Problem Set 8

514 - Networks and Combinatorial Optimization

Autumn 2022

Exercise 5.2 (10pts)

Let $G=(V, E)$ be a 3-regular graph without any bridge. Show that G has a perfect matching. (A bridge is an edge e not contained in any circuit; equivalently, deleting e increases the number of components; equivalently $\{e\}$ is a cut.)

Exercise 5.4 (10pts)

Let $G=(V, E)$ be a graph and let T be a subset. Then G has a matching covering T if and only if the number of odd components of $G \backslash W$ contained in T is at most $|W|$, for each $W \subseteq V$.

Exercise 5.23 (10pts)

Recall that for a graph $G=(V, E)$ we have defined $P_{\text {matching }}(G)=\operatorname{conv}\left\{\chi^{M} \in \mathbb{R}^{E} \mid M \subseteq E\right.$ is a matching $\}$. Prove that for any $k \in \mathbb{N}$,

$$
P_{\text {matching }}(G) \cap\left\{x \in \mathbb{R}^{E} \mid \mathbf{1}^{T} x=k\right\}=\operatorname{conv}\left\{\chi^{M} \mid M \subseteq E \text { is a matching with }|M|=k\right\}
$$

Hint: Let $\mathcal{F}:=\{M \subseteq E \mid M$ is a matching $\}$. For the non-trivial direction, take a vector $x^{*} \in P_{\text {matching }}(G) \cap$ $\left\{x \in \mathbb{R}^{E} \mid \mathbf{1}^{T} x=k\right\}$ and consider the vector $\lambda \in \mathbb{R}_{\geq 0}^{\mathcal{F}}$ that minimizes the function $G(\lambda):=\sum_{M \in \mathcal{F}} \lambda_{M}$. $||M|-k|$ subject to $\sum_{M \in \mathcal{F}} \lambda_{M}=1$ and $x^{*}=\sum_{M \in \mathcal{F}} \lambda_{M} \chi^{M}$.

Remark. All three exercises are taken from A. Schrijver's lecture notes.

