Problem Set 5

514 - Networks and Combinatorial Optimization

Autumn 2022

Exercise 8.8 (10pts)

Let A be a totally unimodular matrix. Show that the columns of A can be split into two classes such that the sum of the columns in one class minus the sum of the columns in the other class, gives a vector with entries in $0,+1$ and -1 only.

Exercise (modified from Schrijver - 10pts)

Let A be a totally unimodular matrix and let b be an integer vector and consider the polyhedron $P=$ $\left\{x \in \mathbb{R}^{n} \mid A x \leq b, x \geq 0\right\}$. Prove that for each $y \in(k P) \cap \mathbb{Z}^{n}$ with $k \in \mathbb{Z} \geq 1$, there are $x^{1}, \ldots, x^{k} \in P \cap \mathbb{Z}^{n}$ so that $y=x^{1}+\ldots+x^{k}$.
Hint. Prove this by induction over k.

Exercise 8.10 (slightly modified; 10pts)

Give a min-max relation for the maximum weight of a stable set in a bipartite graph $G=(V, E)$ without isolated vertices.
Comment. What is meant is that you are given a bipartite graph $G=(V, E)$ and a non-negative integer weight function $w: V \rightarrow \mathbb{Z}_{\geq 0}$ and you are asked to find an expression of the form $\min \{\ldots\}$ that equals the maximum of $\sum_{i \in S} w_{i}$ over all stable sets $S \subseteq V$.

Remark. All three exercises are taken from A. Schrijver's lecture notes where the middle one is somewhat modfied.

