Lecture 15

Semidefinite programming — Part 1/2

• A matrix $X \in \mathbb{R}^{n \times n}$ is symmetric if $X_{ij} = X_{ji}$ for all $i, j \in [n]$

- ► A matrix $X \in \mathbb{R}^{n \times n}$ is symmetric if $X_{ij} = X_{ji}$ for all $i, j \in [n]$
- ▶ Fact. For a symmetric matrix, all Eigenvalues are real.

- ► A matrix $X \in \mathbb{R}^{n \times n}$ is symmetric if $X_{ij} = X_{ji}$ for all $i, j \in [n]$
- **Fact.** For a symmetric matrix, all Eigenvalues are real.

Definition

A symmetric matrix $X \in \mathbb{R}^{n \times n}$ is **positive semidefinite** if all its Eigenvalues are non-negative.

• We write $X \succeq 0 \Leftrightarrow X$ is PSD.

- ► A matrix $X \in \mathbb{R}^{n \times n}$ is symmetric if $X_{ij} = X_{ji}$ for all $i, j \in [n]$
- **Fact.** For a symmetric matrix, all Eigenvalues are real.

Definition

A symmetric matrix $X \in \mathbb{R}^{n \times n}$ is **positive semidefinite** if all its Eigenvalues are non-negative.

- We write $X \succeq 0 \Leftrightarrow X$ is PSD.
- For $A, B \in \mathbb{R}^{n \times n}$ we write

$$\langle A, B \rangle := \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij} \cdot B_{ij}$$

as the Frobenius inner product.

Lemma

For a symmetric matrix $X \in \mathbb{R}^{n \times n}$, the following is equivalent

- a) $a^T X a \ge 0 \ \forall a \in \mathbb{R}^n$.
- b) X is positive semidefinite.
- c) There exists a matrix U so that $X = UU^T$.
- d) There are $u_1, \ldots, u_n \in \mathbb{R}^r$ with $X_{ij} = \langle u_i, u_j \rangle$ for $i, j \in [n]$.

Lemma

For a symmetric matrix $X \in \mathbb{R}^{n \times n}$, the following is equivalent

- a) $a^T X a \ge 0 \ \forall a \in \mathbb{R}^n$.
- b) X is positive semidefinite.
- c) There exists a matrix U so that $X = UU^T$.
- d) There are $u_1, \ldots, u_n \in \mathbb{R}^r$ with $X_{ij} = \langle u_i, u_j \rangle$ for $i, j \in [n]$.

Proof:

• Any symmetric real matrix is **diagonalizable**, that means $X = WDW^T = \sum_{i=1}^n \lambda_i v_i v_i^T$ for diagonal D, orth. W.

Then

- ► a) ⇒ b). $0 \le v_i^T X v_i = \lambda_i ||v_i||_2^2 = \lambda_i$
- ► b) ⇒ c). $X = WDW^T = UU^T$ for $U := W\sqrt{D}$.
- ▶ c) \Leftrightarrow d). Choose u_i as *i*th row of U.
- ▶ c) ⇒ a). For any $a \in \mathbb{R}^n$, $a^T X a = ||Ua||_2^2 \ge 0$.

Definition

The cone of PSD matrices is

$$\begin{split} \mathbb{S}_{\geq 0}^{n} &:= \{ X \in \mathbb{R}^{n \times n} \mid X \text{ symmetric}, X \succeq 0 \} \\ &= \{ X \in \mathbb{R}^{n \times n} \mid X \text{ symmetric}, \left\langle X, aa^{T} \right\rangle \geq 0 \; \forall a \in \mathbb{R}^{n} \} \end{split}$$

Definition

The cone of PSD matrices is

$$\begin{split} \mathbb{S}_{\geq 0}^{n} &:= \{ X \in \mathbb{R}^{n \times n} \mid X \text{ symmetric}, X \succeq 0 \} \\ &= \{ X \in \mathbb{R}^{n \times n} \mid X \text{ symmetric}, \left\langle X, aa^{T} \right\rangle \geq 0 \; \forall a \in \mathbb{R}^{n} \} \end{split}$$

• Fact: $\mathbb{S}_{\geq 0}^n$ is convex.

Definition

The cone of PSD matrices is

$$\begin{split} \mathbb{S}_{\geq 0}^{n} &:= \{ X \in \mathbb{R}^{n \times n} \mid X \text{ symmetric}, X \succeq 0 \} \\ &= \{ X \in \mathbb{R}^{n \times n} \mid X \text{ symmetric}, \left\langle X, aa^{T} \right\rangle \geq 0 \; \forall a \in \mathbb{R}^{n} \} \end{split}$$

• Fact:
$$\mathbb{S}_{>0}^n$$
 is convex.

A semidefinite program

• A semidefinite program is of the form:

$$\max \langle C, X \rangle$$

$$\langle A_k, X \rangle \leq b_k \quad \forall k = 1, \dots, m$$

$$X \qquad \text{symmetric}$$

$$X \geq 0$$

where $C, A_1, \ldots, A_m \in \mathbb{R}^{n \times n}$.

A semidefinite program

• A **semidefinite program** is of the form:

$$\max \langle C, X \rangle$$

$$\langle A_k, X \rangle \leq b_k \quad \forall k = 1, \dots, m$$

$$X \qquad \text{symmetric}$$

$$X \succeq 0$$

where $C, A_1, \ldots, A_m \in \mathbb{R}^{n \times n}$.

Less well behaved than LPs:

- **Issue 1:** Strong duality might fail.
- ► Issue 2: Possibly all solutions are irrational
- ► Issue 3: Possibly exact solutions have exponential encoding length

Solvability of Semidefinite Programs

Theorem

Given rational input $A_1, \ldots, A_m, b_1, \ldots, b_m, C, R$ and $\varepsilon > 0$, suppose

 $SDP = \max\{\langle C, X \rangle \mid \langle A_k, X \rangle \leq b_k \ \forall k; \ X symmetric; \ X \succeq 0\}$

is feasible and all feasible points are contained in $B(\mathbf{0}, R)$. Then one can find a X^* with

 $\langle A_k, X^* \rangle \leq b_k + \varepsilon, X^*$ symmetric, $X^* \succeq 0$

such that $\langle C, X^* \rangle \geq SDP - \varepsilon$. The running time is polynomial in the input length, $\log(R)$ and $\log(1/\varepsilon)$ (in the Turing machine model).

Vector programs

Idea:

• $Y \succeq 0$ holds iff $Y_{ij} = \langle v_i, v_j \rangle$ for some vectors v_i

Vector programs

Idea:

• $Y \succeq 0$ holds iff $Y_{ij} = \langle v_i, v_j \rangle$ for some vectors v_i

SDP:Vector program $\max \sum_{i,j} C_{ij} Y_{ij}$ $\max \sum_{i,j} C_{ij} \langle v_i, v_j \rangle$ $\sum_{i,j} A_{ij}^k \cdot Y_{ij} \leq b_k \quad \forall k$ $\max \sum_{i,j} C_{ij} \langle v_i, v_j \rangle$ $\sum_{i,j} A_{ij}^k \cdot \langle v_i, v_j \rangle \leq b_k \quad \forall k$ $\sum_{i,j} A_{ij}^k \cdot \langle v_i, v_j \rangle \leq b_k \quad \forall k$ $Y \quad \text{sym.}$ $v_i \in \mathbb{R}^r \quad \forall i$

Observation

The SDP and the vector program are equivalent.

MaxCut

MAXCUT **Input:** An undirected graph G = (V, E) **Goal:** Find the cut $S \subseteq V$ that maximizes the number $|\delta(S)|$ of cut edges.

Example:

MaxCut

MAXCUT **Input:** An undirected graph G = (V, E) **Goal:** Find the cut $S \subseteq V$ that maximizes the number $|\delta(S)|$ of cut edges.

Example:

MaxCut

MAXCUT **Input:** An undirected graph G = (V, E) **Goal:** Find the cut $S \subseteq V$ that maximizes the number $|\delta(S)|$ of cut edges.

Example:

- ▶ NP-hard to find a solution that cuts even 94% of what the optimum cuts [Hastad 1997]
- Simple greedy algorithm cuts at least |E|/2 edges.

MaxCut SDP

SDP: $\max \quad \frac{1}{2} \sum_{\{i,j\} \in E} (1 - X_{ij}) \quad \max$ $X \succeq 0$ $X_{ii} = 1 \quad \forall i \in V$ $X \in \mathbb{R}^{n \times n}$ $||u_i||_2$ u_i

Vector program

$$\max \qquad \frac{1}{2} \sum_{\{i,j\} \in E} (1 - \langle u_i, u_j \rangle)$$
$$\|u_i\|_2 = 1 \quad \forall i \in V$$
$$u_i \in \mathbb{R}^r$$

MaxCut SDP

MaxCut SDP

Proof:

• We set r := 1 and define $u_i \in \mathbb{R}^1$ by $u_i := \begin{cases} 1 & \text{if } i \in S^* \\ -1 & \text{if } i \in V \setminus S^* \end{cases}$

Example MaxCut SDP

• Optimum MaxCut = 4

Example MaxCut SDP

- Optimum MaxCut = 4
- ► Choose $u_i \in \mathbb{R}^2$ with $u_i := (\cos(\frac{4i\pi}{4}), \sin(\frac{4\pi}{5}))$ and we get vector program solution of value $5 \cdot \frac{1}{2}(1 \cos(\frac{4}{5}\pi) \approx 4.522)$

The Hyperplane Rounding algorithm

(1) Solve the SDP

(2) Take a random standard Gaussian $a \in \mathbb{R}^r$

(3) Define
$$S := \{i \in V \mid \langle a, u_i \rangle \ge 0\}$$

The Hyperplane Rounding algorithm

(1) Solve the SDP

- (2) Take a random standard Gaussian $a \in \mathbb{R}^r$
- (3) Define $S := \{i \in V \mid \langle a, u_i \rangle \ge 0\}$

The Hyperplane Rounding algorithm (2)

Lemma

For
$$\{i, j\} \in E$$
 one has $\Pr[\{i, j\} \in \delta(S)] = \frac{1}{\pi} \arccos(\langle u_i, u_j \rangle).$

The Hyperplane Rounding algorithm (2)

Lemma

For
$$\{i, j\} \in E$$
 one has $\Pr[\{i, j\} \in \delta(S)] = \frac{1}{\pi} \arccos(\langle u_i, u_j \rangle).$

Proof.

- The angle between vectors is exactly $\theta := \arccos(\langle u_i, u_j \rangle)$ (as $\langle u_i, u_j \rangle = \cos(\theta)$).
- Only projection of a into $U := \operatorname{span}\{u_i, u_j\}$ matters.

The Hyperplane Rounding algorithm (2)

Lemma

For
$$\{i, j\} \in E$$
 one has $\Pr[\{i, j\} \in \delta(S)] = \frac{1}{\pi} \arccos(\langle u_i, u_j \rangle).$

Proof.

- The angle between vectors is exactly $\theta := \arccos(\langle u_i, u_j \rangle)$ (as $\langle u_i, u_j \rangle = \cos(\theta)$).
- Only projection of a into $U := \operatorname{span}\{u_i, u_j\}$ matters.
- Then $\Pr[u_i, u_j \text{ separated}] = \frac{2\theta}{2\pi}$.

The Hyperplane Rounding algorithm (3)

Theorem

 $One \ has \ \mathbb{E}[|\delta(S)|] \geq 0.878 \cdot SDP \geq 0.878 \cdot |\delta(S^*)|.$

The Hyperplane Rounding algorithm (3)

Theorem

 $One \ has \ \mathbb{E}[|\delta(S)|] \geq 0.878 \cdot SDP \geq 0.878 \cdot |\delta(S^*)|.$

► By linearity of expectation it suffices to show that every edge {i, j} ∈ E one has

$$\Pr[\{i, j\} \in \delta(S)] \ge \frac{1}{2}(1 - \langle u_i, u_j \rangle) = \frac{\text{contribution}}{\text{to SDP obj.fct}}$$

The Hyperplane Rounding algorithm (3)

Theorem

 $One \ has \ \mathbb{E}[|\delta(S)|] \geq 0.878 \cdot SDP \geq 0.878 \cdot |\delta(S^*)|.$

• By **linearity of expectation** it suffices to show that every edge $\{i, j\} \in E$ one has contribution $\Pr[\{i, j\} \in \delta(S)] \ge \frac{1}{2}(1 - \langle u_i, u_j \rangle) =$ to SDP obj.fct • Set $t := \langle u_i, u_j \rangle$ and $\frac{\frac{1}{\pi} \arccos(t)}{\frac{1}{\pi}(1-t)} \ge 0.878 \quad \forall t \in [-1,1]$ $\frac{\frac{1}{\pi}\arccos(t)}{\frac{1}{2}(1-t)}$ -0.87σ.8 0.60.40.2-1.0 - 0.8 - 0.6 - 0.4 - 0.20 0.20.4 0.60.81.0

Lecture 16

Semidefinite programming — Part 2/2

Grothendieck's Inequality

For a matrix $A \in \mathbb{R}^{m \times n}$ define

$$INT(A) := \max\left\{\sum_{i=1}^{m}\sum_{j=1}^{n}A_{ij}x_{i}y_{j} \mid x \in \{-1,1\}^{m}, y \in \{-1,1\}^{n}\right\}$$
$$SDP(A) := \max\left\{\sum_{i=1}^{m}\sum_{j=1}^{n}A_{ij}\left\langle u_{i},v_{j}\right\rangle \mid \|u_{i}\|_{2} = \|v_{j}\|_{2} = 1\right\}$$

Grothendieck's Inequality

For a matrix $A \in \mathbb{R}^{m \times n}$ define

$$INT(A) := \max\left\{\sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij} x_i y_j \mid x \in \{-1, 1\}^m, y \in \{-1, 1\}^n\right\}$$
$$SDP(A) := \max\left\{\sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij} \langle u_i, v_j \rangle \mid ||u_i||_2 = ||v_j||_2 = 1\right\}$$

Theorem (Grothendieck's Inequality)

For any matrix $A \in \mathbb{R}^{m \times n}$ one has

 $INT(A) \le SDP(A) \le C_G \cdot INT(A)$

where $C_G \le 1.783$.

- Grothendieck proved that C_G is indeed a constant
- [Krivine 1979] proved that $C_G \leq 1.783$

Hyperplane rounding

Random experiment:

- (1) Given vectors $u_i, v_j \in \mathbb{R}^r$.
- (2) Sample a **Gaussian** g in \mathbb{R}^r and set

$$\operatorname{sign}(z) := \begin{cases} 1 & \text{if } z \ge 0\\ -1 & \text{if } z < 0 \end{cases}$$

Hyperplane rounding

Random experiment:

- (1) Given vectors $u_i, v_j \in \mathbb{R}^r$.
- (2) Sample a **Gaussian** g in \mathbb{R}^r and set

Hyperplane rounding

Random experiment:

- (1) Given vectors $u_i, v_j \in \mathbb{R}^r$.
- (2) Sample a **Gaussian** g in \mathbb{R}^r and set

• Question: How does $\mathbb{E}[A_{ij}x_iy_j]$ relate to $A_{ij} \langle u_i, v_j \rangle$?

Hyperplane rounding (2)

Lemma

Let
$$u, v \in \mathbb{R}^r$$
 with $||u||_2 = ||v||_2 = 1$. Then

$$\mathbb{E}_{g \text{ Gaussian}} \left[sign(\langle g, u \rangle) \cdot sign(\langle g, v \rangle) \right] = \frac{2}{\pi} arcsin(\langle u, v \rangle)$$

In words: Probability that u, v end up on the same side of a hyperplane is exactly ²/_π arcsin(⟨u, v⟩)

Hyperplane rounding (2)

Lemma

Let
$$u, v \in \mathbb{R}^r$$
 with $||u||_2 = ||v||_2 = 1$. Then

$$\mathbb{E}_{g \text{ Gaussian}} \left[sign(\langle g, u \rangle) \cdot sign(\langle g, v \rangle) \right] = \frac{2}{\pi} arcsin(\langle u, v \rangle)$$

► In words: Probability that u, v end up on the same side of a hyperplane is exactly $\frac{2}{\pi} \arcsin(\langle u, v \rangle)$

• Set
$$\cos(\theta) = \langle u, v \rangle$$
. Then $\Pr[u, v \text{ separated}] = \frac{\theta}{\pi}$

Hyperplane rounding (2)

Lemma

Let
$$u, v \in \mathbb{R}^r$$
 with $||u||_2 = ||v||_2 = 1$. Then

$$\mathbb{E}_{g \text{ Gaussian}} \left[sign(\langle g, u \rangle) \cdot sign(\langle g, v \rangle) \right] = \frac{2}{\pi} arcsin(\langle u, v \rangle)$$

- ► In words: Probability that u, v end up on the same side of a hyperplane is exactly $\frac{2}{\pi} \arcsin(\langle u, v \rangle)$
- Set $\cos(\theta) = \langle u, v \rangle$. Then $\Pr[u, v \text{ separated}] = \frac{\theta}{\pi}$
- $\mathbb{E}[\cdots] = 1 2 \Pr[u, v \text{ separated}] = 1 \frac{2\theta}{\pi} = \frac{2}{\pi} \arcsin(\langle u, v \rangle)$ • Recall: $\arccos(t) = \frac{\pi}{2} - \arcsin(t)$

Hyperplane rounding (3)

Preliminary conclusion

We can conclude that:

- ► For $A_{ij} \ge 0$ and $\langle u_i, u_j \rangle \ge 0$ one has $\mathbb{E}[A_{ij}x_iy_j] \ge \frac{2}{\pi} \cdot A_{ij} \langle u_i, v_j \rangle$
- For $A_{ij} < 0$ and $\langle u_i, u_j \rangle \ge 0$ one has $\mathbb{E}[A_{ij}x_iy_j] \ge A_{ij} \langle u_i, v_j \rangle$

Preliminary conclusion

We can conclude that:

- ► For $A_{ij} \ge 0$ and $\langle u_i, u_j \rangle \ge 0$ one has $\mathbb{E}[A_{ij}x_iy_j] \ge \frac{2}{\pi} \cdot A_{ij} \langle u_i, v_j \rangle$
- ► For $A_{ij} < 0$ and $\langle u_i, u_j \rangle \ge 0$ one has $\mathbb{E}[A_{ij}x_iy_j] \ge A_{ij} \langle u_i, v_j \rangle$

Problem: Due to the non-linearity, this does bound INT(A) in terms of SDP(A)!!

Definition

A kth order tensor $A \in \mathbb{R}^{n_1 \times \dots \times n_k}$ is a k-dimensional array of numbers; we write $A = (A_{i_1,\dots,i_k})_{i_1 \in [n_1],\dots,i_k \in [n_k]}$.

- A vector $a \in \mathbb{R}^n$ is a 1-order tensor
- A matrix $A \in \mathbb{R}^{n_1 \times n_2}$ is a 2-order tensor

Definition

A kth order tensor $A \in \mathbb{R}^{n_1 \times \dots \times n_k}$ is a k-dimensional array of numbers; we write $A = (A_{i_1,\dots,i_k})_{i_1 \in [n_1],\dots,i_k \in [n_k]}$.

- A vector $a \in \mathbb{R}^n$ is a 1-order tensor
- A matrix $A \in \mathbb{R}^{n_1 \times n_2}$ is a 2-order tensor
- ► For two tensors $A, B \in \mathbb{R}^{n_1 \times ... \times n_k}$ we can define an **inner** product

$$\langle A, B \rangle := \sum_{i_1, \dots, i_k} A_{i_1, \dots, i_k} \cdot B_{i_1, \dots, i_k}$$

Definition

A kth order tensor $A \in \mathbb{R}^{n_1 \times \dots \times n_k}$ is a k-dimensional array of numbers; we write $A = (A_{i_1,\dots,i_k})_{i_1 \in [n_1],\dots,i_k \in [n_k]}$.

- A vector $a \in \mathbb{R}^n$ is a 1-order tensor
- A matrix $A \in \mathbb{R}^{n_1 \times n_2}$ is a 2-order tensor
- ► For two tensors $A, B \in \mathbb{R}^{n_1 \times ... \times n_k}$ we can define an **inner** product

$$\langle A, B \rangle := \sum_{i_1, \dots, i_k} A_{i_1, \dots, i_k} \cdot B_{i_1, \dots, i_k}$$

For vector $u \in \mathbb{R}^n$ and $k \in \mathbb{N}$, define the **tensor product**

$$u \otimes \ldots \otimes u := u^{\otimes k} := (u_{i_1} \cdot \ldots \cdot u_{i_k})_{i_1 \in [n], \dots, i_k \in [n]}$$

Definition

A kth order tensor $A \in \mathbb{R}^{n_1 \times \dots \times n_k}$ is a k-dimensional array of numbers; we write $A = (A_{i_1,\dots,i_k})_{i_1 \in [n_1],\dots,i_k \in [n_k]}$.

- A vector $a \in \mathbb{R}^n$ is a 1-order tensor
- A matrix $A \in \mathbb{R}^{n_1 \times n_2}$ is a 2-order tensor
- ► For two tensors $A, B \in \mathbb{R}^{n_1 \times ... \times n_k}$ we can define an **inner** product

$$\langle A, B \rangle := \sum_{i_1, \dots, i_k} A_{i_1, \dots, i_k} \cdot B_{i_1, \dots, i_k}$$

For vector $u \in \mathbb{R}^n$ and $k \in \mathbb{N}$, define the **tensor product**

$$u \otimes \ldots \otimes u := u^{\otimes k} := (u_{i_1} \cdot \ldots \cdot u_{i_k})_{i_1 \in [n], \dots, i_k \in [n]}$$

▶ Fact: For vectors $u, v \in \mathbb{R}^n$ one has $\langle u^{\otimes k}, v^{\otimes k} \rangle = \langle u, v \rangle^k$.

Definition

We call a function $f : \mathbb{R} \to \mathbb{R}$ (real) analytic if it can be written as a convergent power series $f(x) = \sum_{k=0}^{\infty} a_k x^k$ for all $x \in \mathbb{R}$.

Definition

We call a function $f : \mathbb{R} \to \mathbb{R}$ (real) analytic if it can be written as a convergent power series $f(x) = \sum_{k=0}^{\infty} a_k x^k$ for all $x \in \mathbb{R}$.

For fixed r, we can define a Hilbert space / infinite-dimensional vector space of the form

 $H = \{(U^0, U^1, U^2, U^3, \ldots) \mid U^k \text{ is a } k \text{-tensor of size } r^k\}$

using the natural inner product.

A vector transformation

Now we can "bend" any vectors to give any analytic function that we like:

Lemma

Let $f(x) = \sum_{k=0}^{\infty} a_k x^k$ and fix a dimension $r \in \mathbb{N}$. Then there is a Hilbert space H and maps $F, G : \mathbb{R}^r \to H$ so that

$$\langle F(u), G(v) \rangle = f(\langle u, v \rangle) \quad \forall u, v \in \mathbb{R}^r$$

Moreover the length of the mapped vectors satisfies

$$||F(u)||_2^2 = ||G(u)||_2^2 = \sum_{k=0}^{\infty} |a_k| \cdot ||u||_2^{2k}$$

A vector transformation (2)

Proof:

▶ The maps are

$$F(u) := (\sqrt{|a_k|} \cdot u^{\otimes k})_{k \in \mathbb{Z}_{\geq 0}}, \quad G(u) := (\operatorname{sign}(a_k) \cdot \sqrt{|a_k|} \cdot u^{\otimes k})_{k \in \mathbb{Z}_{\geq 0}}$$

A vector transformation (2)

Proof:

▶ The maps are

$$F(u) := (\sqrt{|a_k|} \cdot u^{\otimes k})_{k \in \mathbb{Z}_{\ge 0}}, \quad G(u) := (\operatorname{sign}(a_k) \cdot \sqrt{|a_k|} \cdot u^{\otimes k})_{k \in \mathbb{Z}_{\ge 0}}$$

▶ Then for vectors $u, v \in \mathbb{R}^r$ one has

$$\langle F(u), G(v) \rangle = \sum_{k \ge 0} \operatorname{sign}(a_k) \cdot (\sqrt{|a_k|})^2 \cdot \left\langle u^{\otimes k}, v^{\otimes k} \right\rangle$$

$$= \sum_{k \ge 0} a_k \cdot \langle u, v \rangle^k = f(\langle u, v \rangle).$$

A vector transformation (2)

Proof:

▶ The maps are

$$F(u) := (\sqrt{|a_k|} \cdot u^{\otimes k})_{k \in \mathbb{Z}_{\ge 0}}, \quad G(u) := (\operatorname{sign}(a_k) \cdot \sqrt{|a_k|} \cdot u^{\otimes k})_{k \in \mathbb{Z}_{\ge 0}}$$

▶ Then for vectors $u, v \in \mathbb{R}^r$ one has

$$\langle F(u), G(v) \rangle = \sum_{k \ge 0} \operatorname{sign}(a_k) \cdot (\sqrt{|a_k|})^2 \cdot \langle u^{\otimes k}, v^{\otimes k} \rangle = \sum_{k \ge 0} a_k \cdot \langle u, v \rangle^k = f(\langle u, v \rangle).$$

▶ We can verify that the lengths are

$$||F(u)||_{2}^{2} = ||G(u)||_{2}^{2} = \sum_{k \ge 0} (\sqrt{|a_{k}|})^{2} \cdot ||u^{\otimes k}||_{2}^{2} = \sum_{k \ge 0} |a_{k}| \cdot ||u||_{2}^{2k}$$

as claimed.

Applying the vector transformation

Lemma

Let $r \in \mathbb{N}$. Then there are maps $F, G : \mathbb{R}^r \to H$ so that

$$\langle F(u), G(v) \rangle = \sin\left(\beta \frac{\pi}{2} \langle u, v \rangle\right)$$

where
$$\beta = \frac{2}{\pi} \ln(1 + \sqrt{2}) \approx \frac{1}{1.783}$$
. Moreover
 $\|F(u)\|_2^2 = \|G(u)\|_2^2 = 1$ for all $u \in \mathbb{R}^r$ with $\|u\|_2^2 = 1$.

Note that this is equivalent to

$$\frac{2}{\pi} \arcsin(\langle F(u), G(v) \rangle) = \beta \cdot \langle u, v \rangle$$

Applying the vector transformation (2) Proof.

• Consider $f(x) = \sin(\beta \frac{\pi}{2}x)$.

Applying the vector transformation (2)

Proof.

- Consider $f(x) = \sin(\beta \frac{\pi}{2}x)$.
- ► Recall that $sin(x) = \sum_{k \ge 0} \frac{(-1)^k}{(2k+1)!} x^{2k+1} = x - \frac{1}{3!} x^3 + \frac{1}{5!} x^5 - \dots$ $sinh(x) = \sum_{k \ge 0} \frac{1}{(2k+1)!} x^{2k+1}$

Applying the vector transformation (2)

Proof.

- Consider $f(x) = \sin(\beta \frac{\pi}{2}x)$.
- ► Recall that $sin(x) = \sum_{k \ge 0} \frac{(-1)^k}{(2k+1)!} x^{2k+1} = x - \frac{1}{3!} x^3 + \frac{1}{5!} x^5 - \dots$ $sinh(x) = \sum_{k \ge 0} \frac{1}{(2k+1)!} x^{2k+1}$

• Then for
$$||u||_2 = 1$$
,

$$\|F(u)\|_{2}^{2} = \sum_{k \ge 0} \left| \frac{(-1)^{k}}{(2k+1)!} \cdot \left(\beta \frac{\pi}{2}\right)^{2k+1} \right| = \sinh\left(\beta \frac{\pi}{2}\right)^{\beta := \frac{2}{\pi} \operatorname{arcsinh}(1)} = 1$$

Applying the vector transformation (2)

Proof.

- Consider $f(x) = \sin(\beta \frac{\pi}{2}x)$.
- Recall that $\sin(x) = \sum_{k \ge 0} \frac{(-1)^k}{(2k+1)!} x^{2k+1} = x - \frac{1}{3!} x^3 + \frac{1}{5!} x^5 - \dots$ $\sinh(x) = \sum_{k \ge 0} \frac{1}{(2k+1)!} x^{2k+1}$

• Then for
$$||u||_2 = 1$$
,

$$\|F(u)\|_{2}^{2} = \sum_{k \ge 0} \left| \frac{(-1)^{k}}{(2k+1)!} \cdot \left(\beta \frac{\pi}{2}\right)^{2k+1} \right| = \sinh\left(\beta \frac{\pi}{2}\right) \stackrel{\beta := \frac{2}{\pi} \operatorname{arcsinh}(1)}{=} 1$$

• One can check that

$$\beta = \frac{2}{\pi} \operatorname{arcsinh}(1) = \frac{2}{\pi} \ln(1 + \sqrt{2}) \approx \frac{1}{1.783}.$$

Applying the vector transformation (3)

- Consider $A \in \mathbb{R}^{m \times n}$ and $u_i, v_j \in \mathbb{R}^r$ with $||u_i||_2 = 1 = ||v_j||_2$.
- Sample a Gaussian g in H and set

 $x_i := \operatorname{sign}(\langle g, F(u_i) \rangle) \text{ and } y_j := \operatorname{sign}(\langle g, G(v_j) \rangle)$

Applying the vector transformation (3)

- Consider $A \in \mathbb{R}^{m \times n}$ and $u_i, v_j \in \mathbb{R}^r$ with $\|u_i\|_2 = 1 = \|v_j\|_2$.
- Sample a Gaussian g in H and set

$$x_i := \operatorname{sign}(\langle g, F(u_i) \rangle) \text{ and } y_j := \operatorname{sign}(\langle g, G(v_j) \rangle)$$

► Then

$$\mathbb{E}[x_i y_j] = \frac{2}{\pi} \operatorname{arcsin}(\langle F(u_i), G(v_i) \rangle) = \beta \cdot \langle u_i, v_i \rangle$$

Applying the vector transformation (3)

- Consider $A \in \mathbb{R}^{m \times n}$ and $u_i, v_j \in \mathbb{R}^r$ with $||u_i||_2 = 1 = ||v_j||_2$.
- Sample a **Gaussian** g in H and set

$$x_i := \operatorname{sign}(\langle g, F(u_i) \rangle) \text{ and } y_j := \operatorname{sign}(\langle g, G(v_j) \rangle)$$

► Then

$$\mathbb{E}[x_i y_j] = \frac{2}{\pi} \operatorname{arcsin}(\langle F(u_i), G(v_i) \rangle) = \beta \cdot \langle u_i, v_i \rangle$$

▶ By linearity of expectation

$$\mathbb{E}\left[\sum_{i=1}^{m}\sum_{j=1}^{n}A_{ij}x_{i}y_{j}\right] = \underset{\approx \frac{1}{1.783}}{\beta}\sum_{i=1}^{m}\sum_{j=1}^{n}A_{ij}\left\langle u_{i}, v_{j}\right\rangle \quad \Box$$