{=} 1
$$

Applying the vector transformation (2)

Proof.

- Consider $f(x)=\sin \left(\beta \frac{\pi}{2} x\right)$.
- Recall that

$$
\begin{aligned}
& \sin (x)=\sum_{k \geq 0} \frac{(-1)^{k}}{(2 k+1)!} x^{2 k+1}=x-\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5}-\ldots \\
& \sinh (x)=\sum_{k \geq 0} \frac{1}{(2 k+1)!} x^{2 k+1}
\end{aligned}
$$

- Then for $\|u\|_{2}=1$,

$$
\|F(u)\|_{2}^{2}=\sum_{k \geq 0}\left|\frac{(-1)^{k}}{(2 k+1)!} \cdot\left(\beta \frac{\pi}{2}\right)^{2 k+1}\right|=\sinh \left(\beta \frac{\pi}{2}\right) \stackrel{\beta:=\frac{2}{\pi} \operatorname{arcsinh}(1)}{=} 1
$$

- One can check that

$$
\beta=\frac{2}{\pi} \operatorname{arcsinh}(1)=\frac{2}{\pi} \ln (1+\sqrt{2}) \approx \frac{1}{1.783} .
$$

Applying the vector transformation (3)

- Consider $A \in \mathbb{R}^{m \times n}$ and $u_{i}, v_{j} \in \mathbb{R}^{r}$ with

$$
\left\|u_{i}\right\|_{2}=1=\left\|v_{j}\right\|_{2} .
$$

- Sample a Gaussian g in H and set

$$
x_{i}:=\operatorname{sign}\left(\left\langle g, F\left(u_{i}\right)\right\rangle\right) \quad \text { and } \quad y_{j}:=\operatorname{sign}\left(\left\langle g, G\left(v_{j}\right)\right\rangle\right)
$$

Applying the vector transformation (3)

- Consider $A \in \mathbb{R}^{m \times n}$ and $u_{i}, v_{j} \in \mathbb{R}^{r}$ with

$$
\left\|u_{i}\right\|_{2}=1=\left\|v_{j}\right\|_{2}
$$

- Sample a Gaussian g in H and set

$$
x_{i}:=\operatorname{sign}\left(\left\langle g, F\left(u_{i}\right)\right\rangle\right) \quad \text { and } \quad y_{j}:=\operatorname{sign}\left(\left\langle g, G\left(v_{j}\right)\right\rangle\right)
$$

- Then

$$
\mathbb{E}\left[x_{i} y_{j}\right]=\frac{2}{\pi} \arcsin \left(\left\langle F\left(u_{i}\right), G\left(v_{i}\right)\right\rangle\right)=\beta \cdot\left\langle u_{i}, v_{i}\right\rangle
$$

Applying the vector transformation (3)

- Consider $A \in \mathbb{R}^{m \times n}$ and $u_{i}, v_{j} \in \mathbb{R}^{r}$ with

$$
\left\|u_{i}\right\|_{2}=1=\left\|v_{j}\right\|_{2}
$$

- Sample a Gaussian g in H and set

$$
x_{i}:=\operatorname{sign}\left(\left\langle g, F\left(u_{i}\right)\right\rangle\right) \quad \text { and } \quad y_{j}:=\operatorname{sign}\left(\left\langle g, G\left(v_{j}\right)\right\rangle\right)
$$

- Then

$$
\mathbb{E}\left[x_{i} y_{j}\right]=\frac{2}{\pi} \arcsin \left(\left\langle F\left(u_{i}\right), G\left(v_{i}\right)\right\rangle\right)=\beta \cdot\left\langle u_{i}, v_{i}\right\rangle
$$

- By linearity of expectation

$$
\mathbb{E}\left[\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j} x_{i} y_{j}\right]=\underbrace{\beta}_{\approx \frac{1}{1.783}} \sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j}\left\langle u_{i}, v_{j}\right\rangle
$$

