Problem Set 6

514 - Networks and Combinatorial Optimization

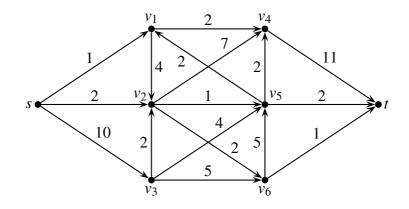
Autumn 2022

Exercise 4.5 (10pts)

Let D = (V,A) be a directed graph and let $s, t \in V$. Let $f : A \to \mathbb{R}_{\geq 0}$ be an *s*-*t* flow of value β . Show that there exists an *s*-*t* flow $f' : A \to \mathbb{Z}_{\geq 0}$ of value $\lceil \beta \rceil$ so that $\lfloor f(a) \rfloor \leq f'(a) \leq \lceil f(a) \rceil$ for every $a \in A$.

Exercise 4.7(i) (10pts)

In the following graph D = (V,A) (edges labelled with capacities c(a)), compute a maximum *s*-*t* flow under *c* and a minimum *s*-*t* cut $\delta^{out}(U)$. What are their values? It suffices to state the final outcomes.



Exercise (Not in Schrijver – 10pts)

Let D = (V,A) be a directed graph with two distinguished nodes $s, t \in V$. A set U is called an *s*-*t* vertex cut if $U \subseteq V \setminus \{s,t\}$ and every *s*-*t* path intersects U. A collection of *s*-*t* paths P_1, \ldots, P_N is called *internally vertex disjoint* if they have no nodes in common other than *s* and *t*. Prove the following using the MaxFlow=MinCut Theorem: Let D = (V,A) be a directed graph with $s,t \in V$ so that $(s,t) \notin A$. Then the maximum number of internally vertex-disjoint *s*-*t* paths equals the minimum |U| where U is an *s*-*t* vertex cut.

Hint: Create an auxiliary graph and apply the MaxFlow=MinCut Theorem there!

Remark. Two exercises are taken from A. Schrijver's lecture notes.