Problem Set 7

514 - Networks and Combinatorial Optimization

Autumn 2022

Exercise 4.15 (10pts)

Let D = (V, A) be a directed graph and let C be the collection of directed circuits in D. For each directed circuit C in D, let χ^C be the incidence vector of C, that is $\chi^C : A \to \{0, 1\}$ with $\chi^C(a) = 1$ if C traverses a and $\chi^C(a) = 0$ otherwise. Show that f is a non-negative circulation if and only if there exists a function $\lambda : C \to \mathbb{R}_{\geq 0}$ so that $f = \sum_{C \in C} \lambda(C) \cdot \chi^C$. That is, the nonnegative circulations form the cone generated by $\{\chi^C | C \in C\}$.

Exercise (Not in Schrijver – 10pts)

First answer the following:

(i) Let D' = (V, A') be a directed graph with capacities c' and $s, t \in V$. We call an *s*-*t* flow $g: A' \to \mathbb{R}_{\geq 0}$ *elementary* if there is a single *s*-*t* path *P* in *D'* so that

$$g(a) = \begin{cases} \text{value}(g) & \text{if } a \in P \\ 0 & \text{if } a \notin P \end{cases}$$

Now let f^* be a maximum *s*-*t* flow in *D* under *c'*. Prove that there is an elementary *s*-*t* flow *g* under *c'* with value $(g) \ge \frac{1}{|A'|}$ value (f^*) .

Now let D = (V,A) be a directed graph with integral capacities $c : A \to \mathbb{Z}_{\geq 0}$, distinguished vertices $s, t \in V$ and for the sake of simplicity suppose that for each arc $a \in A$ one has $a^{-1} \notin A$. Recall that $D_f = (V,A_f)$ is the residual graph for an *s*-*t* flow *f*. We can also define *residual capacities* $c_f(a) := c(a) - f(a)$ for $a \in A$ with f(a) < c(a) and $c_f(a^{-1}) := f(a)$ for $a \in A$ with f(a) > 0.

- (ii) Let f be any flow under c and let f^* be a maximum value s-t flow. Prove that the residual graph D_f contains an s-t path P where $c_f(a) \ge \frac{1}{2|A|}(\text{value}(f^*) \text{value}(f))$ for all $a \in P$.
- (iii) Consider the modification of the Ford-Fulkerson algorithm where in each iteration we pick an *s*-*t* path *P* that maximizes $\min\{c_f(a) : a \in P\}$ where *f* is the current flow. Prove that this algorithm takes at most $O(|A| \ln(2\text{value}(f^*)))$ many iterations.

Exercise (Not in Schrijver – 10pts)

Let D = (V,A) be a directed graph with capacities c(a) := 1 for all $a \in A$. Let $s, t \in V$ and assume that $\delta^{out}(t) = \emptyset$. Let $\delta^{in}(t) = \{a_1, \dots, a_m\}$ be the arcs incoming to t. Define $M = (X, \mathcal{I})$ with $X := \{a_1, \dots, a_m\}$ and $\mathcal{I} := \{\{a_i \in X : f(a_i) = 1\} \mid f \text{ is an } s \text{-} t \text{ flow under } c \text{ in } D\}$. Prove that M is a matroid!

Remark. The first exercise is taken from A. Schrijver's lecture notes.