Problem Set 3

514 - Networks and Combinatorial Optimization

Autumn 2022

Exercise (Not in Schrijver's notes - 10 pts)

(a) Consider $P:=\left\{x \in \mathbb{R}^{n} \mid A x=b, x \geq 0\right\}$ for $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$. Fix a point $y \in P$ that minimizes $|\operatorname{supp}(y)|$ where $\operatorname{supp}(y):=\left\{j \in\{1, \ldots, n\} \mid y_{j} \neq 0\right\}$. Prove that $|\operatorname{supp}(y)| \leq m$.
(b) Let $X \subseteq \mathbb{R}^{n}$. For any $x \in \operatorname{conv}(X)$, there is a subset $X^{\prime} \subseteq X$ with $\left|X^{\prime}\right| \leq n+1$ so that $x \in \operatorname{conv}\left(X^{\prime}\right)$.

Exercise 2.20 (10pts)

Let $A \in \mathbb{R}^{m \times n}$ and let $b \in \mathbb{R}^{m}$ with $m \geq n+1$. Suppose that $A x \leq b$ has no solution x. Prove that there are indices i_{0}, \ldots, i_{n} so that the system $A_{i_{0}}^{T} x \leq b_{i_{0}}, \ldots, A_{i_{n}}^{T} x \leq b_{i_{n}}$ has no solution x.

Exercise 2.27 (10 pts)

Let $A \in \mathbb{R}^{m \times n}, c \in \mathbb{R}^{n}, b \in \mathbb{R}^{m}$. Let \tilde{x} be a feasible solution of $\max \left\{c^{T} x \mid A x \leq b\right\}$ and let \tilde{y} be a feasible solution to $\min \left\{y^{T} b \mid y \geq \mathbf{0} ; y^{T} A=c^{T}\right\}$. Prove that \tilde{x} and \tilde{y} are optimum solutions to the maximum and minimum, respectively if and only if for each $i=1, \ldots, m$ one has: $\tilde{y}_{i}=0$ or $A_{i}^{T} \tilde{x}=b_{i}$.

Remark. The last two exercises are taken from A. Schrijver's 2009 lecture notes.

