Problem Set 5

514 - Networks and Combinatorial Optimization

Autumn 2022

Exercise 8.8 (10pts)

Let *A* be a totally unimodular matrix. Show that the columns of *A* can be split into two classes such that the sum of the columns in one class minus the sum of the columns in the other class, gives a vector with entries in 0, +1 and -1 only.

Exercise (modified from Schrijver – 10pts)

Let *A* be a totally unimodular matrix and let *b* be an integer vector and consider the polyhedron $P = \{x \in \mathbb{R}^n \mid Ax \le b, x \ge \mathbf{0}\}$. Prove that for each $y \in (kP) \cap \mathbb{Z}^n$ with $k \in \mathbb{Z}_{\ge 1}$, there are $x^1, \ldots, x^k \in P \cap \mathbb{Z}^n$ so that $y = x^1 + \ldots + x^k$. **Hint.** Prove this by induction over *k*.

Exercise 8.10 (slightly modified; 10pts)

Give a min-max relation for the maximum weight of a stable set in a bipartite graph G = (V, E) without isolated vertices.

Comment. What is meant is that you are given a bipartite graph G = (V, E) and a non-negative integer weight function $w : V \to \mathbb{Z}_{\geq 0}$ and you are asked to find an expression of the form min $\{...\}$ that equals the maximum of $\sum_{i \in S} w_i$ over all stable sets $S \subseteq V$.

Remark. All three exercises are taken from A. Schrijver's lecture notes where the middle one is somewhat modfied.