
Chapter 3

Matroid Intersection

This chapter is a reproduction of a section in Lex Schrijver’s lecture notes, with somewhat
more details.

3.1 Introduction

In a previous chapter of this course, we learned what a matroid is. It is a pair M = (X ,I)
where X is called the groundset and I are subsets of X that are also called the indepen-

dent sets. Additionally, the matroid has to satisfy the following three axioms:

1. Non-emptyness: ;∈ I

2. Monotonicity: If Y ∈ I and Z ⊆ Y , then Z ∈ I

3. Exchange property: If Y , Z ∈ I with |Y | < |Z |, then there is an x ∈ Z /Y so that
Y ∪ {x} ∈ I

Examples for matroids are:

• The set of forests in an undirected graph form a graphical matroid.

• If v1, . . . , vn are vectors in a vector space, then M = ([n],I) with I = {I ⊆ [n] |
{vi }i∈I linearly independent} is a linear matroid.

• A partition matroid with ground set X can be obtained as follows: take any par-
tition X = B1∪̇ . . .∪̇Bm and select numbers di ∈ {0, . . . , |Bi |}. Then M = (X ,I) with
I := {I : |I ∩Bi | ≤ di for all i = 1, . . . ,m} is a matroid.

We already learned that one can use the greedy algorithm to find a maximum weight
independent set. In this chapter, we will see that a way more complex problem also can
be solved in polynomial time:
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MATROID INTERSECTION

Input: Matroid M1 = (X ,I1), M2 = (X ,I2) on the same groundset
Goal: Find max{ |I | : I ∈ I1 ∩I2}

To understand that this is a non-trivial problem, we want to argue that it contains
maximum bipartite matching as a special case. To see this, take any bipartite graph
G = (V ,E ). Suppose that V =U∪W with U = {u1, . . . ,u|U |} and W = {w1, . . . , w |W |} are both
sides. Then we can define two matroids that both have the edge set E as ground set as fol-
lows: take M1 = (E ,I1) as the partition matroid with partitions δ(u1), . . . ,δ(u|U |), all with
parameter di := 1. Similarly, we introduce M2 = (E ,I2) as partition matroid with parti-
tions δ(w1), . . . ,δ(w |W |). Now the matroid intersection problem asks to select as many
edges as possible, where in each neighborhood δ(ui ) and δ(w j ) we select at most one
edge. This is exactly maximum bipartite matching. See the figure below for an example:
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3.2 The exchange lemma

For example if we have two spanning trees T1,T2 in a graph, then the exchange property
implies that for any e ∈ T1, there exists some edge f (e) ∈ T2 so that (T1 \{e})∪ f (e) is again
a spanning tree. Now we will see that a stronger property is true: the map f : T1 → T2 can
be chosen to be bijective.

Lemma 3.1. Let M = (X ,I) be a matroid and let Y , Z ∈ I be disjoint independent sets of
the same size. Define a bipartite exchange graph H = (Y ∪Z ,E ) with E = {(y, z) : (Y \ y)∪
z ∈ I}. Then H contains a perfect matching.

Proof. Suppose for the sake of contradiction that H has no perfect matching. From Hall’s

condition we know that there must be subsets S ⊆Y and S ′ ⊆ Z so that all edges incident
to S ′ must have their partner in S and |S| < |S ′|.
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Since |S| < |S ′| and S,S ′ are both independent sets, there is an element z ∈ S ′ so that
S ∪ {z} ∈ I . We can keep adding elements from Y to S ∪ {z} until we get a set U ⊆ Y ∪ {z}
with |U | = |Y |.
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There is exactly one element in Y \U ; we call it x. Then (Y /x)∪ {z} =U ∈ I and (x, z) ∈ E

would be an edge — a contradiction.

We will use that exchange graph more intensively later. Formally, for a matroid M =
(X ,I) and an independent set Y ∈ I , we can define H (M ,Y ) as the bipartite graph with
partitions Y and X \ Y where we have an edge between y ∈ Y and x ∈ X \ Y if

(Y \ y)∪ {x} ∈ I .

3.3 The rank function

Again, let M = (X ,I) be a matroid. Recall that an inclusionwise maximal independent
set is called a basis. Moreover, all bases have the same size which is also called the rank

of a matroid. One can generalize this to the rank function rM : 2X →Z≥0 which is defined
by

rM (S) := max{|Y | : Y ⊆ S and Y ∈ I}

which for a subset S ⊆ X of the groundset, tells how many independent elements one
can select from S.

Now suppose we have two matroids M1 = (X ,I1) and M2 = (X ,I2) over the same
groundset. The rank function will be useful to decide at some point that we have found
the largest joint independent set. Let us make the following observation:
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Lemma 3.2. Let M1 = (X ,I1), M2 = (X ,I2) with rank functions r1 and r2. Then for any
independent set Y ∈ I1 ∩I2 and any set U ⊆ X one has

|Y | ≤ r1(U )+ r2(X /U ).

Proof. We have
|Y | = |U ∩Y |

︸ ︷︷ ︸

≤r1(U )

+|(X /U )∩Y |
︸ ︷︷ ︸

≤r2(X /U )

≤ r1(U )+ r2(X /U ).

using that Y is an independent set in both matroid.

Later in the algorithm, we will see that this inequality is tight for some Y and U . As
a side remark, for partition matroids in bipartite graphs, the lemma coincides with the
fact that a vertex cover is always an upper bound to the size of any matching.

3.4 An reverse exchange lemma

We just saw that the exchange graph has a perfect matching between independent sets
of the same size. We now show the converse, namely that a unique perfect matching
between an independent set Y and any set Z implies that Z is also independent. In the
following, we will consider perfect matchings in the graph H (M ,Y ) between Y ∆Z . What
we mean is a perfect matching N , matching nodes in Y \ Z to nodes in Z \ Y and each
edge (y, z) ∈ N satisfies (Y \ y)∪ {z} ∈ I .

Y Z

Lemma 3.3. Let M = (X ,I) be a matroid and let Y ∈ I be an independent set and let
Z ⊆ X be any set with |Z | = |Y |. Suppose that there exists a unique perfect matching N

in H (M ,Y ) between Y ∆Z . Then Z ∈ I .

Proof. Let E = {(y, z)∈ (Y \Z )×(Z \Y ) | (Y /y)∪{z}∈ I} be all the exchange edges between
Y \ Z and Z \ Y .
Claim: E has a leaf1 y ∈ Y /Z .
Proof of claim: By assumption there is a perfect matching N ⊆ E . Start at any node
w ∈ Y ∆Z . If you are on the “right side” Z \ Y , then move along a matching edge in N ; if
we are on the left hand side Y \ Z , take a non-matching edge. If we every revisit a node,

1Recall that a leaf is a degree-1 node.
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then we have found an even length path C ⊆ E that alternates between matching edges
and non-matching edges. Hence N∆C is again a perfect matching, which contradicts the
uniqueness. That implies that our path will not revisit a node, but that it will get stuck
at some point. It cannot get stuck at a node in Z /Y because there is always a matching
edge incident. Hence it can only get stuck at a node y ∈ Y /Z that is only incident to one
edge (y, z) and that edge must be in N .

y

Y /Z

z

Z /Y

∈ E

Let z denote the element with (y, z) ∈ N . Note that Z ′ := (Z \ z)∪ {y} satisfies |Y ∆Z ′| =
|Y ∆Z | − 2 and there is still exactly one perfect matching between Y ∆Z ′ (which is N \
{(y, z)}). Hence we can apply induction and assume that Z ′ ∈ I .
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We know that r ((Y ∪ Z ) \ y) ≥ r ((Y \ y)∪ {z}) = |Y |. By the matroid exchange property,
there is some element x ∈ (Y ∪Z )/y so that S := (Z ′/y)∪ {x} is an independent set of size
|Y |. If x = z then Z = S ∈ I and we are done. Otherwise, x ∈ Y /Z .

Y Z

S

y z
x

As |S| > |Y \ y |, there must be an exchange edge between y and a node in S/Y . That
contradicts the choice of y .

3.5 The algorithm

Now, suppose that we have two matroids M1 = (X ,I1) and M2 = (X ,I2) over the same
ground set. Our algorithm starts with the independent set Y := ; and then augments
it iteratively. Suppose we already have some joint independent set Y ∈ I1 ∩I2. We will
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show how to either find another set Y ′ ∈ I1 ∩I2 with |Y ′| = |Y | + 1 or decide that Y is
already optimal. Let us define sets

X1 := {y ∈ X \ Y | Y ∪ {y} ∈ I1} and X2 := {y ∈ X \ Y | Y ∪ {y} ∈ I2}

In other words, X1 denotes the elements that could be added to the independent set Y so
that we would still have an independent set in M1. We define a directed graph H = (X ,E )
as follows: for all y ∈ Y and x ∈ X /Y

(y, x)∈ E ⇔ (Y /y)∪ {x} ∈ I1

(x, y)∈ E ⇔ (Y /y)∪ {x} ∈ I2

Let us check what this graph does for bipartite graphs (and M1, M2 are the partition
matroids modelling both sides). In this case Y corresponds to a matching, X1 are edges
whose left-side node is unmatched by Y and X2 are edges whose right-side node is un-
matched. We also observe that a Y -augmenting path corresponds to a directed path in
H .
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With a bit care, we can use the concept of augmenting paths also for general matroid.

Lemma 3.4. Suppose there exists a directed path z0, y1, z1, . . . , ym , zm starting at a vertex
z0 ∈ X1 and ending at a node zm ∈ X2. If that is a shortest path, then

Y ′ := (Y \ {y1, . . . , ym})∪ {z0, . . . , zm} ∈ I1 ∩I2

Proof. We will show that Y ′ ∈ I1, the other inclusion follows by symmetry. On the figure
below, on the left hand side, we consider the directed path and on the right hand side,
we consider only edges E of the exchange graph H (M1,Y ) that run between Y \ Z and
Z \ Y for Z := (Y \ {y1, . . . , ym})∪ {z1, . . . , zm} = Y ′ \ y0.
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Note that the edges {(zi , yi ) : i = 1, . . . ,m} from the directed path form a perfect matching
on Y ∆Z . While E may contain more edges than that, it does not contain a coord, which
is an edge (yi , z j ) with j > i . The reason is that in this case our X1-X2 path would not
have been the shortest possible one as we could have used the coord as shortcut. Now,
consider the “complete” cordless graph E∗ := {(yi , z j ) : i ≥ j }. Then this graph does have
only one perfect matching. In particular, (y1, z1) has to be in a matching — then apply
induction.
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As the matching on Y ∆Z is unique, by Lemma 3.3 we have Z = Y ′/z0 ∈ I1. We know
that rM1 (Y ∪Y ′) ≥ rM1 (Y ∪ {z0}) ≥ |Y | + 1 since z0 ∈ X1 is one of the “M1-augmenting”
elements. One the other hand rM1 (Y ∪Y ′/{z0}) ≤ |Y | as none of the other elements of Y ′

is in X1 (here we use again that we have a shortest path). Hence, the only element that
could possibly augment Y ′/z0 to an independent set of size |Y |+1 is z0 itself.

Lemma 3.5. Suppose there is no path from a node in X1 to a node in X2. Then Y is
optimal. In particular we can find a subset U ⊆ X so that |Y | = rM1 (U )+ rM2 (X \U ).

Proof. Let U := {i ∈ X : ØX1−i path in H } (or maybe more intuitively, X \U are the nodes
that are reachable from X1).
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First, we claim that rM1 (U ) = |Y ∩U |. One direction is easy: rM1 (U ) ≥ rM1 (U ∩Y ) =
|U ∩ Y |. For the other direction, suppose for the sake of contradiction that rM1 (U ) >
|Y ∩U | and hence there is some x ∈U so that (Y ∩U )∪ {x} is an independent set of size
|Y ∩U |+1. There are two case depending on whether or not x also increases the rank of
Y itself:

• Case rM1 (Y ∪ {x}) = |Y |+1. Then x ∈ X1 ∩U , which is a contradiction to the choice
of U .

• Case: rM1 (Y ∪{x}) = |Y |. Take a maximal independent set Z with (Y ∩U )∪{x} ⊆ Z ⊆
Y ∪ {x}. Then there is exactly one element y ∈ Y /U , so that Z = (Y /y)∪ {x}. This
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implies that we have would contain a directed edge (y, x). Then the node x ∈U is
reachable from a element y ∉U , which contradicts the definition of U .

From the contradiction we obtain that indeed rM1 (U ) = |Y ∩U |. Similarly one can show
that rM2 (X /U ) = |Y ∩ (X /U )| (which we skip for symmetry reasons). Overall, we have
found a set U so that |Y | = |Y ∩U |+ |Y ∩ (X \U )| = rM1 (U )+ rM2 (X \U ).

It follows that:

Theorem 3.6. Matroid intersection can be solved in polynomial time.

Proof. Start from Y :=; and iteratively construct the directed exchange graph; compute
shortest X1-X2 paths and augment Y as long as possible.

The matroids that we have seen so far, all had some explicit representation. Note that
the matroid intersection algorithm would work also in the black box model, where the
only information that we have about the matroids is given by a so-called independence

oracle. This is method that receives a set Y ⊆ X and simply answers whether or not this
is an independent set.

Our algorithm provides a nice min-max formula for the size of joint independent
sets:

Theorem 3.7 (Edmond’s matroid intersection theorem). For any matroids M1 = (X ,I1)
and M2 = (X ,I2) one has

max{|S| : S ∈ I1 ∩I2} = min
U⊆X

{rM1 (U )+ rM2 (X \U )}

Proof. We saw the inequality “≤” already in Lemma 3.2. When the matroid intersection
algorithm terminates, then it has found a set U providing equality.


