Problem Set 3

514 - Networks and Combinatorial Optimization

Autumn 2022

Exercise (Not in Schrijver's notes — 10 pts)

- (a) Consider $P := \{x \in \mathbb{R}^n \mid Ax = b, x \ge \mathbf{0}\}$ for $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. Fix a point $y \in P$ that minimizes $|\operatorname{supp}(y)|$ where $\operatorname{supp}(y) := \{j \in \{1, \dots, n\} \mid y_j \ne 0\}$. Prove that $|\operatorname{supp}(y)| \le m$.
- (b) Let $X \subseteq \mathbb{R}^n$. For any $x \in \text{conv}(X)$, there is a subset $X' \subseteq X$ with $|X'| \le n+1$ so that $x \in \text{conv}(X')$.

Exercise 2.20 (10pts)

Let $A \in \mathbb{R}^{m \times n}$ and let $b \in \mathbb{R}^m$ with $m \ge n+1$. Suppose that $Ax \le b$ has no solution x. Prove that there are indices i_0, \ldots, i_n so that the system $A_{i_0}^T x \le b_{i_0}, \ldots, A_{i_n}^T x \le b_{i_n}$ has no solution x.

Exercise 2.27 (10 pts)

Let $A \in \mathbb{R}^{m \times n}$, $c \in \mathbb{R}^n$, $b \in \mathbb{R}^m$. Let \tilde{x} be a feasible solution of $\max\{c^T x | Ax \le b\}$ and let \tilde{y} be a feasible solution to $\min\{y^T b | y \ge \mathbf{0}; y^T A = c^T\}$. Prove that \tilde{x} and \tilde{y} are optimum solutions to the maximum and minimum, respectively if and only if for each i = 1, ..., m one has: $\tilde{y}_i = 0$ or $A_i^T \tilde{x} = b_i$.

Remark. The last two exercises are taken from A. Schrijver's 2009 lecture notes.