
Chapter 8

Interior Point Methods

This chapter on path-following interior point methods is loosely based on Chapter 5.3
“Convex Optimization: Algorithms and Complexity” by Bubeck1 but less abstract and
including essentially all proofs. We will describe a polynomial time algorithm that solves
the optimization problem min{c T x | x ∈ P } where P = {x ∈R

n | Ax ≤ b} is a polytope with
a matrix A ∈ R

m×n and b ∈ R
m and c ∈ R

n are vectors. The main result in a simplified
form is as follows:

Theorem 8.1. For A ∈ R
m×n and b ∈ R

m and c ∈ R
n with m ≤ O(n) one can solve the LP

min{c T x | Ax ≤ b} in time O(n3.5L), where L is the number of bits needed to represent
A,b,c .

We assume that P is a full-dimensional polytope and hence the interior int(P) := {x ∈
R

n | Ax < b} is non-empty. We also assume that we know at least one point in int(P).
Let si (x) := bi − Ai x be the slack that x has with respect to the i th constraint. It is not
further important, but if one likes, one can normalized the rows so that ‖Ai‖2 = 1 for
i = 1, . . . ,m and then si (x) gives the geometric distance of x to the i th hyperplane. For
some parameter t ≥ 0 consider the convex log-barrier function

Ft (x) := t ·c T x +
m∑

i=1

ln
(1

si (x)

)

.

Later we will occasionally use F0(x) which is only the log-barrier term. We define

x∗(t) := argmin{Ft (x) | x ∈R
n}

as the unique minimizer, where we interpret Ft (x) = ∞ if x ∉ int(P). It is not hard to
imagine that if t →∞, more weight is put on the linear term and x∗(t) will converge to
the optimum solution of min{c T x | x ∈ P }.

1see https://arxiv.org/abs/1405.4980

53

https://arxiv.org/abs/1405.4980

54 CHAPTER 8. INTERIOR POINT METHODS

−c

x∗(0)
P

level curves for Ft for t = 0

−c

x∗(t)
P

level curves for Ft for t ≫ 0

The points {x∗(t)}t≥0 define a curve inside P that is called the central path.

−c

x∗(0) x∗(1)
P argmin{c T y | y ∈ P }

In fact, the interior point method will approximately follow the central path to converge
to the optimum. A simple calculation yields the gradient of the barrier function as

∇Ft (x) = t ·c −
m∑

i=1

Ai

si (x)

Moreover, the Hessian of the barrier function as

∇2Ft (x) =
m∑

i=1

Ai AT
i

si (x)2

Observe that the Hessian is an n ×n symmetric, positive definite matrix; in our case
it is independent of t and c . We define the Dikin ellipsoid of radius R around x as

E (x ,R) :=
{

y ∈R
n |

m∑

i=1

(si (y)− si (x))2

si (x)2
≤ R2

}

=
{

y ∈R
n | (y −x)T [∇2Ft (x)](y −x) ≤ R2} .

As we can see, the Hessian of Ft is also the matrix that defines the ellipsoid.

Lemma 8.2. For any x ∈ int(P) one has E (x ,1) ⊆ P .

Proof. Let y ∈ E (x ,1). Then in particular (si (y)− si (x))2 ≤ si (x)2 which implies si (y) ≥ 0
for all i .

8.1. THE ALGORITHM 55

This means that starting at a point x , it is safe to move to another point x ′ ∈ E (x ,1)
without the danger of leaving P .

−c

P

x

E (x ,1)

Geometrically one can see that if x is very close to the i th boundary constraint, then the
ellipsoid E (x ,1) is getting very thin in direction Ai .

8.1 The algorithm

Suppose we have a starting point x0 ∈ int(P) and some fixed t and we try to move closer
to the current optimum x∗ := x∗(t). Consider the quadratic approximation

G(x) = Ft (x0)+ (∇Ft (x0))T (x −x0)+ 1

2
(x −x0)[∇2Ft (x0)](x −x0)

at this point. Of course, we can obtain an explicit optimum solution for any quadratic
function. The first order optimality condition tells us that the minimizer x1 of G satisfies

∇G(x1) =∇Ft (x0)+ [∇2Ft (x0)](x1 −x0)
!= 0 ⇒ x1 = x0 − [∇2Ft (x0)]−1(∇Ft (x0))

A 1-dimensional visualization would like like this:

x0 x1 x∗

Ft (x)

quadratic approx. G

Replacing x0 by the point x1 that minimizes the quadratic approximation is also called a
Newton step. It turns out that the distance to the optimum point x∗ decreases quadrati-
cally if the starting point x0 is close enough to x∗. Back to our interior point method, this
means that applying a Newton iteration to a point x ∈ E (x∗(t),R) moves it closer to x∗(t)
in terms of the Dikin radius, assuming that R was small enough. Once the current point
is close enough to x∗(t) we can then increase the value of t by a factor 1+Θ(1p

m
). The

full algorithm is as follows:

56 CHAPTER 8. INTERIOR POINT METHODS

Path Following Interior Point Method

• Input: LP min{c T x | x ∈ P } and x0 ∈ E (x∗(t0), 1
12) for some t0 > 0.

• Output: Sequence {xk }k≥0 converging to y∗ = argmin{c T y | y ∈ P }

(1) FOR k = 0 TO ∞ DO

(2) Perform Newton Step xk+1 := xk − [∇2Ftk
(xk)]−1(∇Ftk

(xk))
(3) Update tk+1 := tk · (1+ 1

100
p

m
)

The analysis breaks down in the following main steps:

(1) First we will analyze the Newton step and prove that xk ∈ E (x∗(tk),R) ⇒ xk+1 ∈
E (x∗(tk),6R2). Setting R = 1

12 means that xk+1 ∈ E (x∗(tk), 1
24). We could in fact

iterate the Newton step to get arbitrarily close to x∗(tk) — but that would not give
an asymptotic advantage.

(2) For step (3), we need to show that the point on the central curve does not move
too quickly when increasing the parameter t . In fact we show that x∗(t · (1+ε)) ∈
E (x∗(t),ε

p
m). Setting ε := 1

200
p

m
is enough to guarantee that x∗(tk+1) ∈ E (x∗(tk), 1

25).

As the ellipsoids change only slowly, one has
(

xk+1 ∈ E (x∗(tk), 1
24) & x∗(tk+1) ∈ E (x∗(tk), 1

25)
)

⇒
xk+1 ∈ E (x∗(tk+1), 1

12).

(3) We did not describe yet how to obtain a starting point x0 that is close enough to
x∗(t0) for some t0 > 0. It turns out that one can run a “reverse path following algo-
rithm” move from any point x ∈ int(P) close to the analytic center.

(4) Finally we can bound the distance from any intermediate point to the optimum
y∗ := argmin{c T y | y ∈ P } by proving that x ∈ E (x∗(t),1) ⇒ c T x ≤ c T y∗+O(m

t
).

8.2 Analysis of a Newton Step

For a symmetric matrix H ∈R
n×n with Eigen decomposition H =∑n

i=1λi ui uT
i

, let |H | :=
∑n

i=1 |λi |ui uT
i

be the matrix where the absolute value function has been applied to all
Eigenvalues. In particular |H | º 0. For a H ∈ R

n×n that is not necessarily symmetric, let
‖H‖op be the largest singular value. In particular we will use that ‖H x‖2 ≤ ‖H‖op · ‖x‖2

for any vector x . We will now show that a Newton step shrinks the distance from the
optimum (if the distance is measured in the norm induced by the Hessian).

8.2. ANALYSIS OF A NEWTON STEP 57

x∗

x x ′
Newton step

E (x∗,9R2)

E (x∗,R)

Lemma 8.3. Fix a value of t ≥ 0 and let x∗ := x∗(t). For x ∈ E (x∗,R) with R ≤ 1
8 , set

x ′ := x − [∇2Ft (x)]−1(∇Ft (x))

Then x ′ ∈ E (x∗,9R2).

Proof. We begin with proving two useful claims. First we show that the Hessian of Ft

only changes slowly:
Claim I. For any vector y be on the line segment between x and x∗ one has (1 − 3R) ·
∇2Ft (x) ¹∇2Ft (y) ¹ (1+3R) ·∇2Ft (x).

Proof of claim. We have

|si (y)− si (x)|
si (x)

≤ |si (x∗)− si (x)|
si (x)

= |si (x∗)− si (x)|
si (x∗)

︸ ︷︷ ︸

≤R

· si (x∗)

si (x)
︸ ︷︷ ︸

≤1+R≤ 9
8

≤ 9

8
R

Inverting and squaring the inequality (1− 9
8 R)si (x) ≤ si (y) ≤ (1+ 9

8 R)si (x) gives the claim
since 1

(1+ 9
8 R)2 ≥ 1−3R and 1

(1− 9
8 R)2 ≤ 1+3R for R ≤ 1

8 .

Claim II. One can write ∇Ft (x) = ([∇2Ft (x)]+E)(x −x∗) where |E | ¹ 3R ·∇2Ft (x).

Proof of claim. We apply the fundamental theorem of calculus to obtain

∇Ft (x) =∇Ft (x)−∇Ft (x∗)
︸ ︷︷ ︸

=0

=
[∫1

0
∇2Ft (λx + (1−λ)x∗)]dλ

]

︸ ︷︷ ︸

=:∇2Ft (x)+E

(x −x∗)

with |E | ¹ 3R ·∇2Ft (x) as we can derive from Claim I.
Now we can write

x ′−x∗ Def. x ′
= (x −x∗)− [∇2Ft (x)]−1(∇Ft (x)) (∗)

Claim II= (x −x∗)− [∇2Ft (x)]−1([∇2Ft (x)]+E)(x −x∗)

= −[∇2Ft (x)]−1E (x −x∗)

Claim III. One has x ′ ∈ E (x∗,9R2).

Proof of claim. Instead of a careful (and annoying) calculation with matrices that have

58 CHAPTER 8. INTERIOR POINT METHODS

different Eigenvectors, we can use another trick. We apply a linear transformation to P

so that ∇2Ft (x∗) = I . Then x ∈ E (x∗,R) ⇔‖x −x∗‖2 ≤ R. Moreover, (1−3R)I ¹∇2Ft (x) ¹
(1+3R)I and −6R · I ¹ E ¹ 6R · I . Then

‖x ′−x‖2 = ‖∇2Ft (x)−1E (x −x∗)‖2 ≤ ‖[∇2Ft (x)]−1‖op
︸ ︷︷ ︸

≤ 1
1−3R

≤ 3
2

·‖E‖op
︸ ︷︷ ︸

≤6R

·‖x −x∗‖2
︸ ︷︷ ︸

≤R

≤ 9R2

and hence x ′ ∈ E (x∗,9R2).

8.3 Bounding the movement of x∗(t)

One of the main arguments is that the parameter t can be increased by a (1+Θ(1p
m

))-

factor while the new optimum x∗(t ′) still lies in the Dikin ellipsoid around x∗(t).
First, we observe that around an optimum point x∗(t) the function Ft is well approx-

imated by the square of the Dikin radius. We can give a general approximation result
(here the term ±R3 means that the equation holds up to an error that lies in [−R3,R3]):

Lemma 8.4. Let x ∈ int(P) and x +h on the boundary of E (x ,R) for 0 ≤ R ≤ 1
2 . Then

Ft (x +h) = Ft (x)+〈∇Ft (x),h〉+ R2

2
±R3

Proof. We write

Ft (x +h)−Ft (x) = t ·c T h −
m∑

i=1

ln
(si (x +h)

si (x)

)

= t ·c T h −
m∑

i=1

ln
(

1+ 〈Ai ,h〉
si (x)

)

= t ·c T h−
m∑

i=1

〈Ai ,h〉
si (x)

︸ ︷︷ ︸

=〈∇Ft (x),h〉

+1

2

m∑

i=1

〈Ai ,h〉2

si (x)2

︸ ︷︷ ︸

=hT ∇2Ft (x)h=R2

±
m∑

i=1

| 〈Ai ,h〉 |3
si (x)3

= t ·c T h +〈∇Ft (x),h〉+ R2

2
± max

i=1,...,m

{ | 〈Ai ,h〉 |
si (x)

︸ ︷︷ ︸

≤R

}

·
m∑

i=1

〈Ai ,h〉2

si (x)2

︸ ︷︷ ︸

=R2

using that ln(1+ z) = z − 1
2 z2 ±|z|3 for |z| ≤ 1

2 .

For an arbitrary point x ∈ int(P), the function t · c T x might vary arbitrarily over the
Dikin ellipsoid E (x ,R). Interestingly the function can only vary by

p
m if x is an optimum

point to Ft .

Lemma 8.5. One has max{t ·c T (x −x∗(t)) | x ∈ E (x∗(t),R)} ≤ R
p

m.

Proof. Consider the ratios ri := si (x)−si (x∗(t))
si (x∗(t)) . By first order optimality

∇Ft (x∗(t)) = t ·c −
m∑

i=1

Ai

si (x∗(t))
= 0

8.4. DISTANCE FROM THE OPTIMUM 59

Multiplying this vector equation with x −x∗(t) reveals that

t ·c T (x −x∗(t)) =
m∑

i=1

Ai (x −x∗(t))

si (x∗(t))
=

m∑

i=1

ri ≤ ‖r ‖1
r∈Rm

≤
p

m · ‖r ‖2
︸︷︷︸

≤R

≤ R ·
p

m

Finally we can proof an important fact:

Lemma 8.6. Fix values of t , t ′ > 0 so that x∗(t ′) lies on the boundary of E (x∗(t),R) for
0 ≤ R ≤ 1

4 . Then t ′

t
≥ 1+ R

4
p

m
.

Proof. As x∗(t ′) lies on the boundary of E (x∗(t),R) we can apply Lemma 8.4 to get Ft (x∗(t ′)) =
Ft (x∗(t))+ R2

2 ±R3 as ∇Ft (x∗(t)) = 0. Abbreviate t ′ = t · (1+ε). Then

0
optimality

≤ Ft ′(x∗(t))−Ft ′(x∗(t ′)) = ε·t ·c T (x∗(t)−x∗(t ′))
︸ ︷︷ ︸

≤R
p

m

+ (Ft (x∗(t))−Ft (x∗(t ′))
︸ ︷︷ ︸

≤− R2

2 +R3≤− R2

4

≤ εR
p

m−R2

4

Rearranging gives ε≥ R
4
p

m
.

8.4 Distance from the optimum

Finally we prove an upper bound on the optimality gap as t grows:

Lemma 8.7. For any t > 0 and x ∈ E (x∗(t),1) one has cT x −min{c T y | y ∈ P } ≤ 3m
t

.

Proof. Let y∗ be the point minimizing c T y over P . The function value c T x differs only

by an additive
p

m
t

≤ m
t

term over points in E (x∗(t),1) as we have seen in Lemma 8.5.
Hence it suffices to show that c T x∗(t) ≤ c T y∗+ 2m

t
.

Consider the midpoint x ′ := 1
2 y∗+ 1

2 x∗(t). We know that si (x ′) ≥ 1
2 si (x∗(t)) for each

i ∈ [m]. Hence

0
optimality

≤ Ft (x ′)−Ft (x∗(t)) = t · (c T x ′−c T x∗(t))
︸ ︷︷ ︸

= 1
2 (c T y∗−c T x∗(t))

+
m∑

i=1

(

ln
(1

si (x ′)

)

− ln
(1

si (x∗(t))

))

︸ ︷︷ ︸

≤1

≤ t

2
(c T y∗−c T x∗(t))+m

Rearranging gives the claim.

8.5 Finding the analytical center

In the Interior Point Method that we stated above, we do assume that we know the an-

alytical center x∗(0) (or at least a very close point). We want to quickly argue how that

60 CHAPTER 8. INTERIOR POINT METHODS

center can be found — assuming that we know an arbitrary point y ∈ int(P). First, we
define an auxiliary function

F̃t (x) := t · (−∇F0(y))T x +
m∑

i=1

ln
(1

si (x)

)

that differs from Ft only in the linear part. Let x̃∗(t) := argmin{F̃t (x) | x ∈ R
n} be the

central path with respect to F̃t . In particular we have defined the linear part in F̃t (x)
so that ∇F̃1(y) = 0, which implies that x̃∗(1) = y . The 2nd trick is that the analysis (in
particular Lemma 8.6) also applies if we decrease t by a factor 1− 1

100
p

m
and the interior

point will stay close the the central path of F̃t . Then for t → 0 we obtain a sequence of
points that converge to the anaytical center x̃∗(0) which is also x∗(0). We can summarize
the algorithm as follows:

Interior Point Method for finding Analytical Center

• Input: Polytope P = {x ∈R
n | Ax ≤ b} and point y ∈ int(P)

• Output: Sequence {xk }k≥0 converging towards analytical center

(1) Set F (x) :=∑m
i=1 ln

(
1

si (x)

)

(2) Set F̃t (x) := t · (−∇F (y))T x +F (x).
(3) Set x0 := y and t0 := 1
(4) FOR k = 0 TO ∞ DO

(5) Perform Newton Step xk+1 := xk − [∇2F̃tk
(xk)]−1(∇F̃tk

(xk))
(6) Update tk+1 := tk · (1− 1

100
p

m
)

Obviously this raises the question how to find a feasible point in P after all. But one
can simply solve min{λ | Ax ≤ b +λ1} which has a strictly feasible solution of (x ,λ) =
(0,‖b‖∞+1) and an optimum solution is contained in int(P), given that int(P) 6= ;.

8.6 Running time

Finally we want to discuss the running time of the method in terms of number of arith-

metic operations. Let L be the number of bits needed to encode the linear program. Sup-
pose that A ∈ Z

m×n , b ∈ Z
m and c ∈ Z

n , then a safe definition is L := ∑

i , j (1+ log(|Ai j |+
1))+∑m

i=1(1+ log(|bi | +1))+∑n
j=1(1+ log(|c j | +1)). To keep the calculations simple, we

assume that m =Θ(n) and we will express the running time in terms of n and L.

A somewhat technical calculation shows that it suffices to find a point x ∈ int(P) that
is within a 2−Θ(L) term of the optimum y∗. Then one can select indices I := {i ∈ [m] |
si (x) ≤ 2−Θ(L)} and the projection of x onto the subspace {y ∈ R

n | Ai y = bi ∀i ∈ I } will
recover an optimum solution to min{c T y | y ∈ P }. Similarly, the starting value of t can be
of the form t0 ≥ 2−Θ(L). Hence, the number iterations of the interior point method can be
bounded by O(

p
n ·L). Each iteration is dominated by the time that it takes to solve the

8.7. EXERCISES 61

linear system [∇2Ftk
(xk)]y =∇Ftk

(xk) for y . Using Gaussian elimination, solving a linear
system takes time O(n3) which results in a total running time of O(n3.5L) for solving a
linear program.

On the other hand, matrices can be multiplied/inverted in time O(nω) where the
best known value for the exponent is currently ω< 2.3729. That means using fast matrix

multiplication, linear programs can be solved in a total running time of O(nω+1/2L) ≤
O(n2.8729L).

However, it seems that fast matrix multiplication is not used in practice, so we want
to describe a different speed-up that is based on low rank updates. The idea uses the
basic fact that for a symmetric matrix S ∈R

n×n , a vector v ∈R
n and a scalar λ ∈R one has

the Sherman-Morrison formula

(S +λv v T)−1 = S−1 − λ

1+λv T S−1v
︸ ︷︷ ︸

∈R

· (S−1v)(S−1v)T

︸ ︷︷ ︸

rank-1 matrix

(assuming that both S and S +λv v T are invertible). In particular if S−1 is known, then
(S +λv v T)−1 can be computed in time O(n2).

Now suppose that instead of performing a Newton step xk+1 = xk−[∇2Ft (xk)]−1(∇Ft (xk))
with the exact inverse of the Hessian, we maintain the inverse S−1

k
for a matrix Sk ∈R

n×n

satisfying 1
1+R

Sk ¹∇2Ft (xk) ¹ (1+R)Sk . Then one can still prove the implication

xk ∈ E (x∗(t),R) ⇒ xk+1 ∈ E (x∗(t),O(R2))

by slightly modifying the calculations in Lemma 8.3. Then again, choosing R > 0 as a
small enough constant suffices for our purpose. Recall that ∇2Ft (x) = ∑m

i=1
1

si (x)2 Ai AT
i

.

The natural idea is to choose Sk = ∑m
i=1

1
dk (i)2 Ai AT

i
but only update dk+1(i) := si (xk+1)

when the distances have changed by more than a 1± R
4 factor from the last update. If

S−1
k

is known and only q distances have been updated, then computing S−1
k+1 takes time

O(qn2).
Now take consecutive points xk+1 ∈ E (xk ,R) and consider the ratio ri = si (xk+1)−si (xk)

si (xk) .
Then the amortized number of rank-1 updates caused by this Newton step are O(‖r ‖1) ≤
O(

p
n ·‖r ‖2) ≤O(

p
n). That means the amortized time per iteration is O(n2.5) and hence

solving the linear program takes time O(n3L) even without fast matrix multiplication.
A further improvement can be made by combining low rank updates and fast ma-

trix multiplication. In fact, Lee and Sidford show that the amortized running time per
iteration can be brought down to Õ(n2) (where the Õ-notation hides some lower or-
der terms), which results in a total running time of O(n2.5L) to solve linear programs
min{c T x | Ax ≤ b} where A ∈Z

O(n)×n .

8.7 Exercises

Exercise 1. Consider the cube P := [0,1]n = {x ∈ R
n | 0 ≤ xi ≤ 1 for i = 1, . . . ,n}. Consider

a sequence of points {xk }k≥0 with x0 = (1
2 , . . . , 1

2) and with the only restriction that xk+1 ∈

62 CHAPTER 8. INTERIOR POINT METHODS

E (xk , 1
2). Prove that it takes at least Ω(

p
n · log(1

δ)) iterations until xk can be within a
‖ ·‖∞-distance of δ from the vertex 0.

Exercise 2. Recall that the presented interior point method takes O(L
p

m) iterations to
get within an additive 2−L distance to the optimum for a polytope P = {x ∈ R

n | Ax ≤ b}
with A ∈ R

m×n . There is indeed a way of bringing the number of iterations down to
O(L

p
n). A deep result of Nesterov and Nemirovsky says that there is a convex function

φ : Rn → R that is self-concordant which means it satisfies the following properties for
some universal constant C > 0:

(A) For any 0 < R ≤ 1
C

and x ∈ E (x∗,R) one has (1−2R)∇2φ(x) ¹∇2φ(x∗) ¹ (1+2R)∇2φ(x)
where we redefine the ellipsoid E (x∗,R) := {x ∈ R

n | (x − x∗)T [∇2φ(x∗)](x − x∗) ≤
R2}

(B) One has ∇φ(x)∇φ(x)T ¹C n ·∇2φ(x) for all x ∈ int(P).

(C) If x → ∂P , then φ(x) →∞.

For t ≥ 0 we modify the barrier function to Ft (x) := t · c T x +φ(x). Prove the following
(where the O-notation is allowed to hide dependence on C):

(1) Show that for x ∈ E (x∗,R) with x∗ := x∗(t) and x ′ := x − [∇2Ft (x)]−1∇Ft (x) one has
x ′ ∈ E (x∗,O(R2)) assuming R is small enough.

(2) One has max{t · c T (x − x∗(t)) | x ∈ E (x∗(t),R)} ≤ O(R
p

n) for all t > 0 and R > 0
small enough.

