Problem Set 4

514 - Networks and Combinatorial Optimization

Autumn 2022

Exercise 3.3 (10pts)

Prove that in a matrix, the maximum number of non-zero entries with no two in the same line (=row or column), is equal to the minimum number of lines that include all nonzero entries.

Example: Consider the following matrix

$$
A=\left(\begin{array}{ccc}
* & 0 & 0 \\
* & * & * \\
* & 0 & 0
\end{array}\right)
$$

where $*$ means any non-zero entry. Then the non-zero entries can be covered by two lines (2 nd row and first column) and this is optimal. Also we can select at most 2 non-zero entries that have all rows and columns distinct - for example the two entries $(1,1)$ and $(2,2)$ on the diagonal.

Exercise 3.5 (10pts)

Let $\mathcal{A}=\left(A_{1}, \ldots, A_{n}\right)$ be a family of subsets of some finite set X. Prove that \mathcal{A} has an SDR if and only if

$$
\left|\bigcup_{i \in I} A_{i}\right| \geq|I|
$$

for each subset $I \subseteq\{1, \ldots, n\}$.
Remark: Recall that an SDR is an injective map $\pi:[n] \rightarrow X$ with $\pi(i) \in A_{i}$ for all $i=1, \ldots, n$.

Exercise 3.11 (10pts)

A matrix is called doubly-stochastic if it is nonnegative and each row sum and each column sum is equal to 1 . A matrix is palled a permutation matrix if each entry is 0 or 1 and each column and each row contains exactly one 1 .
i) Show that for each doubly stochastic matrix $A=\left(a_{i j}\right)_{i, j=1, \ldots, n}$, there exists a permutation $\pi \in S_{n}$ so that $a_{i, \pi(i)} \neq 0$ for all $i=1, \ldots, n$.
ii) Derive that each doubly stochastic matrix is a convex linear combination of permutation matrices.

Hint: Set up a bipartite graph and prove the claim using Theorem 3.3) in Schrijver's notes
Remark. All three exercises are taken from A. Schrijver's lecture notes.

