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Chapter 1

Minimum Spanning Trees

1.1 Foreword

Discrete optimization deals with finding the best solution out of a finite number
of possibilities in a computationally efficient way. Typically the number of possible
solutions is exponentially large and in order to obtain an optimum solution efficiently,
insights into the problem structure are required to succeed. These lecture notes are to
a good part based on the excellent lecture notes by Schrijver [Sch17] (in particular our
earlier chapters). Other parts are based on different sources that will be mentioned
at the beginning of the respective chapters. The reader should understand that
these notes are solely created for reference for the students of the Math 514 course
and we do not claim any originality in the exposition or in the results. In case
of any correctness issues, the reader is refered to the original work. Sections that
are somewhat optional and are not necessarily covered in every iteration of 514 are
marked with *.

1.2 Undirected graphs

Many mathematical optimization problems can be naturally phrased as a problem
on networks or graphs. For that reason we introduce the most common terms.
Unfortunately, many graph theory terms are not standardized; we follow here the
definitions of Diestel [Die12].

An undirected graph is of the form G = (V,E) where V is a finite set and
E ⊆ {{u, v} : u, v ∈ V, u 6= v}. We call V the vertices and E the edges of G. Here
is a visualization of an example graph:
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1

2

3

4

5

Graph G = (V,E) with V = {1, 2, 3, 4, 5}
and E = {{1, 2}, {1, 3}, {2, 4}, {3, 4}, {3, 5}}

We also write G = (V (G), E(G)). We will also use the terms vertices and nodes
interchengably. Given a graph G = (V,E), and a subset U ⊆ V , the edge set
δ(U) = {{u, v} ∈ E | |{u, v} ∩ U | = 1} is called a cut. For example, the bold edges
in the figure below form a cut.

U

A subgraph of G = (V (G), E(G)) is a graph H = (V (H), E(H)) where V (H) ⊆
V (G) and E(H) ⊆ E(G) with the restriction that if {i, j} ∈ E(H) then i, j ∈ V (H).

If V ′ ⊆ V (G), then the subgraph induced by V ′ is the graph (V ′, E(V ′)) where
E(V ′) is the set of all edges in G for which both vertices are in V ′.

A subgraph H of G is a spanning subgraph of G if V (H) = V (G), i.e. the
subgraph contains all vertices of the original graph.

A walk in a graph G = (V,E) is a sequence of vertices and edges v0, e1, v1, e2, v2,
e3, . . . , ek, vk, such that for i = 0, . . . , k, vi ∈ V, ei ∈ E where ei = {vi−1, vi}.

v0

v7

v1 = v6 v2 = v5

v3

v4

e1
e2 = e6

e3

e4

e5e7

a walk of length 7

A walk in which start and end vertex are identical, i.e. v0 = vk, is a closed walk.

v0 = v6

v1

v2 = v5
v3

v4

e1

e2

e3

e4

e5

e6

closed walk of length 6

A path is a graph P = (V,E) with vertices V = {v0, v1, . . . , vk} and edges
E = {{v0, v1}, {v1, v2}, . . . , {vk−1, vk}} and all v0, . . . , vk are distinct. The length of
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the path is the number of edges in the path which equals k. We refer to such a path
as (v0, vk)-path if we want to emphasize the endpoints.

v0 v1 . . . vk

path

A cycle is a graph G = (V,E) with V = {v0, v1, . . . , vk−1} and E = {{v0, v1}, {v1, v2}, . . . , {vk−1, v0}}
where v0, . . . , vk−1 are distinct and k ≥ 3.

v0

v1 . . .

vk−1

cycle with k = 5 vertices and edges

A graph G is acyclic if it contains no cycle as subgraphs. An acyclic graph is called
a forest. A connected forest T = (V (T ), E(T )) is a tree.

forest tree T

A subgraph T = (V (T ), E(T )) is a spanning tree of G, if T is spanning, connected
and acyclic.

spanning tree

A Hamiltonian circuit of G is a subgraph that is a spanning cycle.

Hamiltonian circuit/tour

Given a graph G = (V,E) we can define an equivalence relation so that u ∼ v if
there exists a u-v path in G. Let V1, . . . , Vk be the equivalence classes of that relation.
Then the induced subgraphs G[V1], . . . , G[Vk] are called (connected) components of
G.
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V1 V2

V3

(connected) components

A set M ⊆ E of edges with degree at most 1 for each vertex is called matching. A
set M ⊆ E of edges with degree exactly 1 for each vertex is called perfect matching.

matching perfect matching

We want to make the following convention: Formally speaking paths / trees
/ spanning trees / cycles / Hamiltonian circuits are defined as (sub)graphs H =
(V (H), E(H)). Often we will refer to an edge set E(H) as paths (or trees etc) in
which case the subgraph is meant that contains all the vertices incident to E(H).

1.3 Minimum Spanning Trees

This section is a reproduction of Section 1.4 in [Sch17]. The first problem that we
discuss will be the one of finding the cheapest spanning tree in a graph:

Minimum Spanning Tree

Input: Undirected graph G = (V,E), length function ℓ : E → R
Goal: A spanning tree T of G (i.e. E(T ) ⊆ E(G)) minimizing ℓ(T ) :=
∑

e∈E(T ) ℓ(e).

1

3

2

3

1
1

1

4

3
2

4
4

graph G = (V,E)

1

3

2

3

1
1

1

minimum spanning tree T

One may easily imagine applications to designing road systems, electrical power lines
or telephone lines. We summarize two facts on spanning trees (we leave the proofs
to the reader).

Lemma 1.1. Let T be a spanning connected subgraph of G. The following condi-
tions are equivalent
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• T is a spanning tree (i.e. acyclic).

• One has |E(T )| = |V (T )| − 1.

• For each edge e = {u, v} ∈ E there exists a unique u-v path in T .

Lemma 1.2. Let T be a spanning tree in G. Suppose e ∈ E(G) \ E(T ) and let
f be any edge on the unique path in T between the end points of e. Then T ′ =
(V (T ), E(T ) \ {f} ∪ {e}) is again a spanning tree in G.

f

e

spanning tree T

e

spanning tree T ′

The Dijkstra-Prim algorithm

We suggest the following algorithm:

Dijkstra-Prim Algorithm

Input: A connected graph G with edge costs ℓ : E → R.
Output: A MST T of G.

(1) Choose any v ∈ V and set T := ({v}, ∅)
(2) WHILE V (T ) 6= V

(3) Choose e ∈ δ(V (T )) of minimal length
(4) Add e to E(T ) (and include endpoint of e)

We would like to note that the earliest algorithm for finding an MST is due to
Boruvka (1926). Later variants appeared by Dijkstra [Dij59] and Prim [Pri57].

The algorithm above is also called a “Greedy algorithm”. While there is no
formal definition of what a greedy algorithm is, typically a greedy algorithm builds
a solution iteratively by selecting the cheapest option in every step without looking
ahead or revising past choices. We will now prove that the Disjkstra-Prim algorithm
always finds an optimum solution. The following definition will be useful:

Definition 1.3. Fix a graph G and length function ℓ. A forest F (in G) is called
greedy if there exists a minimum spanning tree T with E(F ) ⊆ E(T ).

Intuitively, this means a forest is greedy if it can be extended to a minimum
spanning tree. Now to the main technical claim that shows how one can grow a
forest while keeping it greedy:
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Proposition 1.4. Let F be a greedy forest, U be one of the connected components.
If e ∈ δ(U) is an edge of minimum length in δ(U), then F ∪ {e} is again a greedy
forest.

Proof. Let F be a greedy forest and let U be one of its connected components U .
As F is greedy, there must be some MST T with E(T ) ⊇ E(F ).

F

U

T

Select e ∈ δ(U) of minimum length. Since T is a spanning tree, there must be a
unique path P in T between the endpoints of e. Since one endpoint of P lies in U
and one endpoint lies outside of U , there must be an edge f ∈ E(P ) ∩ δ(U).

F

U

f

T

e

We have ℓ(e) ≤ ℓ(f) by assumption and moreover T ′ := (V, (E(T ) \ {f}) ∪ {e}) is
a spanning tree. Then ℓ(T ′) = ℓ(T ) − ℓ(f) + ℓ(e) ≤ ℓ(T ) and hence T ′ is an MST
that includes F ∪ {e}.

Using this proposition it is easy to prove correctness of the Dijkstra-Prim algo-
rithm.

Corollary 1.5. The Dijkstra-Prim algorithm yields a MST of G.

Proof. At start T = ({v}, ∅) is a greedy forest. In every step, the Dijkstra-Prim
algorithm selects a cheapest edge in δ(V (T )), hence by Proposition 1.4, T remains
a greedy forest. At the end, T is a spanning tree that is greedy. By definition of
greedyness, there must be an MST T ∗ with E(T ) ⊆ E(T ∗), but then T ∗ = T .

Kruskal’s algorithm

One can also construct a different greedy-style algorithm that selects edges without
keeping the edge set connected.
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Kruskal’s Algorithm

Input: A connected graph G with edge costs ℓ : E → R.
Output: A MST T of G.

(1) Sort the edges such that ℓ(e1) ≤ ℓ(e2) ≤ . . . ≤ ℓ(em).

(2) Set T = (V, ∅)

(3) For i from 1 to m do
If T ∪ {ei} is acyclic then update T := T ∪ {ei}.

We will also prove correctness for Kruskal’s algorithm:

Theorem 1.6. Kruskal’s algorithm computes an MST.

Proof. In fact, we will use the same Proposition 1.4. Again, at the beginning (V, ∅)
is trivially a greedy forest. In every step we add a cheapest edge crossing one of the
connected components. So we again terminate with a connected greedy forest which
must be an MST.

1.4 The Maximum Reliability Problem

Minimum spanning trees have numerous applications. Here we will showcase one.
We are given a graph G = (V,E) and a function s : E → R≥0 where we call s(e) the
strength of an edge. For a path P in G, we define the reliability as

r(P ) := min
e∈E(P )

s(e)

Moreover, for a pair u, v ∈ V , define the reliability as

rG(u, v) := max{r(P ) : P is u-v path in G}

One can imagine that G is a communication network and if we send data between
u and v along a path P then the minimal bandwidth on any edge determines the
data rate. Naturally we would be interested in determining the u-v path P that
maximizes the data rate, which would define rG(u, v).

P
u v

We will not only prove that one can use an MST algorithm to solve the maximum
reliability problem, but also show that an MST with respect to lengths −s(e) provides
a compact solution:
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Theorem 1.7. Let T be a spanning tree in G maximizing
∑

e∈E(T ) s(e). Then
rT (u, v) = rG(u, v) ∀u, v ∈ V .

Proof. It suffices to prove that rT (u, v) ≥ rG(u, v). Fix a u-v path P in G. We
need to prove that there is a path Q in T so that r(Q) ≥ r(P ). Let v0, . . . , vm be
the nodes of P with {vi−1, vi} ∈ E(P ) and let Qi be the unique vi−1-vi path in T .
We know by optimality of T that s(e) ≥ s(vi−1, vi) for all e ∈ E(Qi). Let Q be
concatenation of Q1, . . . , Qm. Then Q is a u-v walk in T with r(Q) ≥ r(P ).

u
vi−1 vi

vP

Qi

1.5 Exercises

Exercise 1.1.

Find, both with the Dijkstra-Prim algorithm and with Kruskal’s algorithm, a spanning tree
of minimum length in the graph in the figure below.

v1 v2 v3 v4

v5v6v7v8

v9 v10 v11

3

3

4

6
3

5

3
7

4

2

2

1

3

4

6
2

2

4
45

5 3

Source: This exercise is taken from Schrijver [Sch17].

Exercise 1.2.

Let G = (V,E) be a graph and let ℓ : E → R be a length function. Call a forest F good if
ℓ(F ′) ≥ ℓ(F ) for each forest satisfying |F ′| = |F |.

Let F be a good forest and e be an edge not in F so that F ∪ {e} is a forest and such

that (among all such e) ℓ(e) is as small as possible. Show that F ∪ {e} is good again.

Source: This exercise is taken from Schrijver [Sch17].



Chapter 2

Matroids — the basics

This chapter is a reproduction of Chapters 10.1 and 10.3 in Schrijver [Sch17]. Let us
recall Kruskal’s algorithm from Chapter 1.3 to find an MST in a graph G = (V,E)
with |E| = m and length function ℓ : E → R:

(1) Sort the edges such that ℓ(e1) ≤ ℓ(e2) ≤ . . . ≤ ℓ(em).

(2) Set T = (V, ∅)

(3) For i from 1 to m do
If T ∪ {ei} is acyclic then update T := T ∪ {ei}.

While Kruskal’s algorithm is a greedy algorithm we have proven that for any graph
and any weights ℓ, it always finds the optimum. Clearly one can design very similar
greedy-style algorithms for other problems. For example, suppose we wanted to find
a maximum weight matching in a graph G = (V,E). If in the graph below we select
the maximum weight edge first, then we will arrive at a solution of value 4 + 1 = 5
while there is a better matching of value 3 + 3 = 6.

d

a b

c

1

3

4

3

Certainly some structure is needed so that greedy solutions are optimal. That struc-
ture is precisely captured by matroids!

Definition 2.1. A matroid is a pair M = (X, I) where X is a finite set and I ⊆ 2X

so that the following holds:

(i) Non-emptyness: ∅ ∈ I

(ii) Monotonicity: If Y ∈ I and Z ⊆ Y then Z ∈ I .

15
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(iii) Exchange property: If Y,Z ∈ I and |Y | < |Z| then for some x ∈ Z \Y one has
Y ∪ {x} ∈ I .

The set X is called the ground set and the family of sets I is the family of
independent sets.

Definition 2.2. Let Y ⊆ X. A set B ⊆ Y is called a basis of Y if B ∈ I and for
all x ∈ Y \B one has B ∪ {x} /∈ I .

X Y Bb b b b b b b b

Phrased differently, a basis is an inclusion-wise maximal independent set (always
with respect to some set Y ⊆ X that does not need to be itself independent). We
state a lemma that we will prove in the exercises:

Lemma 2.3. Let M = (X, I) be a matroid and let Y ⊆ X. Any two bases B1, B2

of Y have the same cardinality, i.e. |B1| = |B2|.

Since bases of Y have the same cardinality it makes sense to give a name to that
quantity. We define the rank of Y as

rM (Y ) = max{|B| : B ⊆ Y and B ∈ I}

We define rank of the matroid M itself as rM (X). One can prove that the exchange
property (iii) is equivalent the property that all bases have the same cardinality.

Lemma 2.4. Let M = (X, I). Then M is a matroid if and only if

(i) ∅ ∈ I

(ii) If Y ∈ I and Z ⊆ Y then Z ∈ I

(iii’) For all Y ⊆ X, all maximally independent subsets of Y have the same cardi-
nality.

Again, we leave the proof for the exercises.

2.1 Examples of matroids

There are numerous examples of matroids. We will discuss two classes.
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Graphic matroids

Let G = (V,E) be an undirected graph. Then (E, I) with I := {F ⊆ E | F acyclic}
is a matroid. Such matroids are called graphic matroids. We can also describe the
rank function explicitly. For a set Y ⊆ E, let H1, . . . ,Hk be connected components
of the subgraph (V, Y ). Then one can see that

rkM (Y ) = |V | − k =

k∑

i=1

(|V (Hi)| − 1)

The linear matroid

Let V be a vectorspace (for example Rn). Pick any subset X := {v1, . . . , vn} ⊆ V
and let

I := {Y ⊆ X | Y linearly independent}

Then M = (X, I) is a matroid, called a linear matroid. In particular for Y ⊆ X one
has

rkM (Y ) = dim(span(Y ))

2.2 The Matroid Greedy Algorithm

We will now show that a Kruskal-type greedy algorithm can find a basis Y of a
matroid that maximizes

∑

x∈Y w(x) where w : X → R is any weight function.

The Matroid Greedy Algorithm

Input: Matroid M = (X, I) and weight function w : X → R.
Output: A basis Y maximizing w(Y ) :=

∑

x∈Y w(x).
(1) Sort the elements in X = {e1, . . . , en} such that w(e1) ≥ w(e2) ≥ . . . ≥

w(en).
(2) Set Y := ∅
(3) For i from 1 to n do

If Y ∪ {ei} ∈ I then update Y := Y ∪ {ei}.

Note that in case of a graphic matroid, the matroid greedy algorithm is identical
to Kruskal’s algorithm1. Now we will now prove that indeed for any matroid, the
algorithm finds an maximum weight basis. First we prove a simple lemma which is
a frequently used argument when dealing with matroids.

Lemma 2.5. Let M = (X, I) be a matroid and let Y ⊆ Z ⊆ X with Y ∈ I . Then
there exists a basis B ∈ I of Z with Y ⊆ B ⊆ Z.

1Note that since weights maybe negative, maximizing w(Y ) is equivalent to minimizing −w(Y ).
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Proof. Start with B := Y . As long as B is not yet a basis of Z, there is some element
x ∈ Z \B so that B ∪ {x} ∈ I . We iterate until B is a basis.

Now we come to the main theorem. Actually we will prove the stronger claim
that if we had chosen any weaker property instead of (iii), then the greedy algorithm
would fail for some weight function.

Theorem 2.6. Suppose M = (X, I) satisfies conditions (i) and (ii). Then the
following is equivalent:

(A) M is a matroid.

(B) For any weight function w : X → R, the greedy algorithm finds a maximum
weight basis.

Proof. (A) ⇒ (B). We fix a matrix M and a weight function w : X → R. We will
generalize the analysis of Kruskal’s algorithm.

Definition 2.7. We say an independent set Y ∈ I is greedy if there is a maximum
weight basis B with Y ⊆ B.

We prove how to grow an independent set while keeping it greedy.
Claim I. Suppose Y ∈ I is greedy and x ∈ X \ Y so that Y ∪ {x} ∈ I and w(x)
maximal. Then Y ∪ {x} is greedy.
Proof of Claim. By assumption, Y is greedy, hence there is a maximum weight
basis B with B ⊇ Y . If x ∈ B, then Y ∪ {x} ⊆ B and we are done! So suppose
x /∈ B. Construct basis B′ with Y ∪ {x} ⊆ B′ ⊆ B ∪ {x} (see Lemma 2.5). As
|B′| = |B| there is a unique element x′ ∈ B \B′. By choice of x, w(x) ≥ w(x′) and
so w(B′) ≥ w(B). Then Y ∪ {x} is greedy!

B′

B

Y x

x′

Let Yi ⊆ {e1, . . . , ei} be the set Y after iteration i in the algorithm.
Claim II. For all i, Yi is a basis of {e1, . . . , ei}.
Proof of Claim II. By construction, each Yi is an independent set. Suppose for
the sake of contradiction that for some i, Yi is not a basis of {e1, . . . , ei}. Then there
is some ej /∈ Yi with j ≤ i so that Yi ∪ {ej} ∈ I . In particular we did not select ej
in iteration j but from Yj ⊆ Yi we know that Yj ∪{ej} ∈ I which is a contradiction.
To finish the direction, note that Kruskal’s algorithm always adds the maximum
weight element x ∈ X \ Y so that Y ∪ {x} ∈ I . Hence the final independent set
Y will be greedy. By Claim II, the final independent set Y is also a basis of the
matroid.
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¬(A) ⇒ ¬(B). Now assume that M is not a matroid and in particular (iii) is
not satisfied. That means there are Y,Z ∈ I with k := |Y | < |Z| so that Y ∪{z} /∈ I
for all z ∈ Z \ Y . We claim that there is a weight function w : X → R for which the
greedy algorithm does not find the maximum weight basis. In fact, we define

w(x) :=







k + 2 if x ∈ Y

k + 1 if x ∈ Z \ Y
0 if x ∈ X \ (Y ∪ Z)

The greedy algorithm will pick all the elements in Y plus potentially some elements
in X \ (Y ∪ Z) (which have value 0. Then the value of the greedy solution is

w(Y ) = k(k + 2) < (k + 1)2 ≤ w(Z)

Y Z

k + 2 k + 2 k + 1 0

2.3 Exercises

Exercise 2.1.

Let (X, I) be a pair with X finite and I ⊆ 2X . Consider the following properties:

(i) ∅ ∈ I
(ii) If Y ∈ I and Z ⊆ Y , then Z ∈ I .

(iii) If Y, Z ∈ I and |Y | < |Z|, then Y ∪ {x} ∈ I for some x ∈ Z \ Y .

(iv) For any Y ⊆ X , any two bases of Y have the same cardinality.

Assume that (i)+(ii) hold. Prove that (iii) and (iv) are equivalent.

Source: This exercise is taken from Schrijver [Sch17].

Exercise 2.2.

Let M = (X, I) be a matroid. An inclusion-wise minimal dependent set Y ⊆ X is called a

circuit. Two elements x, y ∈ X are called parallel if {x, y} is a circuit. Show that if x and

y are parallel and Y ∈ I with x ∈ Y , then (Y \ {x}) ∪ {y} ∈ I .

Source: This exercise is taken from Schrijver [Sch17].



20 CHAPTER 2. MATROIDS — THE BASICS



Chapter 3

Polytopes, Polyhedra, Farkas

Lemma and Linear Programming

Discrete optimization is typically about optimization with a finite number of candi-
date solutions. On the other hand, convex programs and linear programs contain in
general an infinite number of points. We will later make the connection in Chapter 5.
First we give an introduction into linear programming and the related geometry. Here
we very closely follow Chapter 2 in Schrijver [Sch17].

3.1 Convex sets

We begin with a basic definition:

Definition 3.1. A set C ⊆ Rn is convex if for all x, y ∈ C and 0 ≤ λ ≤ 1 one has
λx+ (1− λ)y ∈ C.

Intuitively, for any pair of points x, y ∈ C in a convex set, the line segment
connecting them must lie inside C.

C
x y

convex

C

x y

not convex

The point λx+ (1−λ)y is called a convex combination of x and y. It is not difficult
to see that intersections of convex sets are again convex:

Lemma 3.2. Let Ci ⊆ Rn be convex for i ∈ I. Then
⋂

i∈I Ci is convex.

Proof. Let x, y ∈ ⋂

i∈I Ci and 0 ≤ λ ≤ 1. For any i ∈ I we have x, y ∈ Ci and hence
λx+ (1− λ)y ∈ Ci. Then λx+ (1− λ)y ∈ ⋂

iCi.

21
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C1

C2

C1 ∩C2
A consequence of this lemma is that for any set X ⊆ Rn there is a unique smallest
set containing X, which we denote by

conv(X) :=
⋂

C⊇X:C is convex

C

We can also give an alternative characterization of what the convex hull of X is:

Lemma 3.3. For any X ⊆ Rn one has

conv(X) =
{ t∑

i=1

λixi |
t ∈ N, x1, . . . , xt ∈ X,

λi ≥ 0 ∀i = 1, . . . , t and
∑t

i=1 λi = 1

}

x1

x2

x3

x4

x5

conv{x1, . . . , x5}

Definition 3.4. For c ∈ Rn \ {0} and δ ∈ R, the set H = {x ∈ Rn | cTx = δ}
is called an affine hyperplane. The set H≤ := {x ∈ Rn | cTx ≤ δ} is a (closed)
half-space and H< := {x ∈ Rn | cTx < δ} is a (open) half-space.

c

R2

closed halfspace H≤

c

R2

open halfspace H<

Definition 3.5. We say that a hyperplane H separates two sets X ⊆ Rn and
Y ⊆ Rn, if X and Y lie in different open halfspaces of H.

H

X

Y
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It is an important result that disjoint convex sets can always be separated by
a hyperplane. The reader may note that this result has an infinite-dimensional
analogue, called the Hahn-Banach Theorem. We denote B(z, r) := {x ∈ Rn | ‖x −
z‖2 ≤ r} as the Euclidean ball of radius r with center z.

Theorem 3.6 (Separating Hyperplane Theorem). Let C ⊆ Rn be a closed convex
set and z ∈ Rn \ C. Then there is a hyperplane separating z and C.

Proof. The claim is true if C = ∅, so suppose C 6= ∅.
Claim I. The minimum min{‖z − y‖2 : y ∈ C} is attained.
Proof of Claim I. Fix r > 0 with B(z, r) ∩C 6= ∅. Then min{‖z − y‖2 : y ∈ C} =
min{‖z − y‖2 : y ∈ B(z, r) ∩ C}.

C z

Moreover the set B(z, r) ∩ C is compact and the map y 7→ ‖z − y‖2 is continuous.
The claim then follows.

Now to the main statement. Fix the point y ∈ C minimizing ‖z−y‖2. We choose
the hyperplane H := {x ∈ Rn | cTx = δ} with c := z − y and δ := cT (z+y

2 ).

C zy

H

c

Claim II. One has cT z > δ and cTx < δ ∀x ∈ C
Proof of Claim II. First, we verify that indeed cT z = δ+ 1

2‖c‖22 > δ. Next, suppose
for sake of contradiction that there is an x ∈ C with cTx ≥ δ. Note that in particular
one has cTx > cT y. Consider y(λ) := (1 − λ)y + λx for some parameter 0 ≤ λ ≤ 1
that we determine later.

C

z y

x

c

y(λ)
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Then using that c = z − y we have

‖z − y(λ)‖22 = ‖c+ λ(y − x)‖22
= ‖c‖22 + 2λ cT (y − x)

︸ ︷︷ ︸

<0

+λ2‖y − x‖22
!
< ‖c‖22 = ‖z − y‖22

if we pick λ > 0 small enough.

Definition 3.7. Vectors x1, . . . , xm ∈ Rn are affinely independent if

( m∑

i=1

λixi = 0 and
m∑

i=1

λi = 0
)

⇒
(

λ1 = . . . = λm = 0
)

The relationship of affine to linear independence is as follows:

Lemma 3.8. x1, . . . , xm ∈ Rn affinely independent ⇔
(x1

1

)
, . . . ,

(xm

1

)
are linearly

independent.

From Lemma 3.8 we can see that at most n + 1 points in Rn can be affinely
independent. Also note that affine invariance is invariant under translation. We
define the unique smallest affine subspace containing X as

affinehull(X) :=
{ t∑

i=1

λixi | x1, . . . , xt ∈ X and
t∑

i=1

λi = 1
}

affinehull(X)

X

3.2 Polytopes and polyhedra

One can prove that any closed convex set is the intersection of a set of halfspaces:

Lemma 3.9. For any closed convex set C ⊆ Rn one has C =
⋂

H:C⊆H≤
H≤.

Here the intersection is over all closed halfspaces that contain C.

C

H
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We leave the proof for the exercises. It is not hard to see that possibly an infinite
number of halfspaces are needed — see for example the Euclidean ball in dimension
at least 2. We give a name to those convex sets where finitely many halfspace suffice:

Definition 3.10. The intersection of a finite number of closed half-spaces is called
a polyhedron.

P

polyhedron P ⊆ R2

Note that every polyhedron is closed and convex. It will be useful to any polyhedron
P can be repesented in the form

P =
{
x ∈ Rn | Ax ≤ b

}
=







x ∈ Rn |

AT
1 x ≤ b1

AT
2 x ≤ b2

...
AT

mx ≤ bm







for a matrix A ∈ Rm×n and a vector b ∈ Rm (here Ai is the ith row of matrix A
interpreted as a column vector). We provide another definition:

Definition 3.11. P ⊆ Rn is a polytope if P = conv{x1, . . . , xt} for a finite number
of points x1, . . . , xt ∈ Rn.

x1

x2

x3

x4

P = conv{x1, . . . , x4}

Assuming boundedness, both concepts are identical.

Theorem 3.12. Let P ⊆ Rn. Then P is a polytope if and only if P is a bounded
polyhedron.

For the proof we refer to Section 2.2 in Schrijver [Sch17].

Definition 3.13. Let C ⊆ Rn be a convex set. A point z ∈ C is called vertex
(or extreme point) if there are no x, y ∈ C and 0 < λ < 1 with x 6= y so that
z = λx+ (1− λ)y.

In other words, a point z ∈ C is a vertex if it is not a non-trivial convex combi-
nation of points of C.
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P
vertices

vertices of polyhedron P ⊆ R2

Characterization of vertices

We can characterize the vertices of a polyhedron using the constraint system:

Lemma 3.14. Suppose P = {x ∈ Rn | Ax ≤ b} be a polyhedron with A ∈ Rm×n,
b ∈ Rm and let z ∈ P . Let Az be the submatrix of A consisting of those rows i s.t.
AT

i z = bi. Then z is a vertex of P ⇔ rank(Az) = n.

P
z

i3

i1
i2

Az =





AT
i1

AT
i2

AT
i3





Proof. We fix a point z ∈ P and prove both directions separately.
Claim I. rank(Az) < n ⇒ z not a vertex
Proof of Claim I. Since rank(Az) < n, there is a vector y ∈ ker(Az)\{0} (meaning
that Azy = 0). For some small enough δ > 0, we have AT

i (z + δy) ≤ bi and
AT

i (z − δy) ≤ bi for any non-tight constraint (i.e. any constraint with AT
i z < bi).

Then z + δy, z − δy ∈ P and hence z is not a vertex

P

z
z + δy

z − δy

y

Claim II. z not a vertex ⇒ rank(Az) < n
Proof of Claim II. Suppose z is not a vertex. By definition and convexity there is
some y ∈ Rn \ {0} so that z + y ∈ P and z − y ∈ P .

P

z
z + y

z − y

y
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Consider an index i with AT
i z = bi. Then

(AT
i (z + y) ≤ bi & AT

i (z − y) ≤ bi) ⇒ AT
i y = 0

Hence y ∈ ker(Az) and so rank(Az) < n.

We can prove a useful variant of this lemma. For an index set I ⊆ [m], we denote
AI as the submatrix of A containing all row vectors.

Lemma 3.15. Let P = {x ∈ Rn | Ax ≤ b} be a polyhedron with A ∈ Rm×n and
b ∈ Rm. For each vertex z ∈ P , there is a subset I ⊆ [m] with |I| = n so that
rank(AI) = n and z = A−1

I bI .

Proof. By Lemma 3.14 there is a set J ⊆ [m] so that rank(AJ) = n and all in-
equalities in J are tight for z. Select any maximal subset I ⊆ J so that {Ai}i∈I are
linearly independent. Then |I| = n, AI is non-singular and AIz = bI can be inverted
to z = A−1

I bI .

As there are only
(m
n

)
many choices to select I ⊆ [m] with |I| = n, we conclude

the following:

Corollary 3.16. A polyhedron P = {x ∈ Rn | Ax ≤ b} with A ∈ Rm×n and b ∈ Rm

has at most
(m
n

)
vertices.

For n = 2, Cor 3.16 gives an upper bound of O(m2) while it is not hard to see
that in reality the tight bound must be m. And in fact, one can prove a stronger
bound. The so-called Upper Bound Theorem by McMullen [McM70] shows that the
number of vertices is indeed at most O(m⌊n/2⌋).

The following result is often quite useful:

Theorem 3.17 (Carathéodory’s Theorem). If X ⊆ Rn and x ∈ conv(X), then there
is a subset X ′ ⊆ X with |X ′| ≤ n+ 1 so that x ∈ conv(X ′).

The proof is similar to the argument in Lemma 3.14 and we defer it to the
exercises. For example the statement says that any point x in a 2-dimensional
polytope is contained in the convex hull of at most 3 of its vertices:

b

b

b

x ∈ X ′

Convex cones

A special type of convex set is the following:
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Definition 3.18. A set C ⊆ Rn is a convex cone if

λx+ µy ∈ C ∀x, y ∈ C ∀λ, µ ≥ 0

0

C

Again it will be useful to consider the unique minimal cone containing a set X:

Definition 3.19. For X ⊆ Rn we define

cone(X) :=
{ t∑

i=1

λixi

︸ ︷︷ ︸

conical combination
of x1,...,xt

| x1, . . . , xt ∈ X; λ1, . . . , λt ≥ 0
}

cone({x1, x2, x3})
0

x1

x2
x3

We can also provide a variant of Carathéodory’s Theorem:

Theorem 3.20 (Carathéodory’s Theorem — Conic version). If X ⊆ Rn and x ∈
cone(X), then there is a subset X ′ ⊆ X with |X ′| ≤ n so that x ∈ cone(X ′).

3.3 Farkas Lemma

We come to a classical result in the theory of linear inequalities which says that
if a linear system is infeasibly, then there must be an obvious certificate for that
infeasibility. In the following we write ∨̇ as the exclusive or. For example, if S and
T are statements, then S∨̇T means that exactly one of the two statements is true.

Lemma 3.21 (Farkas’ Lemma 1902). For any A ∈ Rm×n and b ∈ Rm one has
(
∃x ≥ 0 : Ax = b

)
∨̇

(
∃y : yTA ≥ 0 and yT b < 0

)
.

Proof. We prove both directions separately.
Claim I. It is impossible that both systems have a solution.
Proof of Claim I. Suppose for sake of contradiction that there are solutions x, y
to both systems. Then

0 ≤ (yTA)
︸ ︷︷ ︸

≥0

x
︸︷︷︸

≥0

= yT (Ax)
︸ ︷︷ ︸

=b

= yT b < 0
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which is a contradiction.
Claim II. Assume there is no x ≥ 0 with Ax = b. Then there is a yTA ≥ 0 and
yT b < 0.
Proof of Claim II. Let A1, . . . , An be the columns of A. Consider the cone C :=
cone({A1, . . . , An}) = {Ax | x ∈ Rn

≥0} spanned by those columns. Then C is convex
and closed1. By assumption we know that b /∈ C. Then by Theorem 3.6, there is a
hyperplane yT c = γ separating C and b.

C

0

A1

A2 A3

y

b

Separation here means that

∀c ∈ C : yT c > γ > yT b

As 0 ∈ C, we must have γ < 0. For any xi ≥ 0 we have xiAi ∈ C and so xi ·yTAi > γ.
Then indeed it must be that yTAi ≥ 0 for each i ∈ [n]. More compactly this means
yTA ≥ 0 as claimed.

There are many variants of Farkas’ Lemma. We mention a few here:

Proposition 3.22. Let A ∈ Rm×n and b ∈ Rm. Then

(I) ∃x : Ax ≤ b ⇔ 6 ∃y ≥ 0 : yTA = 0, yT b < 0

(II) ∃x ≥ 0 : Ax = b ⇔ 6 ∃y : yTA ≥ 0, yT b < 0

(III) ∃x ≥ 0 : Ax ≤ b ⇔ 6 ∃y ≥ 0 : yTA ≥ 0, yT b < 0

1The latter fact actually requires some thought. Abbreviate cone(A) as the cone spanned by the
columns of A and let us assume that rank(A) = m otherwise the argument reduces to a subspace
containing all the columns of A. Let us write AJ as the submatrix with columns indexed by
J ⊆ [n]. Then by Carathéodory’s Theorem (Theorem 3.20) one has C =

⋃
|J|:rank(AJ )=m

cone(AJ)

which is a finite union and so it suffices to prove that cone(B) is closed for some regular matrix
B ∈ Rm×m. And indeed if z(t) ∈ cone(B) is a convergent sequence, then B−1z(t) ≥ 0 and by
linearity the limit y := limt→∞ B−1z(t) exists and y ≥ 0. Then ‖By−z(t)‖2 = ‖By−BB−1z(t)‖2 ≤
‖B‖op‖y −B−1z(t)‖2 → 0 for t → ∞.
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Proof. We know from Lemma 3.21 that (II) is true. We will now prove (I) and leave
(III) for the exercises. In fact, one has

∃x : Ax ≤ b

⇔ ∃x, s ≥ 0 : Ax+ Is = b

⇔ ∃x′ ≥ 0, x′′ ≥ 0, s ≥ 0 : Ax′ −Ax′′ + Is = b

⇔ ∃





x′

x′′

s



 ≥ 0 : [A,−A, I]





x′

x′′

s



 = b

(II)⇔ 6 ∃y : yT [A,−A, I] ≥ 0, yT b < 0

⇔ 6 ∃y : yTA ≥ 0, yT (−A) ≥ 0, yT I ≥ 0, yT b < 0

⇔ 6 ∃y : yTA = 0, y ≥ 0, yT b < 0

3.4 Linear Programming

Now we come to the problem of optimizing linear functions over a polyhedron:

Definition 3.23. The optimization problem max{cTx | Ax ≤ b} is called linear
program where A ∈ Rm×n, b ∈ Rm, c ∈ Rn.

P = {x ∈ Rn | Ax ≤ b}
x∗ = optimum

c

First we prove a somewhat technical result that an LP is either unbounded or
an optimum is attained.

Lemma 3.24. Let P ⊆ Rn be a polyhedron and c ∈ Rn. If sup{cTx | x ∈ P} < ∞
then max{cTx | x ∈ P} is attained.

Before we come to the proof, we should note that the claim is trivial for poly-
topes as each polytope is compact and linear functions are continuous. But in the
unbounded case the claim crucially relies on the fact that LPs have finitely many
inequalities. In fact, the claim is false for arbitrary closed convex sets. See the figure
below for an example.
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c P

x∗

unbounded P , bounded LP

c

Q = {(x, y) | x > 0, y ≤ − 1
x}

max{cTx : x ∈ Q} not attained

Proof. Set δ := sup{cTx | x ∈ P} < ∞. Suppose for sake of contradiction that there
is no x ∈ P with cTx ≥ δ. We can equivalently rewrite this as

⇔ 6 ∃x :

(
A

−cT

)

x ≤
(

b

−δ

)

(∗)⇔ ∃(y, λ) ≥ 0 : (yT , λ)

(
A

−cT

)

= 0, (yT , λ)

(
b

−δ

)

< 0

⇔ ∃y ≥ 0, λ ≥ 0 : yTA = λcT , yT b < λδ

where in (∗) we have used Farkas variant I from Proposition 3.22. Then

λδ = λ · sup{cTx | x ∈ P} = sup{yTAx | x ∈ P} ≤ yT b < λδ

which is a contradiction!

Feasible inequalities

Next, we prove a very important property of polyhedra: an inequality is feasible for
the polyhedron if and only if it can be obtained by adding up non-negative multiples
of defining inequalities.

P
c

cTx ≤ δ

Lemma 3.25. Let A ∈ Rm×n, b ∈ Rm, c ∈ Rn and assume P := {x ∈ Rn | Ax ≤ b}
is non-empty. Then

(

cTx ≤ δ ∀x ∈ P
)

⇔
(

∃y ≥ 0 : yTA = cT and yT b ≤ δ
)

Proof. We prove both directions separately.
(⇐). Suppose there is a y ≥ 0 with yTA = cT and yT b ≤ δ. Fix any x ∈ P . Then

cTx = yTAx
y≥0,Ax≤b

≤ yT b ≤ δ
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(⇒). Suppose that there is no y ≥ 0 with yTA = cT , yT b ≤ δ. Then

6 ∃y ≥ 0, λ ≥ 0 : yTA = cT , yT b+ λ = δ

⇔ 6 ∃(y, λ) ≥ 0 : (yT , λ)

(
A b
0 1

)

= (cT , δ)

Farkas⇔ ∃
(
z
u

)

:

(
A b
0 1

)(
z
u

)

≥
(
0
0

)

&(cT , δ)

(
z
u

)

< 0

⇔ ∃z, u : Az + bu ≥ 0, u ≥ 0, cT z + δu < 0
flip sign⇔ ∃z, u ≥ 0 : Az ≤ bu, cT z > δu

Here we have used Farkas Lemma (Lemma 3.21)2. We distinguish two cases:

• Case u = 0: Then Az ≤ 0, cT z > 0. By assumption P 6= ∅ and so we may
fix a point x0 ∈ P . Then for τ large enough one has A(x0 + τz) ≤ b and
cT (x0 + τz) > δ which is a contradiction!

• Case u > 0: After scaling (z, u) we may assume that u = 1. Then Az ≤ b and
cT z > δ which again is a contradiction!

The strong duality theorem

Given a matrix A ∈ Rm×n, a right hand side b ∈ Rm and an objective function
vector c ∈ Rn, we consider the following pair of LPs:

primal LP: max{cTx | Ax ≤ b}
dual LP: min{yT b | yTA = cT , y ≥ 0}

Any feasible solution y for the dual gives us a feasible ineqality for the primal of the
form cTx = (yTA)x ≤ yT b. In other words, solutions to the dual prove an upper
bound on the objective function value of the primal. A fundamental result in the
theory of linear programming tells us that the best upper bound matches the value
of the primal:

Theorem 3.26 (Duality Theorem). Let A ∈ Rm×n, b ∈ Rm, c ∈ Rn. Then

max{cTx | Ax ≤ b} = min{yT b | yTA = cT , y ≥ 0}

provided both LPs are feasible.

2Which states that (∃x ≥ 0 : Ax = b)∨̇(∃y : yTA ≥ 0 & yT b < 0)
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Proof. First we prove weak duality. Suppose x and y are feasible solutions to the
primal and dual, resp. Then indeed

cTx = (yTA)x = yT (Ax)
y≥0,Ax≤b

≤ yT b

Next, we prove strong duality, meaning that there are indeed solutions x, y with
yT b ≤ cTx. We set δ := sup{cTx | Ax ≤ b}. If δ = ∞, then by weak duality, the
dual is infeasible which contradicts the assumption. So suppose δ < ∞, i.e. the
primal LP is bounded. We abbreviate the feasible region of the primal by P := {x ∈
Rn | Ax ≤ b}. Then cTx ≤ δ is a feasible inequality for P . Then by Lemma 3.25,
we know that there is a y ≥ 0 with yTA = cT and yT b ≤ δ. This is a solution for
dual with objective value at most δ!

We also want to give a more geometric interpretation of the Duality Theorem.
Let x∗ be the primal optimum solution to max{cTx | Ax ≤ b} (which exists by
Lemma 3.24). Let I := {i ∈ [m] | AT

i x
∗ = bi} be the tight inequalities for x∗.

Consider the cone C := {∑i∈I Aiyi | yi ≥ 0 ∀i ∈ I} spanned by the normal vectors
of the tight constraints.

x∗

Ai1

Ai2

Cc

AT
i1
x ≤ bi1

AT
i2
x ≤ bi2

b

b

(P )

If c /∈ C then by Farkas Lemma, there must be a vector λ ∈ Rn with AT
i λ ≤ 0 for

all i ∈ I and cTλ > 0. Hence x∗ + ελ for some ε > 0 is a feasible solution with
cT (x∗ + ελ) > cTx∗ which contradicts the optimality of x∗. Hence indeed one must
have that c ∈ C. Phrased differently there is a vector y ≥ 0 with yTA = cT and
yi = 0 ∀i /∈ I. Note that this vector y is a feasible solution for the dual LP. We claim
that indeed it is optimal. To see this, consider the duality gap which is

yT b− cTx∗ = yT b− yTA
︸︷︷︸

=cT

x∗ =
m∑

i=1

yi
︸︷︷︸

=0 if i/∈I

· (bi −AT
i x

∗)
︸ ︷︷ ︸

=0 if i∈I

= 0

There are many possible primal-dual pairs of LPs. One state one popular variant
and leave the proof for the exercises:

Theorem 3.27 (Duality Theorem II). Let A ∈ Rm×n, b ∈ Rm, c ∈ Rn. Then

max
{
cTx | Ax ≤ b, x ≥ 0

}
= min

{
yT b | yTA ≥ cT , y ≥ 0

}

provided both LPs are feasible.
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3.4.1 Complementary slackness

While finding optimum solutions is non-trivial, verifying optimality is simple even
without explicitly computing the objective function values. Again we state two
popular variants:

Theorem 3.28 (Complementary Slackness I). Consider the systems

(Primal) max
{
cTx | Ax ≤ b

}
and (Dual) min

{
yT b | yTA = cT , y ≥ 0

}

and suppose (x∗, y∗) is a pair of feasible solutions for (Primal) and (Dual). Then
the following is equivalent:

(A) Both x∗ and y∗ are optimal.
(B) For all i ∈ [m] one has: y∗i > 0 ⇒ AT

i x
∗ = bi.

Proof. We can write the difference between the objective functions as

bT y∗ − cTx∗ = (y∗)T b− (y∗)TAx∗ =
m∑

i=1

y∗i
︸︷︷︸

≥0

· (bi −AT
i x

∗)
︸ ︷︷ ︸

≥0

≥ 0

Then this gap is actually equal to 0 if and only if for each i either y∗i = 0 or
bi −AT

i x
∗ = 0.

Note that it is possible that for an optimum pair (x∗, y∗) one has y∗i = 0 and
AT

i x
∗ = bi for some indices. However, the strict complementary slackness theorem

says that there exists an optimum pair (x∗, y∗) so that for each i one has (y∗i =
0∨̇AT

i x
∗ = bi). For example the points x∗ and y∗ an be taken as any interior point

of the optimum face of the primal and dual, resp.
For the sake of completeness, we also list the complementary slackness condition

for the pair in Theorem 3.27:

Theorem 3.29 (Complementary Slackness II). Consider the systems

(Primal) max
{
cTx | Ax ≤ b, x ≥ 0

}
and (Dual) min

{
yT b | yTA ≥ cT , y ≥ 0

}

and suppose (x∗, y∗) is a pair of feasible solutions for (Primal) and (Dual). Then
the following is equivalent:

(A) Both x∗ and y∗ are optimal.
(B) For all i ∈ [m] one has y∗i > 0 ⇒ AT

i x
∗ = bi and for all j ∈ [n] one has

x∗j > 0 ⇒ (y∗)TAj = cj .
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3.5 Exercises

Exercise 3.1.

Let C ⊆ Rn. Prove that C is a closed convex set if and only if there is a collection F of

closed affine halfspaces so that C =
⋂

H∈F H .

Source: This exercise is taken from Schrijver [Sch17].

Exercise 3.2.

Goal of this exercise is to prove Carathéodory’s Theorem3.

(a) Consider P := {x ∈ Rn | Ax = b, x ≥ 0} for A ∈ Rm×n and b ∈ Rm. Fix a point
y ∈ P that minimizes |supp(y)| where supp(y) := {j ∈ {1, . . . , n} | yj 6= 0}. Prove
that |supp(y)| ≤ m.

(b) Let X ⊆ Rn. Prove that for any x ∈ conv(X), there is a subset X ′ ⊆ X with
|X ′| ≤ n+ 1 so that x ∈ conv(X ′).

Exercise 3.3.

Let A ∈ Rm×n and let b ∈ Rm with m ≥ n + 1. Suppose that Ax ≤ b has no solution x.

Prove that there are indices i0, . . . , in so that the system AT
i0
x ≤ bi0 , . . . , A

T
in
x ≤ bin has no

solution x.

Source: This exercise is taken from Schrijver [Sch17].

3In particular you are not allowed to use Carathéodory’s Theorem itself in the argument.
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Chapter 4

Matchings and Covers in Bipartite

Graphs

In this chapter, we will get more familiar with graph theory and popular graph
optimization questions. Again, we follow Chapter 3 in Schrijver [Sch17].

4.1 Matchings, stable sets and vertex cover

In the following, let G = (V,E) be an undirected graph.

Definition 4.1. U ⊆ V is a stable set / independent set if for all i, j ∈ U one has
{i, j} 6∈ E.

U

stable set U

Definition 4.2. W ⊆ V is a vertex cover if e ∩W 6= ∅ for all e ∈ E.

W

vertex cover W

One can make the observation that these notions are complementary:

Fact 4.3. U is stable set in G ⇔ V \ U is vertex cover.

Definition 4.4. M ⊆ E is a matching in G if e ∩ e′ = ∅ for any distinct edges
e, e′ ∈ M . A matching is perfect if |M | = 1

2 |V |.

37
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M

non-perfect matching

M

perfect matching

We will be particularly interested in the “best” stable set, vertex cover and match-
ing in a given graph. For this sake, we define

α(G) := max{|C| : C stable set in G} = stability #

τ(G) := min{|W | : W vertex cover} = vertex cover #

ν(G) := max{|M | : M matching} = matching #

One can easily observe the following:

Fact 4.5. In any undirected graph G one has ν(G) ≤ τ(G).

One can also see that this inequality may be strict for some graphs:

graph with ν(G) = 1 < 2 = τ(G)

4.2 M-augmenting paths

The first step will be to characterize when a matching in a graph is maximal. For
this we need the following concept:

Definition 4.6. Let M be a matching in G = (V,E). A path P = (v0, . . . , vt) in G
is M -augmenting if

(i) t is odd

(ii) {v1, v2}, {v3, v4}, . . . , {vt−2, vt−1} ∈ M

(iii) v0, vt 6∈ V (M)

Vertices that are not covered by the matching M (that means vertices in V (M)\
M) are also called M -exposed.
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∈ M

M -exposed node

M -augm. path P
v0

v1

v0

vt−1 vt

For sets A,B, let A∆B := (A \ B) ∪ (B \ A) be the symmetric difference. We can
now see the usefulness of an M -augmenting path: flipping all the edges along the
path will lead to a matching that has one edge more.

Fact 4.7. If P is an M -augmenting path in G, then M ′ := M∆E(P ) is a matching
in G with |M ′| = |M |+ 1.

M ′

v0

v1

v0

vt−1 vt

matching M ′ = M∆E(P )

We can prove the following:

Theorem 4.8. Let G = (V,E) be an undirected graph with matching M ⊆ E.
Either M is a matching of maximum cardinality, or there exists an M -augmenting
path.

Proof. From Fact 4.7 we know that if there is an M -augmenting path, then M
not optimal. It remains to prove the reverse direction: M not maximal ⇒ ∃M -
augmenting path.

So, suppose there is a matching M ′ ⊆ E with |M ′| > |M |.

matching M matching M ′

Consider the graph G′ := (V,M∆M ′) formed by taking the symmetric difference of
M and M ′. Then the vertices in G′ must have degrees in {0, 1, 2}. That means the
connected components of G′ are either paths (which allows singletons as these are
0-length paths) or circuits.
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difference M∆M ′

As |M ′| > |M |, there is a component with more edges from M ′ than from M . This
component has to be a path with endpoints in M ′, meaning it is an M -augmenting
path.

4.3 Kőnig’s Theorem

Next, we prove one of the most famous classical results in graph theory.

Theorem 4.9 (Kőnig 1931). In any bipartite graph G, one has ν(G) = τ(G).

Proof. We know from Fact 4.5 that ν(G) ≤ τ(G) in any graph. Hence it suffices
to prove that ν(G) ≥ τ(G). The key argument is a structural insight on bipartite
graphs:

Claim I. Let G = (V,E) be bipartite with |E| ≥ 1. Then G has a vertex that is
covered by every maximum matching.
Proof of Claim I. Suppose for the sake of contradiction that the claim is false. Fix
any edge e = {u, v} ∈ E. Let M be a maximum matching with u /∈ V (M). As M is
maximal and {u, v} ∈ E this means that v ∈ V (M). Similarly there is a maximum
matching N with v /∈ V (N) and u ∈ V (N).

u

v
?e

M

N

Let P be the component of (V,M∆N) containing u. Then one can see that P must
be a path of even length (in fact, degrees in P must be in {0, 1, 2} but P cannot be
a circuit since u is M -exposed and P cannot have odd length since then P would be
M -augmenting). We make a case distinction as to what the other endpoint of P is:

• Case: P contains v. Then P ∪ {e} is an odd length cycle which contradicts
that the graph is bipartitie.

• Case: P does not contain v. Then P ∪ {u, v} is N augmenting, which contra-
dicts the maximality of N .
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u

v

e
M

N

?

Either way we arrive at a contradiction.
Now we can finish the main claim.

Claim II. Any bipartite graph G = (V,E) contains a vertex cover of size ν(G).
Proof of Claim II. We prove the claim by induction over |V |. Let u be the vertex
from Claim I that contained in every maximum matching. Then G′ := G \ u has
ν(G′) = ν(G)− 1. By induction, let U ′ be vertex cover for G′ of size |U ′| = ν(G′) =
ν(G)− 1. Then U ′ ∪ {v} is vertex cover for G of size ν(G).

The concept of M -augmenting paths also provides a natural algorithm that it-
eratively finds M -augmenting paths until a maximum matching is reached. The al-
gorithm is simple in bipartite graphs and more involved (but still polynomial time)
in general graphs. For bipartite graphs, one can also find minimum vertex covers in
polynomial time while this is NP-hard problem in general graphs. We will not go
into details here but later discuss a more general concept in the chapter on flows.

4.4 The Matching Polytope of a Graph

In this section we want to motivate a connection between linear programming that
we investigate in the next chapter. Fix a graph G = (V,E). For a subset M ⊆ E,
we define the characteristic vector / incidence vector as χM ∈ RE with

χM (e) =

{

1 if e ∈ M

0 if e /∈ M

For example in the following graph

e3
e6

e2

e4
e5

e1

we have

χ{e1,e3} =











1
0
1
0
0
0











, χ{e5,e6} =











0
0
0
0
1
1











, χ∅ =











0
0
0
0
0
0
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Definition 4.10. For an undirected graph G, the matching polytope is

Pmatching(G) := conv{χM ∈ RE | M ⊆ E is matching}

We note that Pmatching(G) is an |E|-dimensional polytope whose vertices are
from {0, 1}E . We know from Theorem 3.12 that Pmatching(G) can be described with
finitely many inequalities. But it is less obvious what those constraints are. A
natural guess might be

Qmatching(G) :=
{

x ∈ RE |
∑

e:v∈e xe ≤ 1 ∀v ∈ V
xe ≥ 0 ∀e ∈ E

}

It is not hard to check that indeed

Pmatching(G) ⊆ Qmatching(G) and Pmatching(G) = conv{Qmatching(G) ∩ ZE}

On the other hand, for arbitrary graphs the inclusion might be strict.

Example 4.11. Let G be a triangle. Then x∗ :=





1/2
1/2
1/2



 lies in Qmatching(G) but

not in Pmatching(G).

1/2 1/2

1/2
Note that in this case

Pmatching(G) = conv











0
0
0



 ,





1
0
0



 ,





0
1
0



 ,





0
0
1











However, we will see that for all bipartite graphs, Qmatching(G) contains all re-
quired inequalities:

Theorem 4.12. If G is bipartite, then Pmatching(G) = Qmatching(G).

To draw the connection back to optimization, assuming this result, the following
algorithm finds a matching M in a bipartite graph maximizing

∑

e∈M we where
w : E → R is some weight function:

(1) Find an optimum vertex solution x∗ for the LP

max
{∑

e∈E
wexe |

∑

e:v∈e
xe ≤ 1 ∀v ∈ V, xe ≥ 0 ∀e ∈ E

}

(2) Return {e ∈ E | x∗e = 1}
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4.5 Exercises

Exercise 4.1.

Prove that in a matrix, the maximum number of non-zero entries with no two in the same

line (=row or column), is equal to the minimum number of lines that include all nonzero

entries.

Source: This exercise is taken from Schrijver [Sch17].

Example: Consider the following matrix

A =





∗ 0 0
∗ ∗ ∗
∗ 0 0





where ∗ means any non-zero entry. Then the non-zero entries can be covered by two
lines (2nd row and first column) and this is optimal. Also we can select at most
2 non-zero entries that have all rows and columns distinct — for example the two
entries (1,1) and (2,2) on the diagonal.

Exercise 4.2.

Let A = (A1, . . . , An) be a family of subsets of some finite set X . Prove that A has an SDR
if and only if ∣

∣
∣

⋃

i∈I

Ai

∣
∣
∣ ≥ |I|

for each subset I ⊆ {1, . . . , n}.
Remark: Recall that an SDR is an injective map π : [n] → X with π(i) ∈ Ai for all

i = 1, . . . , n.

Source: This exercise is taken from Schrijver [Sch17].

Exercise 4.3.

A matrix is called doubly-stochastic if it is nonnegative and each row sum and each column
sum is equal to 1. A matrix is palled a permutation matrix if each entry is 0 or 1 and each
column and each row contains exactly one 1.

i) Show that for each doubly stochastic matrix A = (aij)i,j=1,...,n, there exists a permu-
tation π ∈ Sn so that ai,π(i) 6= 0 for all i = 1, . . . , n.

ii) Derive that each doubly stochastic matrix is a convex linear combination of permu-
tation matrices.

Hint: Set up a bipartite graph and prove the claim using König’s Theorem.

Source: This exercise is taken from Schrijver [Sch17].
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Chapter 5

Integer Linear Programming and

Totally Unimodular Matrices

For this chapter we mostly follow Chapter 8 in Schrijver [Sch17].

5.1 Integer linear programming

Probably, the most versatile problem in combinatorial optimization is the following:

Definition 5.1. A problem of the form

max
{
cTx | Ax ≤ b;x ∈ Zn

}

is called an integer linear program.

In general, solving such a problem is NP-hard, hence our focus here will be on
substantial special cases that can be solved in polynomial time. First, we can make
the observation that one always has

max{cTx | Ax ≤ b, x ∈ Zn} ≤ max{cTx | Ax ≤ b}

(if we think of an infeasible problem as having value −∞). Even in dimension 2 it
is easy to find examples where the inequality is strict:

P

c
IP opt.

LP opt.

b b

b b b

b b b

b b

Definition 5.2. A polytope P is integer / integral, if all vertices are integer vectors.

45
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b

b b b b b

b b b b b

b b b

P

integral polytope

For example Pmatching(G) is integral by construction.

Definition 5.3. For a polyhedron P ⊆ Rn we define the integer hull as P I :=
conv(P ∩ Zn).

P I

b b

b b b

b b b

b b

P

We leave the proof of the following as an exercise:

Lemma 5.4. For a polytope P ⊆ Rn, the following is equivalent

(A) P integer

(B) P I = P

(C) For all c ∈ Rn one has max{cTx | x ∈ P} = max{cTx | x ∈ P ∩ Zn}.

Note that for the moment we have restricted the concept of integrality to bounded
polyhedra where definitions are simpler.

5.2 Totally unimodular matrices

Next, we approach the question when we can guarantee that a polytope P is integral.
The following definition is crucial:

Definition 5.5. A matrix A ∈ Rm×n is called totally unimodular (TU) if each square
submatrix of A has determinant in {−1, 0, 1}.

If a matrix A is TU, then in particular one must have A ∈ {−1, 0, 1}m×n (though
this is not sufficient). A simple example is that the identity matrix In is totally
unimodular. We recall the following fact from linear algebra:

Lemma 5.6 (Cramer’s Rule). Let B ∈ Zn×n be invertible. Then B−1 = 1
det(B)C

where C ∈ Zn×n.
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Theorem 5.7. If A ∈ Rm×n is TU and b ∈ Zm, then every vertex of the polyhedron
P = {x ∈ Rn | Ax ≤ b} is integral.

Proof. Let z be a vertex of P . We have proven in Lemma 3.15 that there is I ⊆ [m]
with |I| = n so that rank(AI) = n and z = A−1

I bI . Since A is TU we know that
det(AI) ∈ {−1, 1}. Then A−1

I ∈ Zn×n by Cramers Rule and bI ∈ Z by assumption.
Hence z = A−1

I bI ∈ Zn.

P

z

Note that if in Theorem 5.7 we know that P is bounded, then in fact P itself
is integer by Lemma 5.4. But an unbounded polyhedron may not even have any
vertices and the statement of Theorem 5.7 might be vacuous. First we extend the
definition of being integer to unbounded polyhedra:

Definition 5.8. A polyhedron P is integer if for all c ∈ Rn where max{cTx | x ∈
P} < ∞, the maximum is attained by some integer vector.

b b b b

b b

b

P

Lemma 5.9. Let A ∈ Rm×n be TU and b ∈ Zm. Then the polyhedron P = {x ∈
Rn | Ax ≤ b} is integral.

Proof. Fix a c ∈ Rn so that max{cTx | x ∈ P} < ∞ and let x∗ be an optimum
solution (possibly fractional). Choose d′, d′′ ∈ Zn so that d′ ≤ x∗ ≤ d′′. Consider
the polytope

Q := {x ∈ Rn | Ax ≤ b, d′ ≤ x ≤ d′′} =

{

x ∈ Rn |





A
−In
In



x ≤





b
−d′

d′′





}

We can verify that if A is TU then also the stacked matrix
(

A
−In
In

)

is TU. Moreover,

the right hand side vector definining Q is integral. Since Q is bounded, the must be
an optimum solution x̃ for max{cTx | x ∈ Q} that is a vertex.
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P

Q

x∗
x̃

{x ∈ Rn : d′ ≤ x ≤ d′′}
c

By Theorem 5.7 we have x̃ ∈ Zn. As x∗ ∈ Q, one has cT x̃ ≥ cTx∗.

This result will suffice for us to handle the case of unbounded polyedra1. Com-
bining total unimodularity with strong duality we obtain the following:

Lemma 5.10. Let A ∈ Rm×n TU, b ∈ Zm, c ∈ Zn. Both LPs

max{cTx | Ax ≤ b} = min{yT b | yTA = cT , y ≥ 0}

have integral optimum solutions (assuming the LPs are feasible).

Proof. By Lemma 5.9, the primal has an integral optimum solution. The dual can
be written in the form

min

{

yT b |





AT

−AT

−Im



 y ≤





cT

−cT

0





}

We note that also the stacked matrix
(

AT

−AT

−Im

)

is TU and the right hand side is integral

by assumption. Then also the dual has an integral optimum solution.

We can also prove that there is no property guaranteeing integrality that is more
general than total unimodularity without depending on the right hand side vector.

Theorem 5.11 (Hoffman-Kruskal Theorem). Let A ∈ Zm×n. Then A is TU ⇔ ∀b ∈
Zm, Pb = {x ∈ Rn | Ax ≤ b, x ≥ 0} is integer.

The standard proof for the Hoffman-Kruskal Theorem takes a detour via the
concept of unimodularity. To avoid this, we follow the exposition in Korte and
Vygen [KV12].

1The proper generalization for the case of arbitrary polyhedra is as follows. A polyhedron
P is called rational if it can be written as P = {x ∈ Rn | Ax ≤ b} so that A and b have
only rational entries. Then for a rational polyhedron P , the following conditions are equivalent
(and either can be used as definition for P being integer): (A) each minimal face of P contains
an integer point; (B) P I = P ; (C) For all c ∈ Rn with max{cTx | x ∈ P} < ∞, one has
max{cTx | x ∈ P} = max{cTx | x ∈ P∩Zn}. For details we refer to Chapter 16 of Schrijver [Sch99].
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Proof. We already proved the direction (⇒) in Lemma 5.9 hence it remains to show
(⇐). Let I ⊆ [m] be row indices and let J ⊆ [n] be column indices with k := |I| =
|J |. We write AI,J as the corresponding k× k submatrix of A and we need to prove
that det(AI,J) ∈ {−1, 0, 1}. We assume that det(AI,J) 6= 0 since otherwise there is
nothing to show. Note that the contraint matrix of Pb looks then as follows:

AI,J

A

−In

I

Ī

J J̄

Claim. For any v ∈ Zk, A−1
I,Jv ∈ Zk.

Proof of Claim. Fix v ∈ Zk. We will construct a right hand side vector b and a
point z so that z is a vertex of Pb and AI,J is part of the basis defining z. First, let
y ∈ Zk be a vector so that zJ := y + A−1

I,Jv > 0. We set zJ̄ := 0. Set bI := AIz =

AI,JzJ = AI,Jy + AI,JA
−1
I,Jv = AI,Jy + v. We pick bĪ integral so that AĪz < bĪ .

Then z is a vertex of Pb and by assumption z is integral which implies that A−1
I,Jv is

integral.

From the claim we know that A−1
I,Jei ∈ Zk for all i = 1, . . . , k and so A−1

I,J ∈ Zk×k.

From det(AI,J),det(A
−1
I,J) ∈ Zk×k and det(AI,J) · det(A−1

I,J) = 1 we then know that
det(AI,J) ∈ {−1, 1}.

5.3 TU matrices from bipartite graphs

We will now come to the first natural family of matrices that are totally unimodular.

Definition 5.12. The node-edge incidence matrix of graph G is the matrix A ∈
{0, 1}V ×E with

Av,e =

{

1 v incident to e

0 otherwise

An example for a node edge incidence matrix can be found below:
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a

b

c

u

v

w

graph G

a

b
c
u
v
w 0

0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

node edge incidence matrix A

{a, u}
{a, v}

n
o
d
e
s

edges

We can prove that incidence matrices of bipartite graphs are totally unimodular (and
again, these are the only undirected graphs with TU incidence matrices).

Theorem 5.13. Let G = (V,E) be a graph with incidence matrix AG. Then G is
bipartite ⇔ AG is TU.

Proof. We prove both directions separately.
Claim I. G bipartite ⇒ AG TU.
Proof of Claim I. Let B be a k× k submatrix of AG. We prove by induction over
k that det(B) ∈ {−1, 0, 1}. The case k = 1 is trivial, hence suppose k ≥ 2. We make
a case distinction:

• Case: B has a column with only 0’s. Then det(B) = 0.
• Case: B has a column with exactly one 1. After permuting rows and columns,

B =

(
1 ∗
0 B′

)

with det(B′) ∈ {−1, 0, 1} by induction. Then det(B) = 1·det(B′) ∈ {−1, 0, 1}.
• Case: Every column of B has exactly 2 ones. Partition the row indices I∪J so

that each column has exactly one row in I and one row in J (uses bipartiteness!)

1

1

I

J

· · ·

· · ·

Then
∑

i∈I Bi −
∑

i∈J Bj = 0. Hence det(B) = 0.

Claim II. G not bipartite ⇒ AG not TU.
Proof of Claim II. Consider an odd cyle H in G and denote its vertices by v1, . . . , vk
and its edges e1, . . . , ek. Then AH is a square submatrix of AG. After permuting
rows and columns AH is of the following form:
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v1

v2
. . .

vk−1

vk

e1

ek

1

1

1

1

1

1

1

1

1

1v1
v2
...

vk

e1 . . . ek

= AH

One may check that indeed |det(B)| = 2.

Now, we can finally prove the claim that we made at the end of Chapter 4.

Theorem 5.14. If G is bipartite, then Pmatching(G) = Qmatching(G).

Proof. Recall that

Qmatching(G) :=
{

x ∈ RE |
∑

e:v∈e xe ≤ 1 ∀v ∈ V
xe ≥ 0 ∀e ∈ E

}

=
{

x ∈ RE |
(
AG

−In

)

x ≤
(
1
0

)}

The matrix
(
AG

−In

)
is TU and hence every vertex of Qmatching(G) is integral. Then

Qmatching(G) = conv{Qmatching ∩ ZE} = Pmatching(G).

Recall that Kőnig’s Theorem (Theorem 4.9) can be seen as a type of duality
theorem. And indeed, one can also prove Kőnig’s Theorem using LP duality:

Theorem (Kőnig’s Theorem). Let G be a bipartite graph. Then ν(G) = τ(G).

Proof. We write

ν(G) = max{1Tx | AGx ≤ 1, x ≥ 0}
(∗)
= min{yT1 | yTAG ≥ 1, y ∈ ZV

≥0}
(∗∗)
= min

{∑

i∈V
yi | yTAG ≥ 1, y ∈ {0, 1}V

}
(∗∗∗)
= τ(G)

In (∗) we use that by Lemma 5.10 and Theorem 5.13, both LPs have optimum
solutions that are integral. In (∗∗) we use that optimum solution would have yi ≤ 1.
Finally for (∗ ∗ ∗) we note that the problem of selecting minimum number of rows of
AG to cover 1 ∈ RE is exactly the minimum vertex cover problem.

5.4 TU matrices from directed graphs

We call D = (V,A) a directed graph if V is a finite set and A is a subset of ordered
pairs from V . We think of (u, v) ∈ A as the arc / edge that goes from node u to
node v.
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u

v

(u, v)

Then the node-edge incidence matrix of D is the matrix AD ∈ {−1, 0, 1}V ×A with

(AD)v,a =







+1 if a = (v, ∗)
−1 if a = (∗, v)
0 otherwise AD =

+1

−1

(u, v)

u

v

Then we can prove an analogue of Theorem 5.13 for directed graphs (where a bit
surprisingly no condition on the graph is needed):

Theorem 5.15. For any directed graph D = (V,A), the node edge incidence matrix
AD is totally unimodular.

The proof is very similar to the proof of Theorem 5.13 and we leave it as an
exercise.

5.5 The Theorem of Ghouila-Houri

For a matrix A ∈ Rm×n we define the discrepancy as

disc(A) := min
x∈{−1,1}n

‖Ax‖∞.

The hereditary discrepancy is the maximum discrepancy for any submatrix, i.e.

herdisc(A) := max
J⊆[n]

disc(AJ )

where AJ is the m× |J | submatrix of A indexed by J .

Theorem 5.16 (Ghouila-Houri 1962). Let A ∈ Zm×n. Then the following is equiv-
alent:

(A) A is totally unimodular.

(B) herdisc(A) ≤ 1.
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Proof. (A) ⇒ (B). Since a submatrix of a TU matrix is also TU, it suffices to show
that for a TU matrix A one has disc(A) ≤ 1. That means we need to show there is
a point y ∈ {−1, 1}n so that −1 ≤ Ay ≤ 1. This is equivalent to finding x ∈ {0, 1}n
so that −1 ≤ A(2x − 1) ≤ 1. For a reason that will become clear later we instead
ask for a x ∈ {0, 1}n so that −p ≤ A(2x − 1) ≤ p where p ∈ {0, 1}m (which clearly
is still sufficient). So consider the polytope

P := {x ∈ Rn | −p ≤ A(2x− 1) ≤ p,0 ≤ x ≤ 1}

=
{

x ∈ Rn | −p+A1

2
≤ Ax ≤ p+A1

2
, 0 ≤ x ≤ 1

}

From the first representation we know that 1
21 ∈ P and so P 6= ∅ (no matter how we

choose p). We know that A is TU, so the polytope will have only integral vertices
if the right hand side vector is integral. We choose p ∈ {0, 1}m to have the same
parity as A1 so that p+A1 and −p+A1 are even integers. This settles the claim.

(B) ⇒ (A). Suppose A is a minimal matrix for which the claim is false, i.e.
A ∈ Zk×k is non-singular, herdisc(A) ≤ 1 and for each proper submatrix B one has
det(B) ∈ {−1, 0, 1}. Fix the unique vector y so that Ay = det(A)e1. By Cramer’s
rule, each entry yi equals the determinant of A with the ith column being replaced
by ei. That determinant is ± det(B) for some (k − 1) × (k − 1) submatrix B of A.
Hence indeed y ∈ {−1, 0, 1}k .

Next, let x ∈ {−1, 0, 1}k so that supp(x) = supp(y) and ‖Ax‖∞ ≤ 1. Then
x + y ∈ {−2, 0, 2}k and for i ∈ {2, . . . , k} we have | 〈Ai, x+ y〉 | ≤ 1 which using
parity in fact means that 〈Ai, x〉 = 〈Ai, x+ y〉 = 0. As A is non-singular this means
〈A1, x〉 6= 0 which only leaves 〈Ai, x〉 ∈ {−1, 1}, i.e. Ax ∈ {−e1, e1}. Then Ay ∈
{− det(A)Ax,det(A)Ax} and again by non-singularity y ∈ {− det(A)x,det(A)x}.
Since x, y ∈ {−1, 0, 1}n this only leaves |det(A)| = 1.

The proof is (partly) taken from Korte and Vygen [KV12].

5.6 The Integer Decomposition Property

We make the following definition.

Definition 5.17. A polyhedron P ⊆ Rn has the integer decomposition property if
for any k ∈ Z≥1 and x ∈ kP ∩ Zn there are points x1, . . . , xk ∈ P ∩ Zn so that
x = x1 + . . .+ xk.

The literature also uses the term normal polytope instead of integer decomposition
property. The condition implies that any rational vector x

k ∈ P (i.e. k ∈ Z≥1 and
x ∈ Zn) must lie in the convex hull of k integer points in P . In particular that means
every polytope (or rational polyhedron) with integer decomposition polytope must
be integral. But the reverse is not necessarily true. We provide an example from
Francisco Santos:
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Example 5.18. Consider the points X := {0, e1+ e2, e1+ e3, e2+ e3} ⊆ R3 and the
polytope P = conv(X) which by definition is integral. Then (1, 1, 1)T ∈ 2P . Since
X ⊆ [0, 1]3, it is not hard to see that in fact P ∩ Z3 = X. Then one can verify that
no two points of X sum up to (1, 1, 1)T .

But in fact, there are large classes of polyhedra with the integer decomposition
property:

Proposition 5.19. For A ∈ Zm×n totally unimodular and b ∈ Zm, the polyhedron
P = {x ∈ Rn | Ax ≤ b} has the integer decomposition property.

Proof. As suggested we prove this by induction over k. Nothing to show for k = 1,
so we assume k ≥ 2. Fix y ∈ kP ∩ Zn. In order to find the first vector x1 that we
can split off, we consider

Q := {x ∈ Rn | x ∈ P, y − x ∈ (k − 1)P}
= {x ∈ Rn | Ax ≤ b,A(y − x) ≤ (k − 1)b}
= {x ∈ Rn | Ax ≤ b,−Ax ≤ −Ay + (k − 1)b}

=
{

x ∈ Rn |
(

A
−A

)

︸ ︷︷ ︸

=:B

x ≤
(

b
−Ay + (k − 1)b

)

︸ ︷︷ ︸

=:f

}

Note that because A is TU, also the constraint matrix B of Q is TU. Moreover
because b,A, y, k are integer, also the right hand side vector f describing Q is integer.
Note that Q 6= ∅ because x := y

k is in Q (easy to see that y
k ∈ P and y − y

k =
(k − 1) yk ∈ (k − 1)P ). Hence the polyhedron Q contains an integer point that we
denote by x1 ∈ P ∩ Zn — recall that y − x1 ∈ (k − 1)P ∩ Zn. We apply induction
and write y − x1 = x2 + . . .+ xk with x2, . . . , xk ∈ P ∩ Zn and are done!

5.7 Exercises

Exercise 5.1.

Give a min-max relation for the maximum weight of a stable set in a bipartite graph G =

(V,E) without isolated vertices.

Comment. What is meant is that you are given a bipartite graph G = (V,E) and a non-

negative integer weight function w : V → Z≥0 and you are asked to find an expression of

the form min{...} that equals the maximum of
∑

i∈S wi over all stable sets S ⊆ V . Source:

This exercise is modified from Schrijver [Sch17].

Exercise 5.2.

Let D = (V,A) be a directed graph. Prove that the node-edge incidence matrix A ∈
{−1, 0, 1}V×A of D is totally unimodular.
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Exercise 5.3.

A set family F ⊆ 2X is called laminar if for all S, T ∈ F one either has S ⊆ T or T ⊆ S or
S ∩ T = ∅. Let A ∈ {0, 1}F×X be a matrix whose rows are the characteristic vectors of F .
Prove that A is totally unimodular.
Example. The following is one such a matrix:

A =













1 1 1 1 1 1 1 1
1 1 1 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 1 1 1
0 0 0 1 0 0 1 0
0 0 0 0 0 1 0 1
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Chapter 6

Flows and circulations

Most of the material from this chapter is adapted from Schrijver [Sch17].

6.1 Flows

In this section, we introduce one of the most natural and useful optimization prob-
lems. For a directed graph D = (V,A) and a subset S ⊆ V of vertices, we define

δin(S) := {(u, v) ∈ A | u /∈ S, v ∈ S}
δout(S) := {(u, v) ∈ A | u ∈ S, v /∈ S}

S

δout(S)δin(S)

Definition 6.1. Let D = (V,A) be a directed graph with s, t ∈ V . A function
f : A → R is an s-t flow if

• f(a) ≥ 0 ∀a ∈ A

• ∑

a∈δin(v) f(a) =
∑

a∈δout(v) f(a) ∀v ∈ V \ {s, t}
The value of a flow is the net amount of flow leaving the source s:

value(f) :=
∑

a∈δout(s)

f(a)−
∑

a∈δin(s)
f(a)

One can verify that the value of a flow is also equal to the net amount of flow entering
the sink t.

s t

2 4

5

2

3

s-t flow of value 7

57
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Definition 6.2. Given a function u : A → R≥0, a flow f is a flow under u if
f(a) ≤ u(a) ∀a ∈ A.

The main problem for us will be:

Max Flow Problem

Input: D = (V,A), s, t ∈ V and u : A → R≥0

Goal: Find an s-t flow f under u of maximum value

For S ⊆ V with s ∈ S, t /∈ S, we call the edge set δout(S) an s-t cut. Given capacities
u : A → R≥0, we call u(δout(S)) :=

∑

a∈δout(S) u(a) the capacity of a cut. It seems
that s-t cuts are a natural “dual” concept to flows. And in fact, any s-t cut gives a
simple upper bound on how large any s-t flow can be as any unit of flow needs to
use an edge of the s-t cut.

Lemma 6.3. Let f be an s-t flow under u and let δout(S) be an s-t cut. Then
value(f) ≤ u(δout(S)).

Proof. We have

value(f) =
∑

a∈δout(s)

f(a)−
∑

a∈δin(s)
f(a)

=
∑

v∈S

( ∑

a∈δout(v)

f(a)−
∑

a∈δin(v)
f(a)

)

=
∑

a∈δout(S)

f(a)
︸︷︷︸

≤u(a) (∗)

−
∑

a∈δin(S)
f(a)

︸ ︷︷ ︸

≥0 (∗∗)

≤ u(δout(S))

Ss t

(∗)

(∗∗)

From the proof we obtain the important observation we have equality in Lemma 6.3
iff both (∗) and (∗∗) are equalities for all arcs!

Corollary 6.4. Let f be an s-t flow under u and let δout(S) be an s-t cut. Then

(

value(f) = u(δout(S))
)

⇐⇒
(
f(a) = u(a) ∀a ∈ δout(S)
f(a) = 0 ∀a ∈ δin(S)

)
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6.2 Finding a maximum flow

Next, we will describe a method to compute a maximum s-t flow in a graph. For an
edge a = (v,w) we denote the inverse edge as a−1 := (w, v).

Definition 6.5. Let D = (V,A) be a directed graph with capacities u : A → R≥0

and let f : A → R be an s-t flow under u. The residual graph Df = (V,Af ) with
residual capacities uf : Af → R>0 is defined by

f(a) < u(a) ⇒ a ∈ Af and uf (a) = u(a)− f(a) (forward edge)
f(a) > 0 ⇒ a−1 ∈ Af and uf (a

−1) = f(a) (backward edge)

Intuitively, the residual graph denotes how the flow f can be changed without
violating capacities or non-negativity.

s t

5 5

5

2

5

capacities u

s t

0 2

2

2

0

flow f

s t

5 3

2

3

2

2

5

graph Df with cap. uf

There is however an annoying technicality: a directed graph D might potentially
contain edges in both directions (v,w) and (w, v). Then the residual graph might
contain (v,w) both as forward edge and as backward edge. This is neither a math-
ematical nor an algorithmic issue, but notationally one would need to either allow
multi-edges or keep track which fraction of the residual capacities uf (a) comes from
which of the two cases. In order to avoid this, whenever we discuss a residual graph
we will make the simplifying assumption that the graph D does not contain both
edges (v,w) and (w, v). If needed one could always introduce a dummy node z and
replace (w, v) by (w, z), (z, v).

Next, we discuss the usefulness of the residual graph. Fix a graph D = (V,A)
with s, t ∈ V , capacities u : A → R≥0 and an s-t flow f under u. Suppose there is an
s-t path P in Df that consists of edges a1, . . . , ak. Let α := min{uf (a1), . . . , uf (ak)}
be the minimal residual capacity on that path. Note that α > 0 by construction.
We define a function f ′ : A → R≥0 with

f ′(a) :=







f(a) + α if a = ai for some i

f(a)− α if a = a−1
i for some i

f(a) otherwise
In other words, we increase the flow on all forward arcs in P by α and we decrease
the flow on backward arcs by α. By a simple case split we can see the following (we
leave the proof to the reader).
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Lemma 6.6. f ′ is an s-t flow under u with value(f ′) = value(f) + α.

An important early result on flows is that the value of a maximum s-t flow equals
the value of a minimum s-t cut.

Theorem 6.7 (MaxFlow=MinCut; Ford Fulkerson [FF56]). For any directed graph
D = (V,A) and u : A → R≥0, one has

max{value(f) | f is s-t flow under u} = min{u(δout(S)) | {s} ⊆ S ⊆ V \ {t}}

Proof. We fix an s-t flow f of maximum value (which has to exist by compactness).
Consider the residual graph Df . If there is any s-t path P in Df , then we can
augument f along P to some other flow f ′ with value(f ′) > value(f) which would
be a contradiction to optimality of f . Hence we may assume that there is no s-t
path in Df .

Define S := {v ∈ V | ∃path in Df from s to v}. By construction s ∈ S and
t /∈ S. Hence δout(S) is an s-t cut. It remains to prove that this particular s-t cut S
satisfies the claim.
Claim. One has value(f) = u(δout(S)).
Proof of Claim. Due to the observation from Cor 6.4 it suffices to verify that (∗)
and (∗∗) are tight:

• An outgoing edge a = (v,w) ∈ δout(S) has f(a) = u(a). Otherwise f(a) <
u(a), a ∈ Af and w would be reachable via v.

S

s
f(a) < u(a)

tv w

graph D

S

s tv w

graph Df

• An incoming edge a = (w, v) ∈ δin(S) has f(a) = 0. If f(a) > 0, then a−1 ∈ Af

and again w was reachable via v.

S

s
f(a) > 0

t

v w

graph D

S

s t

v w

graph Df

The MaxFlow=MinCut Theorem is a form of a duality theorem similar to König’s
Theorem (Theorem 4.9) or Theorem 3.26. In fact, it can be proven alternatively using
LP duality. We only want to sketch the arguments here. Consider a directed graph
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D = (V,A) and let M ∈ {−1, 0, 1}V ×A be the node edge incidence matrix. For a
subset U ⊆ V , we write MU as the submatrix containing only the rows indexed by
U . Then one can indeed rewrite the max flow problem as a linear program and then
take the dual:

max{value(f) | f flow under u} (6.1)

= max{Msx | 0 ≤ x ≤ u,MV \{s,t}x = 0, x ∈ RA} (6.2)
LP duality

= min{yTu | yT + zTMV \{s,t} ≥ MT
s , y ∈ RA

≥0, z ∈ RV \{s,t}} (6.3)

= ...(some work)... (6.4)

= min{u(δout(S)) | {s} ⊆ S ⊆ V \ {t}} (6.5)

The constraint matrix of the LP in (6.2) is indeed totally unimodular. Not very
surprisingly, this implies that if all capacities u(a) are integral, then there is always
an integral maximum s-t flow. But at this point it is more crucial that the constraint
matrix of the dual is also TU and hence the LP in (6.3) will have an integral optimum
solution (y, z). Then from that one can reason that the solution indeed corresponds
to an s-t cut1.

The proof of the MaxFlow=MinCut theorem suggests a natural algorithm in
order to actually find a maximum s-t flow.

Ford and Fulkerson’s algorithm for Max Flows

Input: D = (V,A), s, t ∈ V , u : A → R≥0.
Output: A maximum s-t-flow under u

(1) Set f(a) = 0 for all a ∈ A.

(2) REPEAT

(3) Find any s-t path P = (a1, . . . , ak) in Df . If none exists then stop.

(4) Set α := min{uf (ai) : i = 1, . . . , k} as the minimum residual capac-
ity on that path.

(5) Augment f along P by α.

We prove correctness of the algorithm.

Theorem 6.8. Let D = (V,A) and u : A → Q≥0. Then Ford Fulkerson finds a
maximum flow in finite time.

Proof. By assumption, there is some K ∈ N so that K · u(a) ∈ Z for all a ∈ A.
Then in each iteration, value(f) increases by at least 1

K . Hence the algorithm will
terminate in finite time and from the proof of Theorem 6.7 we know that f must
then be optimal.

1Note that one also needs to use that u(a) ≥ 0 since otherwise the argument would apply for
the NP-hard Max Cut problem.
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Curiously, if the capacities u(a) ∈ R≥0 are arbitrary real numbers, then the Ford-
Fulkerson algorithm might never terminate — in fact, it might not even converge to
an optimum solution.

Instead of discussing that instance, we show a simple example where progress in
each iteration might be very minuscule:

Example 6.9. Consider Ford-Fulkerson on this instance

s

a

b

t

M

M

1

M

M

D with cap. c

s

a

b

t

M − 1

1

M

1

M

M − 1

1

residual graph Df

after 1 iter.

s

a

b

t

M − 1

1

M − 1

1
1

M − 1

1

M − 1

1

residual graph Df

after iter. 2
Then if we alternatingly choose augmenting paths s → a → b → t and s → b → a →
t, then the flow value will only increase by 1 in each iteration and hence the Ford
Fulkerson algorithm takes 2M iterations to terminate.

Note that if we modify the Ford Fulkerson algorithm and always select the cur-
rently shortest s-t path in the residual graph (in terms of number of edges), then
|V | · |A| iterations suffice. This is a result independently by Dinitz [Din70] and
Edmonds and Karp [EK72].

6.3 Application: Elimination of sports teams

Maximum flows have a huge number of practical applications as many problems can
be formulated as a flow problem. Of course that implies that the problem can be
solved with any maximum flow algorithm. But additionally it means that stuctural
results carry over from flows to the specific problems. We want to demonstrate this
with a non-obvious application to the elimination of sports teams.

We consider a sport league where a team gets 1 point for a win, 0 points for loosing
(no ties). We are in the middle of the season and wonder whether our beloved team
can still become champion (which equals to having the maximum number of points
at the end of the season, possibly in a tie) or whether they are “mathematically
eliminated”.

Example 6.10 (Example 1). Suppose the current state of the league is as follows

Team Wins To play
A 33 8
B 28 4
...
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Can team B still become champion? The answer is clearly no! as A will always
dominate B.

Let us consider a more complex example.

Example 6.11. Suppose instead the current state of the league is:

Team wins To play A B C D
A 33 8 - 1 6 1
B 29 4 1 - 0 3
C 28 7 6 0 - 1
D 27 5 1 3 1 -

Can team B still become champion? The answer is again no! First of all, B would
need to win all remaining games. Then A would have to loose all games. But then
C wins at least another 6 games, obtaining 34 > 33 points.

In the following, we will prove that in case our team B cannot become champion,
there is always a simple criterion that certifies it.

First, we can make the assumption that (as we are discussion the most optimistic
case), our team B wins all remaining games! We define

M := #wins for B at end of season

assuming they win all remaining games

T := {teams other than B}
wi := #wins of team i currently ∀i ∈ T

rij := #games remaining between i and j ∀i, j ∈ T, i 6= j

P := {{i, j} ⊆ T | i 6= j, rij > 0}

Then the goal is to find an outcome of the games so that all teams i ∈ T get ≤ M−wi

additional wins! We prove the following equivalence:

Theorem 6.12. The following is equivalent

(I) Team B cannot become champion.

(II) There is a subset T ′ ⊆ T with

∑

i∈T ′

wi +
∑

{i,j}⊆T ′,{i,j}∈P
rij > M · |T ′|

Before we prove this theorem, we want to demonstrate how it applies to the two
previously considered examples. In case of
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Team wins To play
A 33 8
B 28 4
...

the elimination criterion applies with T ′ := {A}! In the second example of

Team wins To play A B C D
A 33 8 - 1 6 1
B 29 4 1 - 0 3
C 28 7 6 0 - 1
D 27 5 1 3 1 -

the elimination criterion applies with T ′ := {A,C}! Now we come to the proof.

Proof of Theorem 6.12. (II) ⇒ (I). We can rearrange the criterion to

average #points
of teams in T ′

at end of season
≥ 1

|T ′|
(∑

i∈T ′

wi +
∑

{i,j}⊆T ′,{i,j}∈P
rij

)

> M

Hence, no matter the outcome, some team in T ′ will get more than M points and
hence beat B.
(I) ⇒ (II). We create a graph D = (V,A) with vertices V := T ∪P ∪ {s, t}, edges
(s, {i, j}) for {i, j} ∈ P with capacity rij ; edges ({i, j}, i) for all {i, j} ∈ P with
capacity ∞ and edges (i, t) with capacity M − wi for all i ∈ T .

s
{i, j}

i

j
t

rij
∞

∞

M − wi

M − wj

P T

It is not hard to see that

B can become champion ⇔ ∃ integral flow of value
∑

{i,j}∈P rij
⇔ ∃ flow of value

∑

{i,j}∈P rij
⇔ every s-t cut S has value ≥ ∑

{i,j}∈P rij

using the MaxFlow=MinCut Theorem. As we are assuming that B cannot become
champion, we can fix an s-t cut S of value u(δout(S)) <

∑

{i,j}∈P rij. We set T ′ :=
T ∩ S as all the teams in that cut.
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S T ′

s
{i, j}

i

j
t

rij
∞
∞

M − wi

M − wj

P T

We prove the structural claim that the cut S contains exactly the pairs {i, j} ∈ P
where i, j ∈ T ′:
Claim. One has S = {s} ∪ {{i, j} ∈ P : |{i, j} ∩ T ′| = 2} ∪ T ′.
Proof of Claim. If {i, j} ∈ S with |{i, j} ∩ T ′| < 2, then an edge with capacity ∞
is cut. On the other hand, if {i, j} /∈ S while |{i, j} ∩ T ′| = 2, then moving {i, j}
into S decreases the cut value by rij > 0.

Now we can write the value of the cut as

u(δout(S)) =
∑

{i,j}∈P :|{i,j}∩T ′|≤1

rij +
∑

i∈T ′

(M − wi) <
∑

{i,j}∈P
rij

which can be rearranged to

M · |T ′| <
∑

i∈T ′

wi +
∑

{i,j}∈P :|{i,j}∩T ′|=2

rij

6.4 Circulations

We make the following definition:

Definition 6.13. Let D = (V,A) be a directed graph. A function2 f : A → R≥0 is
a circulation if

∑

a∈δout(v)

f(a) =
∑

a∈δin(v)
f(a) ∀v ∈ V

Intuitively, a circulation is a flow without distinguished source and sink which
makes some arguments cleaner.

2Note that we do ask for non-negativity but one can find definitions for circulations elsewhere
in the literature that allow negative values f(a).
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2

2
6

6
5

1
3

graph D with circulation

Suppose we are given a graph D with lower bounds ℓ(a) and upper bound u(a)
on each edge a ∈ A and the question is whether there is a circulation f so that
ℓ(a) ≤ f(a) ≤ u(a) for each edge a ∈ A. One can prove that if there is no such
circulation, then there has to be a set U ⊆ V of vertices where the lower bound on
the incoming flow is higher than the upper bound on the outgoing flow.

Theorem 6.14 (Hoffman’s Circulation Theorem). Let D = (V,A) be a directed
graph and let ℓ, u : A → R with 0 ≤ ℓ(a) ≤ u(a) for all a ∈ A. The following is
equivalent:

(A) There exists a circulation f : A → R with ℓ(a) ≤ f(a) ≤ u(a) for all a ∈ A.

(B) One has ℓ(δin(U)) ≤ u(δout(U)) for every U ⊆ V .

One may visualize (B) as

U

≤ u(δout(U))

≥ ℓ(δin(U))

Proof. (A) ⇒ (B). Let f be a circulation satisfying (A). Then for any set U ⊆ V
we have

ℓ(δin(U)) ≤ f(δin(U))
circulation

= f(δout(U)) ≤ u(δout(U))

which shows (B).
(B) ⇒ (A). We may assume (B) is satisfied and we need to show that a

circulation f exists that satisfies (A). First, for any function f : A → R (not
necessarily a circulation) we define a vector lossf ∈ RV with

lossf (v) := f(δout(v))− f(δin(v)).

We choose a function f : A → R with ℓ ≤ f ≤ u that minimizes ‖lossf‖1. Such a
choice much exist by compactness. Intuitively, this means we pick a function that
is closest to being a circulation satisfying the lower and upper bounds. If lossf = 0,
then f is indeed a circulation and we are done. So suppose lossf 6= 0. Set

S := {v ∈ V | lossf (v) < 0} and T := {v ∈ V | lossf (v) > 0}
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Slightly extending an earlier definition, we define the residual graph as the graph
Df = (V,Af ) with edges

f(a) < u(a) ⇒ a ∈ Af

f(a) > ℓ(a) ⇒ a−1 ∈ Af

We distinguish two cases:

• Case 1: There is a S-T path in Df . Fix any S-T path P in Df We augment
the function f along P by some by ε > 0. Then ‖lossf‖1 decreases and we
have a contradiction.

S T
+ε +ε +ε

• Case 2: There is no S-T path in Df . Let U := {v ∈ V | v reachable from S in Df}.
We verify that for each a ∈ δout(U), one has f(a) = u(a). Moreover, for each
a ∈ δin(U), one has f(a) = ℓ(a) (same argument as in the MaxFlow=MinCut
proof).

U S T

Then

0 > lossf (S) = lossf (U) = f(δout(U))− f(δin(U)) = u(δout(U))− ℓ(δin(U))

Rearranging gives u(δout(U)) < ℓ(δin(U)).

We make another definition:

Definition 6.15. We call a circulation f atomic if there is a single directed circuit
C ⊆ A so that

f(a) =

{

λ if a ∈ C

0 otherwise
for some λ ≥ 0.
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λ

λ λ

λ

λλ

It seems intuitive that any circulation is somehow build from atomic circulations. In
the literature this fact is usually called flow decomposition.

Lemma 6.16. Let f : A → R≥0 be a circulation in D = (V,A). Then there are
atomic circulations f1, . . . , fk : A → R≥0 with f = f1 + . . .+ fk and k ≤ |A|.

Proof. First, it is not hard to prove that for any non-zero circulation f , there is a
circuit C ⊆ supp(f) (just do a walk following any arc a with f(a) > 0 until some
node is revisited; this closes a cycle; then decompose the cycle into circuits). We let
λ1 := min{f(a) : a ∈ C}. Then f1 := λ11C is the first atomic circulation and we
iterate the argument with f − f1. Note that in each iteration the flow one at least
one arc becomes zero, hence this argument will terminate after at most |A| steps.

There is also a polyhedral argument for Lemma 6.16. Fix a directed graph D
and consider the polyhedral convex cone

K := {x ∈ RA | ADx = 0, x ≥ 0}

of all circulations in D. By a conic variant of Caratheodory’s Theorem (Theo-
rem 3.17), for any f ∈ K, we can write f =

∑k
i=1 fi where each fi ∈ K is an extreme

ray of the cone K and k ≤ |A|. In fact, the extreme rays of K are exactly the atomic
circulations.

6.5 Circulations of minimum cost

Next, we want to generalize the problem and include edge cost.

Min Cost Circulation Problem

Input: D = (V,A), ℓ, u : A → R≥0 and c : A → R
Goal: Find a circulation f : A → R≥0 with ℓ(a) ≤ f(a) ≤ u(a) for all a ∈ A
that minimizes the cost c(f) :=

∑

a∈A c(a) · f(a).

We want to make a few comments on this problem:

• Min Cost Circulation is indeed a generalization of the maximum s-t flow prob-
lem. To see this, take an instance D = (V,A), s, t ∈ V , u : A → R≥0. Add
an arc (t, s) with capacity ∞ and cost −1 and call the new graph D′. Then
a minimum cost circulation in D′ corresponds to a maximum s-t flow in the
original graph D.
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D
ts

u(·) := ∞, c(·) := −1

Other problems that can be modelled as Min Cost Circulation are for example
shortest s-t path and minimum cost max s-t flow.

• Even finding a feasible solution (rather than an optimum one) for a min cost
circulation instance (D, ℓ, u, c) does not seem to be trivial. But consider the
auxiliary instance (D′, ℓ′, u′, c′) where we replace an arc a by two parallel arcs
with the following cost / lower bound / capacity:

vu

cost: c(a)
lower b.: ℓ(a)

cap.: u(a)

instance D

vu

cost: 0
lower b.: 0

cap.: u(a) − ℓ(a)

cost: −1
lower b.: 0

cap.: ℓ(a)

instance D′

Then the 0-flow is feasible for the auxiliary instance while a minimum cost
circulation in D′ corresponds to a feasible circulation in D. Hence, algorith-
mically it suffices to solve min cost circulation with the assumption to have a
feasible starting solution3.

• If AD is the node edge incidence matrix of the graph D, then the min cost
circulation corresponds to an optimum solution to the LP

min{cT f | ADf = 0, ℓ ≤ f ≤ u}

The constraint matrix of this LP is totally unimodular by Theorem 5.15. In
particular, this implies that if ℓ and u are integer, then there is always an
integral optimum min cost circulation.

We extend the definition of residual graphs to include costs.

Definition 6.17. Let D = (V,A) be a graph with bounds ℓ, u : A → R≥0 and cost
c : A → R. Let f : A → R be a circulation with ℓ ≤ f ≤ u. Then the residual graph

3This argument is similar to “phase 1” for the simplex algorithm.
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is the graph Df = (V,Af ) with residual capacities uf : Af → R>0 and residual cost
cf : Af → R defined by

f(a) < u(a) ⇒ a ∈ Af , uf (a) := u(a)− f(a), cf (a) := c(a)

f(a) > ℓ(a) ⇒ a−1 ∈ Af , uf (a
−1) := f(a)− ℓ(a), cf (a

−1) := −c(a)

Again we can augment along a cycle of the residual graph:

Fact 6.18. Let f be a circulation in D with ℓ ≤ f ≤ u and let C ⊆ Af be any
directed circuit in the residual graph Df . For 0 < α ≤ min{cf (a) : c ∈ C}, the
function f ′ : A → R with

f ′(a) :=







f(a) + α if a ∈ C

f(a)− α if a−1 ∈ C

f(a) otherwise

is again a circulation in D with ℓ ≤ f ′ ≤ u and c(f ′) = c(f) + α · c(C).

This fact implies that if there is a negative cost cycle in the residual graph,
we can augment along the cycle and decrease the cost. This suggests a rather
natural algorithm that iteratively finds negative cost cycles in the residual graph
and aguments along them. In order to prove correctness, we make the following
useful observation:

Fact 6.19. Let f and f∗ be two circulations in D with ℓ ≤ f ≤ u and ℓ ≤ f∗ ≤ u.
Then the “difference circulation” g : Af → R≥0 with

f(a) < f∗(a) ⇒ g(a) := f∗(a)− f(a)

f(a) > f∗(a) ⇒ g(a−1) := f(a)− f∗(a)

(and 0 elsewhere) is a circulation in Df with 0 ≤ g(a) ≤ uf (a) for all a ∈ Af and
cost cf (g) = c(f∗)− c(f).

Proposition 6.20. Let D = (V,A) be a directed graph and let ℓ, u, c : A → R. A
circulation f with ℓ ≤ f ≤ u is optimal ⇔ there is no negative cost cycle in Df .

Proof. The direction (⇒) follows from Fact 6.18. For (⇐), let f be an arbitrary
circulation in D and assume that Df does not contain negative cost cycles. Let f∗

be a minimum cost circulation. Let g : Af → R≥0 be the difference between f∗ and
f , i.e. cf (g) = c(f∗) − c(f) (see Fact 6.19). Then by Lemma 6.16 we can write
g =

∑k
i=1 gi where g1, . . . , gk are atomic circulations in the residual graph Df . Then

c(f∗)− c(f) = cf (g) =

k∑

i=1

cf (gi)
︸ ︷︷ ︸

≥0

≥ 0

Then c(f) ≤ c(f∗) and hence f is optimal.
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Min cost circulation algorithm

Input: D = (V,A), ℓ, u : A → R≥0, c : A → R.
Output: A min cost circulation f with ℓ ≤ f ≤ u

(1) Find a feasible circulation f0 with ℓ(a) ≤ f0(a) ≤ u(a) for all a ∈ A
using remark on page 69.

(2) FOR t = 0 TO ∞ DO

(3) Construct the residual graph Dft .

(4) Find a cycle C ⊆ Dft with cft(C) < 0. If there is non STOP.

(5) Set α := min{uft(a) : a ∈ C}
(6) Augment ft along C by α and call the outcome ft+1

We can conclude the following:

Corollary 6.21. The sequence of circulations satisfies c(f0) < c(f1) < . . .. More-
over, if the algorithm terminates, the penultimate circulation is optimal.

Proof. Follows from Prop 6.20.

It is indeed possible to select a cycle in (4) so that the algorithm runs in poly-
nomial time. This is the goal of the next section.

6.6 The minimum mean cycle canceling algorithm*

In this section, we discuss a result due to Tardos [Tar85] where in the exposition we
will follow Chapter 12 in Schrijver [Sch03]. In our min cost circulation algorithm, we
want to make a more careful choice of which cycle in Df to use for augmentation.
It will turn out that the right cycle is the one that minimizes the average cost. Let
us define

µ(f) := min
C cycle in Df

{cf (C)

|C|
}

as the cost of the minimum mean cycle. Note that we allow the empty cycle so that
always µ(f) ≤ 0.

Lemma 6.22. Given a directed graph D = (V,A) with edge cost c : A → R. Then
a minimum mean length cycle can be found in time O(|V |2 · |A|).

Proof. Consider the following slight variation of the Bellman-Ford algorithm: set

d0(u, v) :=

{

0 if u = v

∞ if u 6= v
and dk(u, v) := min

(w,v)∈A
{dk−1(u,w) + c(w, v)}
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for k = 1, . . . , |V | and u, v ∈ V . Then dk(u, v) = c(P ) where P is the u-v walk with
exactly k arcs that minimizes c(P ). Computing all entries takes time O(|V |2 · |A|).
Then the cost of the minimum mean cycle is

min
k=0,...,|V |; u∈V

{dk(u, u)

k

}

(∗)

(counting the entries for k = 0 as having value 0) and also the cycle itself can be
recovered from the entries. The crucial argument why (∗) is attained by a cycle
and not (only) by a walk is the following: suppose that C is a closed walk attaining
(∗). Then that walk can be decomposed into cycles C1, . . . , Cℓ and in particular
c(C) =

∑ℓ
i=1 c(Cℓ). Then one can verify that c(C)

|C| ≤ mini=1,...,ℓ
c(Ci)
|Ci| , hence one of

the cycles Ci was at least as good as C.

Note that the minimum mean cost cycle can be found with a more sophisticated
argument in time O(|V | · |A|), see for example Chapter 7.3 in the textbook of Korte
and Vygen [KV12].

We restate the algorithm that we will analyze for convinience:

Minimum mean cycle canceling algorithm

Input: D = (V,A), ℓ, u : A → R≥0, c : A → R.
Output: A min cost circulation f with ℓ ≤ f ≤ u

(1) Compute any feasible circulation f with ℓ(a) ≤ f(a) ≤ u(a) for all a ∈ A.
(2) WHILE ∃ cycle in Df with negative cost DO

(3) Compute minimum mean cycle C ⊆ Af w.r.t. cost cf
(4) Augment f along C by min{uf (a) : a ∈ C}

6.6.1 Node potentials

For a moment we will discuss general directed graphs and cost functions, not in the
context of circulations. For a directed graph D = (V,A) with edge cost c : A → R,
a function π : V → R are called node potentials. These induce reduced costs cπi,j :=
cij + πi − πj.

Lemma 6.23. Let D = (V,A) be a directed graph with cost c : A → R and node
potentials π. Then any cycle C ⊆ A has cπ(C) = c(C).

Proof. Clear as the node potentials cancel out.

Lemma 6.24. Let D = (V,A) be a directed graph with arc cost c : A → R. Then
D has no negative cost cycle ⇔ there are node potentials with cπi,j := cij +πi−πj ≥
0 ∀(i, j) ∈ A.
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Proof. “⇐”. Any cycle C has c(C) = cπ(C) ≥ 0 by Lemma 6.23.
“⇒” We add an artificial node s and arcs (s, v) with c(s, v) := 0 for all v ∈ V .

s

0

0

0

D

Let d(u, v) be the length of the shortest path u-v in the resulting graph. Note that
d(u, v) maybe negative, but since there are no negative cost cycle, d is well defined.
Define π(i) := d(s, i) as the node potentials. Then cπi,j = cij + d(s, i)− d(s, j) ≥ 0 ⇔
d(s, j) ≤ d(s, i) + cij which is the triangle inequality.

Now, let us go back to the case that we have a directed graph D = (V,A) with
bounds ℓ ≤ u and a circulation f : A → R≥0. For a node potential π : V → R
we consider the reduced costs cπf (i, j) := cf (i, j) + πi − πj . However the considered
circulations will keep changing which changes the arcs Af in the residual graph, but
it will not change the cost cf (i, j). Hence in order to keep the notation clean, we
will drop the index f in the cost and only use cπ(i, j) — but we will always consider
the reduced costs with respect to the residual graph!

A circulation f : A → R≥0 is ε-optimal for ε ≥ 0 if there are node potentials
π : V → R so that cπij ≥ −ε for all (i, j) ∈ Af . Let

ε(f) := min{ε ≥ 0 : f is ε-optimal}

The interpretation of this quantity is that ε(f) is the smallest amount that has to
be added to the cost of the arcs in the residual graph to eliminate all negative cost
cycles. In some sense ε(f) gives a measure of distance to optimality.

Lemma 6.25. For any circulation f , µ(f) = −ε(f).

Proof. “≥” Let π be the node potentials valid for ε(f). The minimum mean cycle C
in Df has |C| · µ(f) = c(C) = cπ(C) ≥ −ε(f) · |C|.
“≤”. Let use define a cost function c̃(u, v) := c(u, v)−µ(f). Now there is no negative
cost cycle w.r.t. c̃ and there are node potentials π with c̃(i, j) + πi − πj ≥ 0, which
is the same as c(i, j) + πi − πj ≥ µ(f).

6.6.2 The weakly polynomial bound

The analysis of the cycle cancelling method will consist of showing that the value of
ε(f) is decreasing in the course of the algorithm.

Lemma 6.26. Update f to f ′ by augmenting along a minimum mean cost cycle.
Then ε(f ′) ≤ ε(f).
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Proof. Abbreviate ε := ε(f). Let π : V → R be the node potentials with cπ(a) ≥ −ε
for every arc a ∈ Af . We will show that the same node potentials are still feasible
for the updated graph Df ′ .

Let C ⊆ Af be the minimum cost mean cycle. Note that its cost are cπ(C) =
−|C| · ε by Lemma 6.25. That means that every arc a ∈ C must have cπ(a) = −ε.
The only new arcs (i, j) ∈ Af ′ \ Af have (j, i) ∈ C. Hence the reduced cost are
cπij = −cji + πi − πj = −cπji = ε ≥ 0.

We should remark that the claim of Lemma 6.26 is false if an arbitrary cycle is
chosen for updates. To understand the final part of the analysis better, fix a current
circulation f with ε := −µ(f) and let π be the corresponding potential. Suppose
for the sake of argument that the next two mean cycles are C1 and C2 contains the
reverse of the arc that was the bottleneck for C1. Then the picture for the reduced
cost in the residual graph will be as follows:

−ε

−ε −ε

−ε

−ε−ε ≥ −ε≥ −ε

+ε

≥ −ε ≥ −ε

≥ −ε

cycle C1 cycle C2

But then the mean cost of C2 has to be higher as it contains an arc with reduced
cost +ε. This idea can be generalized as follows:

Lemma 6.27. Consider a sequence {fi}i≥0 of circulations where fi+1 emerges from
fi by augmenting along the minimum mean cycle in Dfi . Then ε(f|A|+1) ≤ (1− 1

|V |) ·
ε(f0).

Proof. Let ε := ε(f0) and fix the potentials π : V → R with cπ(a) ≥ −ε for all
a ∈ Af0 .
Claim I. There is a k ∈ {0, . . . , |A| + 1} so that the minimum mean cost cycle
C ⊆ Dfk in that iteration contains an arc a ∈ C with cπ(a) ≥ 0.
Proof of Claim I. As long as the current iteration k uses a minimum mean cost
cycle C ⊆ Dfk with cπ(a) < 0 for all a ∈ C, every arc that appears new in the
residual graph will have non-negative reduced cost. Moreover, in every iteration at
least one arc is bottleneck arc and will not appear in the residual graph of the next
iteration. This can only go on for at most |A| iterations.
Claim II. Consider the minimal such k from Claim I. Then µ(fk) ≥ −(1− 1

|V |) · ε.
Proof of Claim II. Let C ⊆ Afk be the minimum mean cycle. We know that
cπ(a) ≥ −ε ∀a ∈ Afk . Then c(C) = cπ(C) ≥ (|C| − 1) · (−ε) and hence µ(fk) =
c(C)
|C| ≥ (1− 1

|C|) · (−ε). The claim follows from |C| ≤ |V |.
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Theorem 6.28. Suppose the cost function is c : A → {−cmax, . . . ,+cmax}. Then the
minimum mean cycle cancelling algorithm terminates after |V |·(|A|+1)·ln(2|V |·cmax)
iterations.

Proof. Let f be the flow before the 1st iteration and f ′ is the circulation after
|V | · (|A| + 1) · ln(2|V | · cmax) iterations. Then f is cmax-optimal. Moreover,

ε(f ′) ≤ cmax ·
(

1− 1

|V |
)|V |·ln(2|V |·cmax) ≤ cmax · exp(− ln(2|V |cmax)) =

1

2|V | .

Since the cost are integral, that implies that actually ε(f ′) = 0.

6.6.3 The strongly polynomial bound

Surprisingly one can prove that the number of iterations is bounded by a polynomial
only in |V | and |A|, independent from cost and capacity values.

Theorem 6.29 (Tardos [Tar85]). The minimum mean cost cycle algorithm termi-
nates after O(|A|2|V | ln(|V |)) iterations.

Proof. We set n := |V | and m := |A|. Let f0, f1, . . . be the circulations appearing in
the minimum mean cycle algorithm and let Ct be the minimum mean cycle in Dft

used to augment ft to ft+1. We abbreviate τ := 2nm⌈ln(n)⌉. The crucial claim is
the following:
Claim I. For each t0, there exists at least one arc a ∈ Ct0 so that ft1(a0) = ft2(a0)
for all t2 ≥ t1 := t0 + τ .

Intuitively, the claim says that every τ iterations, the flow on some arc will be
fixed and never change again. If we manage to prove Claim I, then indeed the
algorithm will terminate after at most 2mτ = O(m2n ln(n)) iterations.
Proof of Claim I. We set ε := ε(t1). Let π be potential for iteration t1, i.e.
cπ(a) := c(a) + π(u) − π(v) and cπ(a) ≥ −ε for every a = (u, v) ∈ At1 . Then using
Lemma 6.27 we obtain

ε ≤ ε(t0) ·
(

1− 1

n

)τ/m
≤ ε(t0) exp(−2⌈ln(n)⌉) ≤ ε(t0)

2n

Fix any arc a0 ∈ Ct0 with cπ(a0) ≤ −ε(ft0) < −2nε. It may be helpful to consider
the time axis:

t0 t1 t2

≥ 2mn ln(n) iterations

cπ(a) ≥ −ε∀a ∈ At1cπ(a0) < −2nε

choice π, ε
time



76 CHAPTER 6. FLOWS AND CIRCULATIONS

Assume by symmetry that a0 ∈ A (=forward arc) and assume for sake of contradition
that ft2(a0) 6= ft1(a0). We will analyze what happens to this particular edge.
Subclaim I.A. One has a0 /∈ At1

Proof of Subclaim I.A. If a0 ∈ At1 , then cπ(a0) ≥ −ε while at the same time
cπ(a0) < −2nε. That is a contradiction!

t0 t1 t2

≥ 2mn ln(n) iterations

cπ(a) ≥ −ε∀a ∈ At1cπ(a0) < −2nε

a0 /∈ At1

time

Subclaim I.B. There exists a directed circuit C so that (i) C ⊆ At2 , (ii) C−1 ⊆
At1 , (iii) a0 ∈ C.
Proof of Subclaim I.B. By the previous claim we have u(a0) = ft1(a0) > ft2(a0).
Then the difference h := ft1−ft2 (see Fact 6.19) is a circulation in Dt2 with h(a0) > 0.
Choose a circuit C ⊆ {a | h(a) > 0} containing a0. Then C ⊆ At2 and C−1 ⊆
At1 .

t0 t1 t2

≥ 2mn ln(n) iterations

cπ(a) ≥ −ε∀a ∈ At1cπ(a0) < −2nε

a0 /∈ At1

time

Now we continue the proof of Claim I. We have

(
C−1 ⊆ At1 and cπ(a−1) ≥ −ε

)
=⇒ cπ(a) ≤ ε ∀a ∈ C

Then

c(C) = cπ(C) = cπ(a0)
︸ ︷︷ ︸

<−2nε

+ cπ(C \ {a0})
︸ ︷︷ ︸

≤(|C|−1)·ε

< −nε ≤ −|C| · ε(t2)

So there is a circuit C in Dt2 with mean cost < −ε(t2). That is a contradiction.

t0 t1 t2

≥ 2mn ln(n) iterations

cπ(a) ≥ −ε∀a ∈ At1cπ(a0) < −2nε

time
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6.7 Exercises

Exercise 6.1.

Let D = (V,A) be a directed graph and let s, t ∈ V . Let f : A → R≥0 be an s-t flow of

value β. Show that there exists an s-t flow f ′ : A → Z≥0 of value ⌈β⌉ so that ⌊f(a)⌋ ≤
f ′(a) ≤ ⌈f(a)⌉ for every a ∈ A.

Source: This exercise is taken from Schrijver [Sch17].

Exercise 6.2.

In the following graph D = (V,A) (edges labelled with capacities u(a)), compute a maximum
s-t flow under u and a minimum s-t cut δout(U). What are their values? It suffices to state
the final outcomes.

s

v1

v2

v3

v4

v5

v6

t

1

2

10

2

4

7

1

22

4

5

112 2

2

5
1

Source: This exercise is taken from Schrijver [Sch17].

Exercise 6.3.

Let D = (V,A) be a directed graph with two distinguished nodes s, t ∈ V . A set U is called

an s-t vertex cut if U ⊆ V \ {s, t} and every s-t path intersects U . A collection of s-t paths

P1, . . . , PN is called internally vertex disjoint if they have no nodes in common other than

s and t. Prove the following using the MaxFlow=MinCut Theorem: Let D = (V,A) be a

directed graph with s, t ∈ V so that (s, t) /∈ A. Then the maximum number of internally

vertex-disjoint s-t paths equals the minimum |U | where U is an s-t vertex cut.

Hint: Create an auxiliary graph and apply the MaxFlow=MinCut Theorem there!

Exercise 6.4.

First answer the following:

(i) Let D′ = (V,A′) be a directed graph with capacities u′ and s, t ∈ V . We call an s-t
flow g : A′ → R≥0 elementary if there is a single s-t path P in D′ so that

g(a) =

{

value(g) if a ∈ P

0 if a /∈ P

Now let f∗ be a maximum s-t flow in D′ under u′. Prove that there is an elementary
s-t flow g under u′ with value(g) ≥ 1

|A′|value(f∗).
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Now let D = (V,A) be a directed graph with integral capacities u : A → Z≥0, distinguished
vertices s, t ∈ V and for the sake of simplicity suppose that for each arc a ∈ A one has
a−1 /∈ A.

(ii) Let f be any flow under u and let f∗ be a maximum value s-t flow. Prove that the
residual graph Df contains an s-t path P where uf(a) ≥ 1

2|A|(value(f∗) − value(f))

for all a ∈ P .

(iii) Consider the modification of the Ford-Fulkerson algorithm where in each iteration we
pick an s-t path P that maximizes min{uf(a) : a ∈ P} where f is the current flow.
Prove that this algorithm takes at most O(|A| ln(2value(f∗))) many iterations.

Exercise 6.5.

Let D = (V,A) be a directed graph with capacities u(a) := 1 for all a ∈ A. Let s, t ∈
V and assume that δout(t) = ∅. Let δin(t) = {a1, . . . , am} be the arcs incoming to

t. Define M = (X, I) with X := {a1, . . . , am} and I := {{ai ∈ X : f(ai) = 1} |
f is an s-t flow under u in D}. Prove that M is a matroid!



Chapter 7

Non-bipartite matching

In Chapter 4, we discussed the matching problem in bipartite graphs. As it turns out
matchings still have a nice structural properties in general graphs, but the extensions
of theorems from bipartite graphs can be highly non-trivial. We follow Chapter 5 in
[Sch17].

7.1 The Tutte-Berge Formula

We want to begin with an extension of König’s Theorem (Theorem 4.9). Suppose
we have an arbitrary undirected graph G = (V,E). How could we certify that there
is no perfect matching? A trivial reason would be if |V | is odd. Surprisingly this
idea can be extended nicely.

Recall that ν(G) denotes the maximum cardinality of a matching in G. Let us
define

ex(G) := min{#M -exposed nodes | M matching in G} = |V | − 2ν(G)

as the minimum number of exposed vertices. Let us call a connected component in
a graph odd if it has an odd number of vertices. We define odd(G) as the number
of odd components in graph G.

Consider a matching M in a graph G and fix some subset A ⊆ V . Suppose that
C1, . . . , Ck with k := odd(G \ A) are the odd components in G \ A. Then for each
i = 1, . . . , k, the matching M either leaves a node in Ci exposed, or it contains an
edge between a node in Ci and A.

79
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even components

odd components

C1 . . . Ck

A

Either way, M must have at least k − |A| many exposed nodes, that means

ex(G) ≥ odd(G\A)−|A| ⇔ ν(G) ≤ min
{1

2

(

|V |+ |A|−odd(G\A)
)

| A ⊆ V
}

Quite surprisingly it turns out that there is always a set A that provides a tight
bound.

Theorem 7.1 (Tutte-Berge Formula). For every graph G = (V,E) one has

ν(G) = min
A⊆V

{1

2

(
|V |+ |A| − odd(G \ A)

)}

Before we can prove the Tutte-Berge formula, we need a crucial structural lemma.
Let us call a node v critical if it is covered by every maximum matching. In the
proof of Theorem 4.9 we have shown that every non-empty bipartite graph contains
a critical node. This is not true for non-bipartite graphs, but instead we can prove
the following for graphs without critical nodes:

Lemma 7.2. Let G = (V,E) be a connected graph with E 6= ∅ and no critical node.
Then ex(G) = 1.

Proof. If ex(G) = 0, then every node is critical. Hence suppose for the sake of
contradiction that ex(G) ≥ 2, which means that every maximal matching M leaves at
least two nodes exposed. For two nodes u, v ∈ V , let d(u, v) be the distance in G (in
terms of the number of edges; note that here we use connectedness). Fix a maximal
matching that minimizes d(u, v) for a pair of M -exposed nodes. If d(u, v) = 1, then
M ∪ {u, v} is a bigger matching and we have a contradiction. Hence suppose that
d(u, v) ≥ 2. Select any node t ∈ V with d(u, t), d(v, t) < d(u, v) (for example by
taking a node t on the shortest path between u and v).

u t v
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Consider a maximal matching N that leaves t exposed. If there are several, choose
the matching that maximizes the number |M ∩N | of joint edges.

Next, consider the symmetric difference M∆N . Each of the nodes u, v, t is
exposed in either M or N , so they are all endpoints of some paths in M∆N . Since
M and N are maximal and we maximized |M ∩ N |, we know that M∆N consists
only of even length paths. Consider the even length path P containing u as an
endpoint. If the other endpoint is t, then M∆P has the exposed nodes v and t
which contradicts the choice of M . That means P has u as one endpoint and the
other one is neither v nor t. In fact, the situation looks like this:

∈ N ∈ M
uP :

v

t

Then the matching N∆P still has t exposed but has more edges in common with
M , which is a contradiction.

Proof of the Tutte-Berge Formula. We prove the equivalent statement:

ex(G) = max{odd(G \ A)− |A| | A ⊆ V }

We already argued the direction “≥”. We prove “≤” by induction.

• Case G is disconnected: Let G1, . . . , Gk are the connected components of
G (doesn’t matter whether these are even or odd) with k ≥ 2. We apply
induction to each of the connected components to find Ai ⊆ V (Gi) with
ex(Gi) = odd(Gi \ Ai)− |Ai|. Then A :=

⋃k
i=1 Ai gives

ex(G) =

k∑

i=1

ex(Gi) =

k∑

i=1

odd(Gi \ Ai)

︸ ︷︷ ︸

=odd(G\A)

−
k∑

i=1

|Ai|
︸ ︷︷ ︸

=|A|

• Case: G connected and there is no critical node. Using the last Lemma we
know that G is odd and ex(G) = 1. Hence for A := ∅ we have ex(G) = 1 =
odd(G \ A)− |A|.

• Case: G connected and there is a critical node u ∈ V . We apply induction to
G \ {u} and obtain a set A ⊆ V \ {u} with

ex(G)
u critical

= ex(G \ {u})− 1
induction

= odd((G \ {u}) \ A)− |A| − 1

= odd(G \ (A ∪ {u})) − |A ∪ {u}|
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Here we use that deleting a critical node increases the minimum number of
exposed nodes by 1. That means A ∪ {u} satisfies the claim.

A consequence is the following:

Corollary 7.3 (Tutte’s 1-factor theorem [Tut50]). A graph G = (V,E) has a perfect
matching if and only if odd(G \ A) ≤ |A| for all A ⊆ V .

7.2 Cardinality matching algorithm

In this section, we want to design a polynomial time algorithm for the cardinality
matching problem: given a graph G = (V,E), find a matching M ⊆ E maximiz-
ing |M |. We know from Theorem 4.8 that it suffices to find augmenting paths
for any matching M . In the special case of bipartite graphs, this is reasonably
straightforward. Unfortunately, M -augmenting paths are harder to find in general
graphs. Recall that a walk in a graph G = (V,E) is a sequence v0, v1, . . . , vt so
that {vi, vi+1} ∈ E for all i = 0, . . . , t − 1. In particular in a walk one is allowed
to revisit nodes and edges (which is in contrast to a path). We say that a walk
(v0, v1, . . . , vt) is M -alternating if for each node vi with i ∈ {1, . . . , t−1} exactly one
of the edges {vi−1, vi}, {vi, vi+1} lies in M and the other one does not. As the name
suggests, edges on the walk are alternatingly in M and not in M . In particular an
M -augmenting path is also an M -alternating walk. For a subset W ⊆ V , we call a
walk a W -W walk if start and endpoint are in W .

Lemma 7.4. Let G = (V,E) be a graph and M ⊆ E be a matching leaving W ⊆ V
exposed. Then a shortest M -alternating W -W walk P between two exposed vertices
can be found in time O(|V |+ |E|).

Proof. We define a directed graph D = (V ∪V ′, A) that has nodes v and v′ for every
original node in G. We insert an edge (u, v′) ∈ A if {u, v} ∈ E \ M . We insert
(u′, v) ∈ A if {u, v} ∈ M . For every node u ∈ W , we can find the shortest path to
some node in W ′ in polynomial time using breadth first search.

V

W

V ′

W ′

E \M

M
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Note that every M -alternating W -W walk will have odd length. Unfortunately,
an M -alternating path between M -exposed nodes is not necessarily an M -augmenting
path:

∈ M

v0 v1/v8 v2/v7

v3 v4

v5v6
v9

While such a walk does not yield an M -augmenting path, it does provide us with a
different useful structure: An M -blossom is an M -alternating walk P = (v0, v1, . . . , vt)
where v0 = vt is M -exposed and v0, . . . , vt−1 are distinct.

. . .

. . .

v0 = vt

v1

vt−1

If the algorithm behind Lemma 7.4 does not provide us with a path, then we can
extract a blossom as follows: flip the edges on the walk until the first revisited node
to get another matching M ′; the first closed cycle will then be an M ′-blossom.

Lemma 7.5. Let G = (V,E) and let M be a matching leaving W ⊆ V ex-
posed. Suppose P = (v0, . . . , vt) is a shortest M -alternating W -W walk and P
is not a path. Pick j minimal with vi = vj for some 0 ≤ i < j ≤ t. Let
M ′ := M∆{{v0, v1}, . . . , {vi−1, vi}}, C := (vi, . . . , vj). Then |M ′| = |M | is a match-
ing and C is an M ′-blossom.

Proof. If j − i was even, we could shorten P . So j − i is odd. As vj is the first
revisited node, all edges {v0, v1}, . . . , {vj−1, vj} are distinct. As j − i is odd, either
both or none of {vi, vi+1}, {vj−1, vj} are in M . Then the latter has to be the case.
Hence {vi−1, vi} ∈ M has to be the matching edge incident to vi = vj . Then i is
even and the claim follows.

. . .

∈ M

v0 vi−1 vi = vj

vi+1

vj−1
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Let G = (V,E) and C ⊆ V . Then G/C := (V/C,E/C) is the graph that is
obtained by shrinking the nodes in C into one supernode:

V/C := V \ C ∪ {C}
E/C := {e ∈ E | e ∩C = ∅} ∪ {{u,C} | {u, v} ∈ E with |{u, v} ∩ C| = 1}

C
⇒ C

contraction of an M -blossom C

We have already seen how to identify an M -blossom. Now we can show why an
M -blossom is anyhow useful:

Lemma 7.6. Let C be an M -blossom in G. Then M has maximum size in G iff
M/C has maximum size in G/C.

Proof. Let C = (v0, . . . , vt) be the M -flower. Note that v0 is M -exposed in G and
C is M/C-exposed in G/C. We prove the equivalent statement

∃M -augmenting path in G ⇔ ∃M/C-augmenting path in G/C

“⇒” Let P be an M -augmenting path. We may assume that P does not start at v0
(otherwise reverse it) and does touch C (otherwise P is itself M/C-augmenting). Let
P ′ be the beginning of P ending with the first node in C. The edge of P ′ entering
C is not in M (by def. of M -blossom). Then P ′ is M/C-augmenting.

∈ M
C

P ′

v0. . .

“⇐” Let P be an M/C-augmenting path in G/C. If node C is not contained in P ,
then P is M -augmenting. Otherwise, C will be one of the endpoints of P . In G, P
is a path ending in some node vi, i ∈ {0, . . . , t}. We can extend P by going either
clockwise or counterclockwise through the blossom and ending in v0. This gives an
M -augmenting path ending in v0.

Now we have all the pieces together for an algorithm:
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Edmonds’ algorithm

Input: G = (V,E), matching M ⊆ E.
Output: A matching N with |N | = |M |+1 or conclusion that M is maximal.

(1) Set W := M -exposed vertices.

(2) Compute shortest W -W M -alternating walk P = (v0, . . . , vt)

(3) Case 1. There is no such walk

(4) Return “M is maximal”

(5) Case 2. There is such a walk

(6) Case 2a. P is a path

(7) Then P is an M -augmenting path.

(8) Return N := M∆E(P )

(9) Case 2b. P is not a path

(10) Let vj be first revisited node with vi = vj for i < j, i even, j
odd

(11) Set M ′ := M∆{{v0, v1}, . . . , {vi−1, vi}} which is a matching
with |M ′| = |M |

(12) Set C := {vi, vi+1, . . . , vj} which is an M ′-blossom

(13) Call algorithm recursively for G/C and M ′/C

(14) IF M ′/C is maximal, then

(15) M ′ is maximal in G → return M is maximal

(16) IF ∃M ′/C-augmenting path P , then

(17) obtain M ′-augmenting path P ′

(18) return M ′∆E(P ′)

Correctness follows from the preceeding lemmas. We analyze the running time:

Theorem 7.7. A maximum cardinality matching in G = (V,E) can be found in
time O(|V |2|E|).

Proof. Assume |E| ≥ |V |/2, otherwise delete vertices without edges. We compute
a maximum matching starting with M := ∅, augmenting it always by 1 using the
above algorithm. A shortest M -alternating W -W walk in (2) can be found in time
O(|E|). The recursion has depth at most |V |, hence augmenting M by 1 using the
algorithm above takes time at most O(|V | · |E|). At most |V |/2 augmentations are
needed, hence the total time to compute a maximum matching is O(|V |2 · |E|).

With (a lot!) more work one can get the running time down to O(
√

|V | · |E|),
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see the work of Micali and Vazirani.

7.3 The Perfect Matching Polytope*

Similar to Sec 4.4, for an undirected graph G, the perfect matching polytope is

Pperfectmatching(G) := conv{χM ∈ RE | M ⊆ E is perfect matching}

We have learned that for a bipartite graph, Pperfectmatching(G) is equal to the vectors
x ∈ RE satisfying

x(δ(v)) = 1 ∀v ∈ V ; xe ≥ 0 ∀e ∈ E (7.1)

We also know that in general graphs the inequalities in (7.1) do not suffice to describe
Pperfectmatching(G). For example, suppose G is a complete graph on an even number
of vertices and we define a vector x∗ ∈ RE with x∗e =

1
2 for all edges on two disjoint

odd cycles.

U

1
2

1
2

1
2

1
2

1
2

1
2

Then x∗ satisfies (7.1) but x∗ /∈ Pperfectmatching(G). One way to certify this is to let
U be the vertices of one of the odd cycles. Then |U | is odd and any perfect matching
M must have |δ(U) ∩ M | ≥ 1. In other words, x(δ(U)) ≥ 1 is a feasible linear
inequality for Pperfectmatching(G) that is violated by x∗. It is a seminal result due
to Edmonds, that these additional inequalities suffice to define the perfect matching
polytope of any graph. So, we abbreviate

Qperfectmatching(G) :=






x ∈ RE |

x(δ(v)) = 1 ∀v ∈ V
xe ≥ 0 ∀e ∈ E

x(δ(U)) ≥ 1 ∀U ⊆ V with |U | odd







Theorem 7.8 (Edmonds [Edm65]). For any graph G one has Pperfectmatching(G) =
Qperfectmatching(G).

We follow the short proof from [Sch03].

Proof. We already argued that Pperfectmatching(G) ⊆ Qperfectmatching(G). Suppose
the reverse direction Qperfectmatching(G) ⊆ Pperfectmatching(G) is false and consider
the counterexample G = (V,E) that minimizes |V | + |E|. Let x∗ be a vertex of
Qperfectmatching(G) with x∗ /∈ Pperfectmatching(G). If x∗e = 0 then we can delete the
edge e, and if x∗e = 1 then we can delete the edge plus the two endpoints of e in
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order to obtain a smaller counter example. So we may assume that 0 < x∗e < 1 for
all e ∈ E. In particular dG(v) ≥ 2 for each vertex v ∈ V and |E| ≥ |V |. We know
that |V | is even since otherwise the odd set constraint for U := V was violated. If
|E| = |V |, then all vertices have degree exactly 2 and G consists of a collection of
circuits that must all be even as overwise x(δ(U)) ≥ 1 would again be violated where
U are the vertices of one of the odd circuits. Then we are in the bipartite case and
indeed x∗ ∈ Pperfectmatching(G). So, suppose that |E| > |V | instead. Since x∗ is a
vertex of Qperfectmatching(G) we know that there is some odd set U with 3 ≤ |U | < |V |
and x∗(δ(U)) = 1.

Consider the contracted graphs G′ := G/U and G′′ := G/Ū where Ū = V \ U .
Let x′ be the weight function x in G′ after contraction and let x′′ be the weight
function x in G′′ after contraction. Note that x′ ∈ Qperfectmatching(G

′) and x′′ ∈
Qperfectmatching(G

′′). For this we use in particular that |U |, |Ū | and a singleton
vertex are all odd sets.

U Ū

graph G

Ū

U

graph G′

U

Ū

graph G′′

As G is assumed to be a minimal counterexample, we know that x′ ∈ Pperfectmatching(G
′)

and x′′ ∈ Pperfectmatching(G
′′). Since each extreme point must be rational, there must

be a k ∈ N so that x′ and x′′ are unweighted averages of k perfect matchings in G′

and G′′, i.e. x′ = 1
k

∑k
i=1 χ

M ′
i and x′′ = 1

k

∑k
i=1 χ

M ′′
i . Each of the matchings M ′

i

and M ′′
i has exactly one edge going between U and Ū and moreover, each edge e

that runs between U and Ū is in exactly kx∗e many of the matchings M ′
1, . . . ,M

′
k

and also in the same number of matchings M ′′
1 , . . . ,M

′′
k . Hence we can change the

indices so that for each i, M ′
i ∩ M ′′

i contains exactly one edge and that edge is in
δ(U). That means Mi := M ′

i ∪ M ′′
i is a perfect matching in G and one can verify

that x∗ = 1
k

∑k
i=1 χ

Mi .

7.4 Vizing’s Theorem*

For an undirected graph G = (V,E), we write dG(v) as the degree of a node v
and ∆(G) := maxv∈V dG(v) is the maximum degree. A k-edge coloring is a map
c : E → {1, . . . , k} so that for any pair e, f ∈ E of incident edges (i.e. |e ∩ f | = 1)
one has c(e) 6= c(f). In other words, it is a coloring of the edges of the graph with
k colors so that incident edges receive different colors. We denote the edge coloring
number χ′(G) as the minimum number of colors needed to color the edges in G. It is
useful to note that given an edge coloring c, each color class c−1(i) forms a matching
in G and so χ′(G) equals the minimum number of matchings needed to cover E.
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It is not hard to see that χ′(G) ≥ ∆(G). Also, a greedy coloring strategy can
easily give the bound of χ′(G) ≤ 2∆(G)− 1. Surprisingly, the edge coloring number
is always almost exactly the degree. The original result is due to Vizing; here we
give the proof from [Sch03].

Theorem 7.9 (Vizing). In any undirected graph G = (V,E) one has ∆(G) ≤
χ′(G) ≤ ∆(G) + 1.

Before we come to the main proof, we show an auxiliary result that will allow us
to extend valid colorings.

Proposition 7.10. Let G = (V,E) be a graph and let v ∈ V and k ∈ N so that:

(i) G− v is k-edge colorable

(ii) v and all neighbors of v have degree at most k

(iii) at most one neighbor of v has degree exactly k.

Then G is k-edge colorable.

Proof. We prove the statement by induction on k. If k = 1, then either dG(v) = 0
and there is nothing to show, or there is a single edge {v, u∗} in which case we are
done as well.

Now assume k > 1. We may insert dummy edges and vertices so that v and
exactly one neighbor u∗ have degree k and all other neighbors have degree k − 1.

v

u∗

k

By assumption there is a k-coloring c : E \ δ(v) → {1, . . . , k} for the graph G − v.
For color i ∈ {1, . . . , k}, let Xi := {u ∈ N(v) | u misses color i in c}. There maybe
more than one possible coloring and so we select one that minimizes the quantity

k∑

i=1

|Xi|2

Intuitively, this means we want a coloring that distributes colors evenly among the
neighbors of v. This has the following consequence:
Claim I. There is an index i ∈ [k] with |Xi| = 1.
Proof of Claim I. Suppose for the sake of contradiction that |Xi| 6= 1 for all
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i = 1, . . . , k. Note that in G − v, all nodes in N(v) have degree one less than in G.
That means u∗ misses one color in c and all the nodes in N(v) \ {u∗} are missing
exactly two colors. In particular, summing over all missing colors gives

k∑

i=1

|Xi| = 1 + 2 · (dG(v)− 1) = 2dG(v)− 1
dG(v)≤k

< 2k (∗)

Hence there is an index i with |Xi| < 2 which by assumption means that |Xi| = 0.
Also the left hand side of (∗) is odd, hence there has to be an index j where
|Xj | is odd. Since |Xj | 6= 1, this means |Xj | ≥ 3. Consider the subgraph H :=
(V, c−1({i, j})) formed by the edges of color i and j. Each color class c−1(i) and
c−1(j) is a matching and their union is a graph where components are paths (in-
cluding singletons) or circuits. There has to be one path P with more vertices in Xj

than in Xi, meaning that one endpoint is in Xj and the other one is not in Xi. Then
exchanging colors i and j on this path gives another k-coloring where |Xi|2 + |Xj |2
is reduced. This is a contradiction.

After changing indices, using Claim II, we may assume that |Xk| = 1, say Xk =
{w}. In other words, w is the only node in N(v) missing color k. Let G′ :=
(V,E \ ({v,w} ∪ c−1(k))) be the graph obtained by deleting {v,w} and the edges
colored with k from G. Then G′ − v is (k − 1)-edge colorable (simply use c without
color k) and dG′(u) = dG(u)− 1 for all u ∈ N(v) ∪ {v}. By induction there exists a
(k−1)-edge coloring c̃ for G′. We restore the edges with color k and set c̃(v,w) := k.
This gives a valid k-edge coloring for G.

Now we can finish Vizing’s Theorem:

Proof 7.9. We prove Vizing’s theorem by induction over |V | where the claim is true
for |V | = 1. Let G be any graph and fix any vertex v ∈ V . By induction, χ′(G−v) ≤
∆(G − v) + 1 ≤ ∆(G) + 1 =: k. Then v and all its neighbors have degree strictly
less than k, hence Prop 7.10 applies and also χ′(G) ≤ k.

Note that the claim of Prop 7.10 is stronger than we needed in the application.

7.5 Exercises

Exercise 7.1.

Let G = (V,E) be a 3-regular graph without any bridge. Show that G has a perfect

matching. (A bridge is an edge e not contained in any circuit; equivalently, deleting e

increases the number of components; equivalently {e} is a cut. A graph G is k-regular if all

vertices have degree k.)

Source: This exercise is taken from Schrijver [Sch17].

Exercise 7.2.
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Let G = (V,E) be a graph and let T ⊆ V . Prove that G has a matching covering T if and

only if the number of odd components of G \ W contained in T is at most |W |, for each

W ⊆ V .

Source: This exercise is taken from Schrijver [Sch17].

Exercise 7.3.

Recall that for a graph G = (V,E) we have defined Pmatching(G) = conv{χM ∈ RE | M ⊆
E is a matching}. Prove that for any k ∈ N,

Pmatching(G) ∩ {x ∈ RE | 1Tx = k} = conv{χM | M ⊆ E is a matching with |M | = k}

Hint: Let F := {M ⊆ E | M is a matching}. For the non-trivial direction, take a vector

x∗ ∈ Pmatching(G)∩{x ∈ RE | 1Tx = k} and consider the vector λ ∈ RF
≥0 that minimizes the

function G(λ) :=
∑

M∈F λM ·
∣
∣|M | − k

∣
∣ subject to

∑

M∈F λM = 1 and x∗ =
∑

M∈F λMχM .

Source: This exercise is taken from Schrijver [Sch17].

Exercise 7.4.

Proof that in any bipartite graph G = (V,E) one has χ′(G) = ∆(G).



Chapter 8

Interior Point Methods*

We extensively covered the theory of linear programming in Chapter 3 and its ap-
plications to discrete optimization in Chapter 5. However, we did not show how
to actually solve LPs efficiently. That is the goal of this chapter. There are three
classes of algorithms for solving linear programs:

• The Simplex method. The first known method to solve LPs, developed by
Dantzig. Geometrically speaking, one optimizes a linear function x 7→ cTx over
a polyhedron by moving from an extreme point to a neighboring extreme point
while improving the objective. While efficient in practice, there is no proof
known that any variant of the simplex method would require only polynomially
many iterations.

• The Ellipsoid method. The first method that was proven to take (weakly)
polynomial time to solve LPs. The method constructs a sequence of shrinking
ellipsoids E0 ⊇ E1 ⊇ . . . that all contain a target convex set K. While useful
in theory, in practice this method is not competitive with the others.

• Interior Point Methods. A class of algorithms that is based on continuous
optimization techniques. Currently giving the fastest theoretical running times
to solve LPs while also being competetive in practical applications.

In this chapter, we describe one particular algorithm that is a path-following interior
point method. Our presentation is loosely based on Chapter 5.3 in the monograph
by Bubeck [Bub15] but we keep our exposition less abstract and include essentially
all proofs.

8.1 Preliminaries

We will describe a polynomial time algorithm that solves the optimization problem
min{cTx | x ∈ P} where P = {x ∈ Rn | Ax ≤ b} is a polytope with a matrix
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A ∈ Rm×n and b ∈ Rm and c ∈ Rn are vectors. The main result in a simplified form
is as follows:

Theorem 8.1. For A ∈ Rm×n and b ∈ Rm and c ∈ Rn with m ≤ O(n) one can solve
the LP min{cTx | Ax ≤ b} in time O(n3.5L), where L is the number of bits needed
to represent A, b, c.

We assume that P is a full-dimensional polytope and hence the interior int(P ) :=
{x ∈ Rn | Ax < b} is non-empty. We also assume that we know at least one point
in int(P ). Let si(x) := bi − AT

i x be the slack that x has with respect to the ith
constraint. It is not further important, but if one likes, one can normalize the rows
so that ‖Ai‖2 = 1 for i = 1, . . . ,m and then si(x) gives the geometric distance of
x to the ith hyperplane. For some parameter t ≥ 0 consider the convex log-barrier
function

Ft(x) := t · cTx+
m∑

i=1

ln
( 1

si(x)

)

.

Later we will occasionally use F0(x) which is only the log-barrier term. We define

x∗(t) := argmin{Ft(x) | x ∈ Rn}

as the unique minimizer, where we interpret Ft(x) = ∞ if x /∈ int(P ). It is not
hard to imagine that if t → ∞, more weight is put on the linear term and x∗(t) will
converge to the optimum solution of min{cTx | x ∈ P}.

−c

x∗(0)
P

level curves for Ft for t = 0

−c

x∗(t)P

level curves for Ft for t ≫ 0

The points {x∗(t)}t≥0 define a curve inside P that is called the central path.
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−c

x∗(0) x∗(1)
P argmin{cT y | y ∈ P}

In fact, the interior point method will approximately follow the central path to
converge to the optimum. A simple calculation yields the gradient of the barrier
function as

∇Ft(x) = t · c−
m∑

i=1

Ai

si(x)

Moreover, the Hessian of the barrier function as

∇2Ft(x) =

m∑

i=1

AiA
T
i

si(x)2

Observe that the Hessian is an n× n symmetric, positive definite matrix; in our
case it is independent of t and c. We define the Dikin ellipsoid of radius R around
x as

E(x,R) :=
{

y ∈ Rn |
m∑

i=1

(si(y)− si(x))
2

si(x)2
≤ R2

}

=
{
y ∈ Rn | (y − x)T [∇2Ft(x)](y − x) ≤ R2

}
.

As we can see, the Hessian of Ft is also the matrix that defines the ellipsoid.

Lemma 8.2. For any x ∈ int(P ) one has E(x, 1) ⊆ P .

Proof. Let y ∈ E(x, 1). Then in particular (si(y) − si(x))
2 ≤ si(x)

2 which implies
si(y) ≥ 0 for all i.

This means that starting at a point x, it is safe to move to another point x′ ∈
E(x, 1) without the danger of leaving P .

−c

P

x

E(x, 1)
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Geometrically one can see that if x is very close to the ith boundary constraint, then
the ellipsoid E(x, 1) is getting very thin in direction Ai.

8.2 The algorithm

Suppose we have a starting point x0 ∈ int(P ) and some fixed t and we try to move
closer to the current optimum x∗ := x∗(t). Consider the quadratic approximation

G(x) = Ft(x0) + (∇Ft(x0))
T (x− x0) +

1

2
(x− x0)[∇2Ft(x0)](x− x0)

at this point. Of course, we can obtain an explicit optimum solution for any quadratic
function. The first order optimality condition tells us that the minimizer x1 of G
satisfies

∇G(x1) = ∇Ft(x0)+[∇2Ft(x0)](x1−x0)
!
= 0 ⇒ x1 = x0−[∇2Ft(x0)]

−1(∇Ft(x0))

A 1-dimensional visualization would like like this:

x0 x1 x∗

Ft(x)

quadratic approx. G

Replacing x0 by the point x1 that minimizes the quadratic approximation is also
called a Newton step. It turns out that the distance to the optimum point x∗ de-
creases quadratically if the starting point x0 is close enough to x∗. Back to our
interior point method, this means that applying a Newton iteration to a point
x ∈ E(x∗(t), R) moves it closer to x∗(t) in terms of the Dikin radius, assuming
that R was small enough. Once the current point is close enough to x∗(t) we can
then increase the value of t by a factor 1 +Θ( 1√

m
). The full algorithm is as follows:

Path Following Interior Point Method

• Input: LP min{cTx | x ∈ P} and x0 ∈ E(x∗(t0), 1
24) for some t0 > 0.

• Output: Sequence {xk}k≥0 converging to y∗ = argmin{cT y | y ∈ P}
(1) FOR k = 0 TO ∞ DO

(2) Perform Newton Step xk+1 := xk − [∇2Ftk(xk)]
−1(∇Ftk(xk))

(3) Update tk+1 := tk · (1 + 1
100

√
m
)
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The analysis breaks down in the following main steps:

(1) First we will analyze the Newton step and prove that xk ∈ E(x∗(tk), R) ⇒
xk+1 ∈ E(x∗(tk), 9R2). Setting R = 1

24 means that xk+1 ∈ E(x∗(tk), 1
64). We

could in fact iterate the Newton step to get arbitrarily close to x∗(tk) — but
that would not give an asymptotic advantage.

(2) For step (3), we need to show that the point on the central curve does not
move too quickly when increasing the parameter t. In fact we show that
x∗(t · (1 + ε)) ∈ E(x∗(t), ε√m). Setting ε := 1

100
√
m

is enough to guarantee

that x∗(tk+1) ∈ E(x∗(tk), 1
100 ). As the ellipsoids change only slowly, one has

(
xk+1 ∈ E(x∗(tk), 1

64) & x∗(tk+1) ∈ E(x∗(tk), 1
100 )

)
⇒ xk+1 ∈ E(x∗(tk+1),

1
24 ).

(3) Finally we can bound the distance from any intermediate point to the optimum
y∗ := argmin{cT y | y ∈ P} by proving that x ∈ E(x∗(t), 1) ⇒ cTx ≤ cT y∗ +
O(mt ).

(4) We did not describe yet how to obtain a starting point x0 that is close enough
to x∗(t0) for some t0 > 0. It turns out that one can run a “reverse path
following algorithm” to move from any point x ∈ int(P ) to a point close to the
analytic center.

8.3 Analysis of a Newton Step

For a symmetric matrix H ∈ Rn×n with Eigen decomposition H =
∑n

i=1 λiuiu
T
i ,

let |H| := ∑n
i=1 |λi|uiuTi be the matrix where the absolute value function has been

applied to all Eigenvalues. In particular |H| � 0. For a H ∈ Rn×n that is not
necessarily symmetric, let ‖H‖op be the largest singular value. In particular we will
use that ‖Hx‖2 ≤ ‖H‖op · ‖x‖2 for any vector x. We will now show that a Newton
step shrinks the distance from the optimum (if the distance is measured in the norm
induced by the Hessian).

x∗

x x′
Newton step

E(x∗, 9R2)

E(x∗, R)

Lemma 8.3. Fix a value of t ≥ 0 and let x∗ := x∗(t). For x ∈ E(x∗, R) with R ≤ 1
8 ,

set
x′ := x− [∇2Ft(x)]

−1(∇Ft(x))
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Then x′ ∈ E(x∗, 9R2).

Proof. We begin with proving two useful claims. First we show that the Hessian of
Ft only changes slowly:
Claim I. For any vector y be on the line segment between x and x∗ one has (1 −
3R) · ∇2Ft(x) � ∇2Ft(y) � (1 + 3R) · ∇2Ft(x).
Proof of claim. We have

|si(y)− si(x)|
si(x)

≤ |si(x∗)− si(x)|
si(x)

=
|si(x∗)− si(x)|

si(x∗)
︸ ︷︷ ︸

≤R

· si(x
∗)

si(x)
︸ ︷︷ ︸

≤1+R≤ 9
8

≤ 9

8
R

Inverting and squaring the inequality (1 − 9
8R)si(x) ≤ si(y) ≤ (1 + 9

8R)si(x) gives
the claim since 1

(1+ 9
8
R)2

≥ 1− 3R and 1
(1− 9

8
R)2

≤ 1 + 3R for R ≤ 1
8 .

Claim II. One can write ∇Ft(x) = ([∇2Ft(x)]+E)(x−x∗) where |E| � 3R·∇2Ft(x).
Proof of claim. We apply the fundamental theorem of calculus to obtain

∇Ft(x) = ∇Ft(x)−∇Ft(x
∗)

︸ ︷︷ ︸

=0

=
[ ∫ 1

0
∇2Ft(λx+ (1− λ)x∗)]dλ

]

︸ ︷︷ ︸

=:∇2Ft(x)+E

(x− x∗)

with |E| � 3R · ∇2Ft(x) as we can derive from Claim I.
Now we can write

x′ − x∗
Def. x′

= (x− x∗)− [∇2Ft(x)]
−1(∇Ft(x)) (∗)

Claim II
= (x− x∗)− [∇2Ft(x)]

−1([∇2Ft(x)] + E)(x− x∗)

= −[∇2Ft(x)]
−1E(x− x∗)

Claim III. One has x′ ∈ E(x∗, 9R2).
Proof of claim. Instead of a careful (and annoying) calculation with matrices that
have different Eigenvectors, we can use another trick. We apply a linear transforma-
tion to P so that ∇2Ft(x

∗) = In. Then x ∈ E(x∗, R) ⇔ ‖x − x∗‖2 ≤ R. Moreover,
(1− 3R)In � ∇2Ft(x) � (1 + 3R)In and −6R · In � E � 6R · In. Then

‖x′ − x∗‖2 = ‖∇2Ft(x)
−1E(x− x∗)‖2 ≤ ‖[∇2Ft(x)]

−1‖op
︸ ︷︷ ︸

≤ 1
1−3R

≤ 3
2

· ‖E‖op
︸ ︷︷ ︸

≤6R

· ‖x− x∗‖2
︸ ︷︷ ︸

≤R

≤ 9R2

and hence x′ ∈ E(x∗, 9R2).

8.4 Bounding the movement of x∗(t)

One of the main arguments is that the parameter t can be increased by a (1+Θ( 1√
m
))-

factor while the new optimum x∗(t′) still lies in the Dikin ellipsoid around x∗(t).
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First, we observe that around an optimum point x∗(t) the function Ft is well
approximated by the square of the Dikin radius. We can give a general approximation
result (here the term ±R3 means that the equation holds up to an error that lies in
[−R3, R3]):

Lemma 8.4. Let x ∈ int(P ) and x+ h on the boundary of E(x,R) for 0 ≤ R ≤ 1
2 .

Then

Ft(x+ h) = Ft(x) + 〈∇Ft(x), h〉 +
R2

2
±R3

Proof. We write

Ft(x+ h)− Ft(x) = t · cTh−
m∑

i=1

ln
(si(x+ h)

si(x)

)

= t · cTh−
m∑

i=1

ln
(

1 +
〈Ai, h〉
si(x)

)

= t · cTh−
m∑

i=1

〈Ai, h〉
si(x)

︸ ︷︷ ︸

=〈∇Ft(x),h〉

+
1

2

m∑

i=1

〈Ai, h〉2
si(x)2

︸ ︷︷ ︸

=hT∇2Ft(x)h=R2

±
m∑

i=1

| 〈Ai, h〉 |3
si(x)3

= 〈∇Ft(x), h〉 +
R2

2
± max

i=1,...,m

{ | 〈Ai, h〉 |
si(x)

︸ ︷︷ ︸

≤R

}

·
m∑

i=1

〈Ai, h〉2
si(x)2

︸ ︷︷ ︸

=R2

using that ln(1 + z) = z − 1
2z

2 ± |z|3 for |z| ≤ 1
2 .

For an arbitrary point x ∈ int(P ), the function t · cTx might vary arbitrarily over
the Dikin ellipsoid E(x,R). Interestingly the function can only vary by R

√
m if x is

an optimum point to Ft.

Lemma 8.5. One has max{t · cT (x− x∗(t)) | x ∈ E(x∗(t), R)} ≤ R
√
m.

Proof. Consider the ratios ri :=
si(x)−si(x∗(t))

si(x∗(t)) . By first order optimality

∇Ft(x
∗(t)) = t · c−

m∑

i=1

Ai

si(x∗(t))
= 0

Multiplying this vector equation with x− x∗(t) reveals that

t · cT (x− x∗(t)) =
m∑

i=1

AT
i (x− x∗(t))
si(x∗(t))

=

m∑

i=1

ri ≤ ‖r‖1
r∈Rm

≤ √
m · ‖r‖2

︸︷︷︸

≤R

≤ R · √m
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Finally we can prove an important fact:

Lemma 8.6. Fix values of t, t′ > 0 so that x∗(t′) lies on the boundary of E(x∗(t), R)
for 0 ≤ R ≤ 1

4 . Then t′

t ≥ 1 + R
4
√
m

.

Proof. As x∗(t′) lies on the boundary of E(x∗(t), R) we can apply Lemma 8.4 to get
Ft(x

∗(t′)) = Ft(x
∗(t))+ R2

2 ±R3 as ∇Ft(x
∗(t)) = 0. Abbreviate t′ = t · (1+ε). Then

0
optimality

≤ Ft′(x
∗(t))− Ft′(x

∗(t′))

= ε · t · cT (x∗(t)− x∗(t′))
︸ ︷︷ ︸

≤R
√
m

+(Ft(x
∗(t))− Ft(x

∗(t′))
︸ ︷︷ ︸

≤−R2

2
+R3≤−R2

4

≤ εR
√
m− R2

4

Rearranging gives ε ≥ R
4
√
m

.

8.5 Distance from the optimum

Finally we prove an upper bound on the optimality gap as t grows:

Lemma 8.7. For any t > 0 and x ∈ E(x∗(t), 1) one has cTx−min{cT y | y ∈ P} ≤
3m
t .

Proof. Let y∗ be the point minimizing cT y over P . The function value cTx differs
only by an additive

√
m
t ≤ m

t term over points in E(x∗(t), 1) as we have seen in
Lemma 8.5. Hence it suffices to show that cTx∗(t) ≤ cT y∗ + 2m

t .
Consider the midpoint x′ := 1

2y
∗ + 1

2x
∗(t). We know that si(x

′) ≥ 1
2si(x

∗(t)) for
each i ∈ [m]. Hence

0
optimality

≤ Ft(x
′)− Ft(x

∗(t)) = t · (cTx′ − cTx∗(t))
︸ ︷︷ ︸

= 1
2
(cT y∗−cTx∗(t))

+

m∑

i=1

(

ln
( 1

si(x′)

)

− ln
( 1

si(x∗(t))

))

︸ ︷︷ ︸

≤1

≤ t

2
(cT y∗ − cTx∗(t)) +m

Rearranging gives the claim.

8.6 Finding the analytical center

In the Interior Point Method that we stated above, we do assume that we know the
analytical center x∗(0) (or at least a very close point). We want to quickly argue how
that center can be found — assuming that we know an arbitrary point y ∈ int(P ).
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First, we define an auxiliary function

F̃t(x) := t · (−∇F0(y))
Tx+

m∑

i=1

ln
( 1

si(x)

)

that differs from Ft only in the linear part. Let x̃∗(t) := argmin{F̃t(x) | x ∈ Rn} be
the central path with respect to F̃t. In particular we have defined the linear part in
F̃t(x) so that ∇F̃1(y) = 0, which implies that x̃∗(1) = y. The 2nd trick is that the
analysis (in particular Lemma 8.6) also applies if we decrease t by a factor 1− 1

100
√
m

and the interior point will stay close the the central path of F̃t. Then for t → 0 we
obtain a sequence of points that converge to the analytical center x̃∗(0) which is also
x∗(0). We can summarize the algorithm as follows:

Interior Point Method for finding Analytical Center

• Input: Polytope P = {x ∈ Rn | Ax ≤ b} and point y ∈ int(P )
• Output: Sequence {xk}k≥0 converging towards analytical center

(1) Set F (x) :=
∑m

i=1 ln
(

1
si(x)

)

(2) Set F̃t(x) := t · (−∇F (y))Tx+ F (x).
(3) Set x0 := y and t0 := 1
(4) FOR k = 0 TO ∞ DO

(5) Perform Newton Step xk+1 := xk − [∇2F̃tk(xk)]
−1(∇F̃tk(xk))

(6) Update tk+1 := tk · (1− 1
100

√
m
)

Obviously this raises the question how to find a feasible point in P after all. But
one can simply solve min{λ | Ax ≤ b+ λ1} which has a strictly feasible solution of
(x, λ) = (0, ‖b‖∞ + 1) and an optimum solution is contained in int(P ), given that
int(P ) 6= ∅.

8.7 Running time

Finally we want to discuss the running time of the method in terms of number of
arithmetic operations. Let L be the number of bits needed to encode the linear
program. Suppose that A ∈ Zm×n, b ∈ Zm and c ∈ Zn, then a safe definition is
L :=

∑

i,j(1 + log(|Aij | + 1)) +
∑m

i=1(1 + log(|bi| + 1)) +
∑n

j=1(1 + log(|cj | + 1)).
To keep the calculations simple, we assume that m = Θ(n) and we will express the
running time in terms of n and L.

A somewhat technical calculation shows that it suffices to find a point x ∈ int(P )
that is within a 2−Θ(L) term of the optimum y∗. Then one can select indices I := {i ∈
[m] | si(x) ≤ 2−Θ(L)} and the projection of x onto the subspace {y ∈ Rn | AT

i y =
bi ∀i ∈ I} will recover an optimum solution to min{cT y | y ∈ P}. Similarly, the
starting value of t can be of the form t0 ≥ 2−Θ(L). Hence, the number iterations of
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the interior point method can be bounded by O(
√
n ·L). Each iteration is dominated

by the time that it takes to solve the linear system [∇2Ftk(xk)]y = ∇Ftk(xk) for y.
Using Gaussian elimination, solving a linear system takes time O(n3) which results
in a total running time of O(n3.5L) for solving a linear program.

On the other hand, matrices can be multiplied/inverted in time O(nω) where
the best known value for the exponent is currently ω < 2.3729. That means using
fast matrix multiplication, linear programs can be solved in a total running time of
O(nω+1/2L) ≤ O(n2.8729L).

However, it seems that fast matrix multiplication is not used in practice, so we
want to describe a different speed-up that is based on low rank updates. The idea
uses the basic fact that for a symmetric matrix S ∈ Rn×n, a vector v ∈ Rn and a
scalar λ ∈ R one has the Sherman-Morrison formula

(S + λvvT )−1 = S−1 − λ

1 + λvTS−1v
︸ ︷︷ ︸

∈R

· (S−1v)(S−1v)T
︸ ︷︷ ︸

rank-1 matrix

(assuming that both S and S + λvvT are invertible). In particular if S−1 is known,
then (S + λvvT )−1 can be computed in time O(n2).

Now suppose that instead of performing a Newton step xk+1 = xk−[∇2Ft(xk)]
−1(∇Ft(xk))

with the exact inverse of the Hessian, we maintain the inverse S−1
k for a matrix

Sk ∈ Rn×n satisfying 1
1+RSk � ∇2Ft(xk) � (1 +R)Sk. Then one can still prove the

implication

xk ∈ E(x∗(t), R) ⇒ xk+1 ∈ E(x∗(t), O(R2))

by slightly modifying the calculations in Lemma 8.3. Then again, choosing R >
0 as a small enough constant suffices for our purpose. Recall that ∇2Ft(x) =
∑m

i=1
1

si(x)2
AiA

T
i . The natural idea is to choose Sk =

∑m
i=1

1
dk(i)2

AiA
T
i but only

update dk+1(i) := si(xk+1) when the distances have changed by more than a 1± R
4

factor from the last update. If S−1
k is known and only q distances have been updated,

then computing S−1
k+1 takes time O(qn2).

Now take consecutive points xk+1 ∈ E(xk, R) and consider the ratio ri =
si(xk+1)−si(xk)

si(xk)
.

Then the amortized number of rank-1 updates caused by this Newton step are
O(‖r‖1) ≤ O(

√
n · ‖r‖2) ≤ O(

√
n). That means the amortized time per iteration is

O(n2.5) and hence solving the linear program takes time O(n3L) even without fast
matrix multiplication.

A further improvement can be made by combining low rank updates and fast
matrix multiplication. In fact, Lee and Sidford show that the amortized running
time per iteration can be brought down to Õ(n2) (where the Õ-notation hides some
lower order terms), which results in a total running time of O(n2.5L) to solve linear
programs min{cTx | Ax ≤ b} where A ∈ ZO(n)×n.
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8.8 Exercises

Exercise 8.1.

Consider the cube P := [0, 1]n = {x ∈ Rn | 0 ≤ xi ≤ 1 for i = 1, . . . , n}. Consider a

sequence of points {xk}k≥0 with x0 = (12 , . . . ,
1
2 ) and with the only restriction that xk+1 ∈

E(xk,
1
2 ). Prove that it takes at least Ω(

√
n · log(1

δ
)) iterations until xk can be within a

‖ · ‖∞-distance of δ from the vertex 0.

Exercise 8.2.

Recall that the presented interior point method takes O(L
√
m) iterations to get within

an additive 2−L distance to the optimum for a polytope P = {x ∈ Rn | Ax ≤ b} with
A ∈ Rm×n. There is indeed a way of bringing the number of iterations down to O(L

√
n).

A deep result of Nesterov and Nemirovsky says that there is a convex function φ : Rn → R
that is self-concordant which means it satisfies the following properties for some universal
constant C > 0:

(A) For any 0 < R ≤ 1
C

and x ∈ E(x∗, R) one has (1 − 2R)∇2φ(x) � ∇2φ(x∗) � (1 +
2R)∇2φ(x) where we redefine the ellipsoid E(x∗, R) := {x ∈ Rn | (x−x∗)T [∇2φ(x∗)](x−
x∗) ≤ R2}

(B) One has ∇φ(x)∇φ(x)T � Cn · ∇2φ(x) for all x ∈ int(P ).

(C) If x → ∂P , then φ(x) → ∞.

For t ≥ 0 we modify the barrier function to Ft(x) := t · cTx + φ(x). Prove the following
(where the O-notation is allowed to hide dependence on C):

(1) Show that for x ∈ E(x∗, R) with x∗ := x∗(t) and x′ := x − [∇2Ft(x)]
−1∇Ft(x) one

has x′ ∈ E(x∗, O(R2)) assuming R is small enough.

(2) One has max{t · cT (x − x∗(t)) | x ∈ E(x∗(t), R)} ≤ O(R
√
n) for all t > 0 and R > 0

small enough.
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Chapter 9

Matroids — Advanced topics*

1

This chapter is a continuation of Chapter 2. Recall that a matroid is a pair
M = (X, I) satisfying the following:

(i) Non-emptyness: ∅ ∈ I

(ii) Monotonicity: If Y ∈ I and Z ⊆ Y , then Z ∈ I

(iii) Exchange property: If Y,Z ∈ I with |Y | < |Z|, then there is an x ∈ Z/Y so
that Y ∪ {x} ∈ I

Here, X is called the groundset and elements of I are called independent sets. Despite
the simple axioms, matroids have enough structure to fill whole textbooks. In this
chapter we will present just a few of those results.

9.1 Matroid Intersection

We already learned that one can use the greedy algorithm to find a maximum weight
independent set. In this chapter, we will see that a way more complex problem also
can be solved in polynomial time:

Matroid Intersection

Input: Matroid M1 = (X, I1), M2 = (X, I2) on the same groundset
Goal: Find max{ |I| : I ∈ I1 ∩ I2}

Our exposition here follows Chapter 10.4 and 10.5 in Schrijver [Sch17].

1July 15, 2023: Did one more iteration. ALL DONE.
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9.1.1 Preliminaries

We want to begin by giving one more example of a simple class of matroids. A
partition matroid with ground set X can be obtained as follows: take any partition
X = B1∪̇ . . . ∪̇Bm and select numbers di ∈ {0, . . . , |Bi|}. Then one can verify that
M = (X, I) with I := {I ⊆ X : |I ∩ Bi| ≤ di for all i = 1, . . . ,m} is indeed a
matroid.

To understand why matroid intersection is a non-trivial problem, we want to
argue that it contains maximum bipartite matching as a special case. To see this, take
any bipartite graph G = (V,E). Suppose that V = U ∪W with U = {u1, . . . , u|U |}
and W = {w1, . . . , w|W |} are both sides. Then we can define two matroids that both
have the edge set E as ground set as follows: take M1 = (E, I1) as the partition
matroid with partitions δ(u1), . . . , δ(u|U |), all with parameter di := 1. Similarly,
we introduce M2 = (E, I2) as partition matroid with partitions δ(w1), . . . , δ(w|W |).
Now the matroid intersection problem asks to select as many edges as possible, where
in each neighborhood δ(ui) and δ(wj) we select at most one edge. This is exactly
maximum bipartite matching. See the figure below for an example:

U W

u1

u2

w1

w2

w3

e1

e2
e3
e4

e5

bipartite graph G = (V,E)

Bu1

Bu2

e1

e2

e3

e4

e5

M1

e1

e2

e3

e4

e5

M2

Bw1

Bw2

9.1.2 The exchange lemma

For example if we have two spanning trees T1, T2 in a graph, then the exchange
property implies that for any e ∈ T1, there exists some edge f(e) ∈ T2 so that
(T1 \ {e}) ∪ f(e) is again a spanning tree. Now we will see that a stronger property
is true: the map f : T1 → T2 can be chosen to be bijective.

Lemma 9.1. Let M = (X, I) be a matroid and let Y,Z ∈ I be disjoint independent
sets of the same size. Define a bipartite exchange graph H = (Y ∪ Z,E) with
E = {(y, z) : (Y \ y) ∪ z ∈ I}. Then H contains a perfect matching.

Proof. Suppose for the sake of contradiction that H has no perfect matching. From
Hall’s condition we know that there must be subsets S ⊆ Y and S′ ⊆ Z so that all
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edges incident to S′ must have their partner in S and |S| < |S′|.
Y

S

Z

S′

Since |S| < |S′| and S, S′ are both independent sets, there is an element z ∈ S′ so
that S ∪ {z} ∈ I . We can keep adding elements from Y to S ∪ {z} until we get a
set U ⊆ Y ∪ {z} with |U | = |Y |.

x

Y

S

z

Z

S′

U

There is exactly one element in Y \ U ; we call it x. Then (Y/x) ∪ {z} = U ∈ I and
(x, z) ∈ E would be an edge — a contradiction.

We will use that exchange graph more intensively later. Formally, for a matroid
M = (X, I) and an independent set Y ∈ I , we can define H(M,Y ) as the bipartite
graph with partitions Y and X \ Y where we have an edge between y ∈ Y and
x ∈ X \ Y if

(Y \ y) ∪ {x} ∈ I .

9.1.3 The rank function

Again, let M = (X, I) be a matroid. Recall that an inclusionwise maximal indepen-
dent set is called a basis. Moreover, all bases have the same size which is also called
the rank of a matroid. One can generalize this to the rank function rM : 2X → Z≥0

which is defined by

rM (S) := max{|Y | : Y ⊆ S and Y ∈ I}
which for a subset S ⊆ X of the groundset, tells how many independent elements
one can select from S.

Now suppose we have two matroids M1 = (X, I1) and M2 = (X, I2) over the
same groundset. The rank function will be useful to decide at some point that we
have found the largest joint independent set. Let us make the following observation:
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Lemma 9.2. Let M1 = (X, I1), M2 = (X, I2) with rank functions r1 and r2. Then
for any independent set Y ∈ I1 ∩ I2 and any set U ⊆ X one has

|Y | ≤ r1(U) + r2(X/U).

Proof. We have

|Y | = |U ∩ Y |
︸ ︷︷ ︸

≤r1(U)

+ |(X/U) ∩ Y |
︸ ︷︷ ︸

≤r2(X/U)

≤ r1(U) + r2(X/U).

using that Y is an independent set in both matroid.

Later in the algorithm, we will see that this inequality is tight for some Y and U .
As a side remark, for partition matroids in bipartite graphs, the lemma coincides with
the fact that a vertex cover is always an upper bound to the size of any matching.

9.1.4 An reverse exchange lemma

We just saw that the exchange graph has a perfect matching between independent
sets of the same size. We now show the converse, namely that a unique perfect
matching between an independent set Y and any set Z implies that Z is also inde-
pendent. In the following, we will consider perfect matchings in the graph H(M,Y )
between Y∆Z. What we mean is a perfect matching N , matching nodes in Y \ Z
to nodes in Z \ Y and each edge (y, z) ∈ N satisfies (Y \ y) ∪ {z} ∈ I .

Y Z

Lemma 9.3. Let M = (X, I) be a matroid and let Y ∈ I be an independent set
and let Z ⊆ X be any set with |Z| = |Y |. Suppose that there exists a unique perfect
matching N in H(M,Y ) between Y∆Z. Then Z ∈ I .

Proof. Let E = {(y, z) ∈ (Y \ Z)× (Z \ Y ) | (Y/y) ∪ {z} ∈ I} be all the exchange
edges between Y \ Z and Z \ Y .
Claim. E has a leaf2 y ∈ Y/Z.
Proof of claim. By assumption there is a perfect matching N ⊆ E. Start at any
node w ∈ Y∆Z. If you are on the “right side” Z \ Y , then move along a matching

2Recall that a leaf is a degree-1 node.
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edge in N ; if we are on the left hand side Y \ Z, take a non-matching edge. If we
ever revisit a node, then we have found an even length path C ⊆ E that alternates
between matching edges and non-matching edges. Hence N∆C is again a perfect
matching, which contradicts the uniqueness. That implies that our path will not
revisit a node, but that it will get stuck at some point. It cannot get stuck at a
node in Z/Y because there is always a matching edge incident. Hence it can only
get stuck at a node y ∈ Y/Z that is only incident to one edge (y, z) and that edge
must be in N .

y

Y/Z

z

Z/Y

∈ E

Fix the element y ∈ Y \ Z that is a leaf w.r.t. E and let z denote the element with
(y, z) ∈ N . Note that Z ′ := (Z \ z) ∪ {y} satisfies |Y∆Z ′| = |Y∆Z| − 2 and there is
still exactly one perfect matching between Y∆Z ′ (which is N \ {(y, z)}). Hence we
can apply induction and assume that Z ′ ∈ I .

Y Z
Z ′

y z

We know that r((Y ∪ Z) \ y) ≥ r((Y \ y) ∪ {z}) = |Y |. By the matroid exchange
property, there is some element x ∈ (Y ∪ Z)/y so that S := (Z ′/y) ∪ {x} is an
independent set of size |Y |. If x = z then Z = S ∈ I and we are done. Otherwise,
x ∈ Y/Z.

Y Z

S

y z
x

As |S| > |Y \ y|, there must be an exchange edge between y and a node in S/Y .
That contradicts the choice of y.
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9.1.5 The algorithm

Now, suppose that we have two matroids M1 = (X, I1) and M2 = (X, I2) over
the same ground set. Our algorithm starts with the independent set Y := ∅ and
then augments it iteratively. Suppose we already have some joint independent set
Y ∈ I1 ∩ I2. We will show how to either find another set Y ′ ∈ I1 ∩ I2 with
|Y ′| = |Y |+ 1 or decide that Y is already optimal. Let us define sets

X1 := {y ∈ X \ Y | Y ∪ {y} ∈ I1} and X2 := {y ∈ X \ Y | Y ∪ {y} ∈ I2}

In other words, X1 denotes the elements that could be added to the independent set
Y so that we would still have an independent set in M1. We define a directed graph
H = (X,E) as follows: for all y ∈ Y and x ∈ X/Y

(y, x) ∈ E ⇔ (Y/y) ∪ {x} ∈ I1
(x, y) ∈ E ⇔ (Y/y) ∪ {x} ∈ I2

Let us check what this graph does for bipartite graphs (and M1,M2 are the
partition matroids modelling both sides). In this case Y corresponds to a matching,
X1 are edges whose left-side node is unmatched by Y and X2 are edges whose right-
side node is unmatched. We also observe that a Y -augmenting path corresponds to
a directed path in H.

e1

e2
e3

e4

e5

original graph

X2

X1

Y

e1
e2

e3
e4

e5

exchange graph H

With a bit care, we can use the concept of augmenting paths also for general matroid.

Lemma 9.4. Suppose there exists a directed path z0, y1, z1, . . . , ym, zm starting at
a vertex z0 ∈ X1 and ending at a node zm ∈ X2. If that is a shortest path, then

Y ′ := (Y \ {y1, . . . , ym}) ∪ {z0, . . . , zm} ∈ I1 ∩ I2

Proof. We will show that Y ′ ∈ I1, the other inclusion follows by symmetry. On
the figure below, on the left hand side, we consider the directed path and on the
right hand side, we consider only edges E of the exchange graph H(M1, Y ) that run
between Y \ Z and Z \ Y for Z := (Y \ {y1, . . . , ym}) ∪ {z1, . . . , zm} = Y ′ \ y0.



9.1. MATROID INTERSECTION 109

Y

z0

z1

z2

z3

y1

y2

y3

X1

X2

Y

z1

z2

z3

y1

y2

y3

Z

Note that the edges {(zi, yi) : i = 1, . . . ,m} from the directed path form a perfect
matching on Y∆Z. While E may contain more edges than that, it does not contain a
coord, which is an edge (yi, zj) with j > i. The reason is that in this case our X1-X2

path would not have been the shortest possible, as we could have used the coord as
shortcut. Now, consider the “complete” cordless graph E∗ := {(yi, zj) : i ≥ j}. Then
this graph does have only one perfect matching. In particular, (y1, z1) has to be in
a matching — then apply induction.

z1

z2

z3

z4

y1

y2

y3

y4

As the matching on Y∆Z is unique, by Lemma 9.3 we have Z = Y ′/z0 ∈ I1. We
know that rM1(Y ∪ Y ′) ≥ rM1(Y ∪ {z0}) ≥ |Y | + 1 since z0 ∈ X1 is one of the
“M1-augmenting” elements. One the other hand rM1(Y ∪ Y ′/{z0}) ≤ |Y | as none of
the other elements of Y ′ is in X1 (here we use again that we have a shortest path).
Hence, the only element that could possibly augment Y ′/z0 to an independent set
of size |Y |+ 1 is z0 itself.

Lemma 9.5. Suppose there is no path from a node in X1 to a node in X2. Then Y is
optimal. In particular we can find a subset U ⊆ X so that |Y | = rM1(U)+rM2(X\U).

Proof. Let U := {i ∈ X : ∄X1 − i path in H} (or maybe more intuitively, X \U are
the nodes that are reachable from X1).
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Y

X2

X1

U

y

x

First, we claim that rM1(U) = |Y ∩U |. One direction is easy: rM1(U) ≥ rM1(U ∩
Y ) = |U ∩ Y |. For the other direction, suppose for the sake of contradiction that
rM1(U) > |Y ∩ U | and hence there is some x ∈ U so that (Y ∩ U) ∪ {x} is an
independent set of size |Y ∩ U | + 1. There are two cases, depending on whether or
not x also increases the rank of Y itself:

• Case rM1(Y ∪ {x}) = |Y | + 1. Then x ∈ X1 ∩ U , which is a contradiction to
the choice of U .

• Case: rM1(Y ∪ {x}) = |Y |. Take a maximal independent set Z with (Y ∩
U) ∪ {x} ⊆ Z ⊆ Y ∪ {x}. Then there is exactly one element y ∈ Y/U , so
that Z = (Y/y) ∪ {x}. This implies that we have would contain a directed
edge (y, x). Then the node x ∈ U is reachable from a element y /∈ U , which
contradicts the definition of U .

From the contradiction we obtain that indeed rM1(U) = |Y ∩ U |. Similarly one can
show that rM2(X/U) = |Y ∩ (X/U)| (which we skip for symmetry reasons). Overall,
we have found a set U so that |Y | = |Y ∩U |+|Y ∩(X\U)| = rM1(U)+rM2(X\U).

It follows that:

Theorem 9.6. Matroid intersection can be solved in polynomial time.

Proof. Start from Y := ∅ and iteratively construct the directed exchange graph;
compute shortest X1-X2 paths and augment Y as long as possible.

The matroids that we have seen so far, all had some explicit representation.
Note that the matroid intersection algorithm would work also in the black box model,
where the only information that we have about the matroids is given by a so-called
independence oracle. This is a procedure that receives a set Y ⊆ X and simply
answers whether or not this is an independent set.

Our algorithm provides a nice min-max formula for the size of joint independent
sets:

Theorem 9.7 (Edmond’s matroid intersection theorem). For any matroids M1 =
(X, I1) and M2 = (X, I2) one has

max{|S| : S ∈ I1 ∩ I2} = min
U⊆X

{rM1(U) + rM2(X \ U)}

Proof. We saw the inequality “≤” already in Lemma 9.2. When the matroid inter-
section algorithm terminates, then it has found a set U providing equality.
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9.2 Matroid partitioning

For the matroid partitioning problem, we are given matroids M1, . . . ,Mk over the
same groundset X and the goal is to cover as many elements as possible by selecting
one independent set from each of the matroids. More formally:

Matroid Partitioning Problem

Input: Matroids M1 = (X, I1), . . . , Mk = (X, Ik) over ground set X.

Goal: Solve max{| ˙⋃k

i=1Si| : Si ∈ Ii ∀i ∈ [k]}.

Although the problem depends on k matroids, it can be modelled by intersecting
two matroids. Then we can derive a polynomial time algorithm by Theorem 9.6 and
a min-max formula by Theorem 9.7.

9.2.1 Disjoint union

Consider matroids Mi = (Xi, Ii) for i = 1, . . . , k where we assume that the ground
sets X1, . . . ,Xk are disjoint. Consider M = (X, I) with X :=

⋃k
i=1Xi and I :=

{S ⊆ X | S ∩ Xi ∈ Ii ∀i = 1, . . . , k}. Then M is called the disjoint union of
M1, . . . ,Mk. It is easy to verify that M is again a matroid; it is common to write
M = M1 ⊕ . . .⊕Mk to denote the disjoint union. We summarize:

Theorem 9.8 (Disjoint union). For any matroids M1, . . . ,Mk with Mi = (Xi, Ii),
the disjoint union M = M1⊕ . . .⊕Mk is again a matroid. Moreover its rank function
is rM (Y ) =

∑k
i=1 rMi

(Y ∩Xi) for Y ⊆ X.

The proof is very straightforward and we skip it here.

9.2.2 The reduction

Now we come to the main claim.

Theorem 9.9. For any matroids M1, . . . ,Mk with Mi = (X, Ii), the Matroid Par-
titioning problem can be solved in polynomial time. Moreover the problem satisfies
the min-max formula

max
{∣
∣
∣

⋃̇k

i=1
Si

∣
∣
∣ : Si ∈ Ii ∀i ∈ [k]

}

= min
{

|X \ T |+
k∑

i=1

rMi
(T ) | T ⊆ X

}

Proof. Let X := {e1, . . . , en}. We clone the elements k times and let Xi := {ei1, . . . , ein}
denote the ith copy. Instead of using Mi we consider the identical matroid M ′

i =
(Xi, I ′

i) on the ith copy of elements, that means {ej}j∈J ∈ Ii ⇔ {eij}j∈J ∈ I ′
i.

Consider the matroid MU = (X ′, IU ) := M ′
1 ⊕ . . . ⊕M ′

k which is the disjoint union
of those k matroids. Then the matroid partitioning problem corresponds to se-
lecting an independent set Y ∈ IU of maximum cardinality so that Y contains at
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most one copy of each original element. To model this as matroid intersection, let
MP = (X ′, IP ) be the partitioning matroid with partitions Pj := {e1j , . . . , ekj } (and
parameter bj := 1).

X
S1 ∈ I1 S2 ∈ I2S3 ∈ I3 X ′

1

X ′
2

X ′
k

Y ∩X ′
1

Y ∩X ′
2

Y ∈ X ′
kP1 Pn

Then the optimum value of the matroid partitioning instance can be written as

max{|Y | : Y ∈ IU ∩ IP } Thm 9.7
= min

{
rMP

(X ′ \ T ′) + rMU
(T ′) | T ′ ⊆ X ′}

= min
{

|X \ T |+
k∑

i=1

rMi
(T ) | T ⊆ X

}

where we use the min-max formula from the Matroid Intersection Theorem (The-
orem 9.7). Moreover, we have used that rMP

(T ′) counts every partition Pj that
is intersected by T ′ and hence a minimizer T ′ can can always be chosen so that
|T ′ ∩ Pj| ∈ {0, |Pj |}. This gives the identity T = {ej : Pj ⊆ T ′}. Note that the
underlying matroid intersection instance can be solved in polynomial time, see The-
orem 9.6.

9.3 The Independent Set Polytope of a Matroid

For this first section, we mostly follow the exposition in the very readable book of
Cook, Cunningham, Pulleyblank and Schrijver [CCPS98]. Let M = (X, I) be a
matroid and consider the polytope

P (I) := conv{1S : S ∈ I}

which is the convex hull of the characteristic vectors of independent sets. This is
also called the matroid independence polytope of M . By definition, this is a polytope
whose vertices are in {0, 1}X . In fact, we have defined P (I) in terms of its vertices.
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P (I)
0

1

0 1

x1

x2

P (I) for uniform
matroid with n = 2, k = 1

x1 + x2 ≤ 1

b b

b

b

b

b

b

b

b

b

P (I) for uniform
matroid with n = 3, k = 2

Now we are wondering how one could characterize P (I) with linear inequalities? We
know that for each independent set Y ∈ I and each S ⊆ X one has |Y ∩S| ≤ rM (S).
So it is reasonable to consider the candidate polytope

Q(M) :=
{

x ∈ RX
≥0 |

∑

i∈S
xi ≤ rM (S) ∀S ⊆ X

}

From our reasoning we clearly know that by convexity P (I) ⊆ Q(M). But is it true
that P (I) = Q(M) or did we miss some relevant inequalities in the description of
Q(M)? It is not hard to argue that P (I) ∩ {0, 1}X = Q(M) ∩ {0, 1}X . To see this,
take a vector x ∈ Q(M) ∩ {0, 1}X and set Y := {i ∈ X | xi = 1}. Then this point
satisfies |Y ∩ S| ≤ rM (S) for all S ⊆ Y and hence Y ∈ I . Yet, these properties
are still not enough to conclude that P (I) and Q(M) are equal. This will require
additional arguments:

Theorem 9.10. For any matroid M = (X, I) one has P (I) = Q(M).

Proof. To show the remaining inclusion P (I) ⊇ Q(M) it suffices to prove that for
every vector c ∈ RX one has

max
{
cTx | x ∈ P (I)} ≥ max

{
cTx | x ∈ Q(M)

}
(∗)

Since P (I) and Q(M) are both monotone and contained in RX
≥0, it suffices to consider

c ∈ RX
≥0. We know that the left hand side of (∗) is also attained by the Matroid

Greedy algorithm. The right hand side of (∗) is the value of a linear program that we
denote by (Primal(M, c)). So it suffices to prove that the solution of the Matroid
Greedy algorithm is an optimum solution for the LP (Primal(M, c)). Mechanically
we can develop the dual of the LP as follows, see Theorem 3.27:

max
{∑

i∈X
cexe |

∑

i∈S
xi ≤ rM (S) ∀S ⊆ X; xi ≥ 0 ∀i ∈ X

}

(Primal(M, c))

min
{ ∑

S⊆X

rM (S)yS |
∑

S⊆X:i∈S
yS ≥ ci ∀i ∈ X; yS ≥ 0 ∀S ⊆ X

}

(Dual(M, c))
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Then it remains to show:
Claim. For any matroid M = (X, I) and c ∈ RX , if Y ∗ ∈ I is the solution
found by the Matroid Greedy algorithm, then x∗ := 1Y ∗ is an optimum solution to
(Primal(M, c)).
Proof of Claim. We will construct a vector y∗ that is feasible for (Dual(M, c))
and so that the pair (x∗, y∗) satisfies the complementary slackness conditions. Let
us write X = {1, . . . , n} and sort the elements in the same order c1 ≥ c2 ≥ . . . ≥ cn
that the Matroid Greedy algorithm uses. Then set

y∗S :=

{

ci − ci+1 if S = {1, . . . , i} with i ∈ {1, . . . , n− 1}
cn if S = {1, . . . , n}

In fact, the support of y∗ can be visualized as follows:

1 2 n

Interestingly, the solution y∗ itself does not dependent on the matroid M . However,
the objective function of (Dual(M, c)) depends on the matroid. First, we can see
that y∗ ≥ 0 and for each j ∈ {1, . . . , n} one has

∑

S⊆X:j∈S
y∗S =

n∑

i=j

y∗{e1,...,ei} =
n−1∑

i=j

(ci − ci+1) + cn = cj (∗)

Hence y∗ is feasible for (Dual(M, c)). It remains to verify that the complementary
slackness conditions from Theorem 3.29 are satisfied. Recall that the conditions are:

• (CS1) x∗i > 0 ⇒ ∑

S⊆X:i∈S y
∗
S = ci

• (CS2) y∗S > 0 ⇒ ∑

i∈S x∗i = rM (S)

(CS1) is clearly satisfied due to (∗). Now consider a set S with y∗S > 0. By construc-
tion this means that S = {1, . . . , i}. Recall that the matroid greedy algorithm always
maintains a basis of the considered elements, i.e. |Y ∗ ∩ {1, . . . , i}| = rM ({1, . . . , i})
for all i = 1, . . . , n. That means also (CS2) is satisfied. Then the pair (x∗, y∗) are
optimal primal and dual solutions and the claim follows.

9.4 Submodularity and matroids

The following concept is extremely useful in optimization:
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Definition 9.11. Let X be a finite set. A function f : 2X → R is called submodular
if

f(A ∪ {j}) − f(A) ≥ f(B ∪ {j}) − f(B) ∀A ⊆ B ⊆ X ∀j ∈ X \B

Intuitively, a submodular function satisfies a diminishing returns property. Often
one may find the definition of submodular functions with a different, equivalent
condition:

Lemma 9.12. A function f : 2X → R is submodular if and only if

f(A) + f(B) ≥ f(A ∩B) + f(A ∪B) ∀A,B ⊆ X

Submodular functions naturally appear in the context of matroids:

Lemma 9.13. Let M = (X, I) be a matroid. Then the rank function rM is sub-
modular.

Proof. It suffices to prove the following:
Claim. For A ⊆ B ⊆ X and j ∈ X \ B one has (rM (B ∪ {j}) − rM (B) = 1) ⇒
(rM (A ∪ {j}) − rM (A) = 1).
Proof of Claim. Construct an independent set S as follows: Take a basis of A,
extend it to a basis of B, then extend it to a basis of B ∪ {j}. Then S ∈ I with
|S ∩A| = rM (A), |S ∩ B| = rM (B) and |S ∩ (B ∪ {j})| = rM (B) + 1. Hence j ∈ S
and S ∩ (A∪{j}) ∈ I . That means rM (A∪{j}) ≥ |S ∩ (A∪{j})| = rM (A)+ 1.

Definition 9.14. Given a finite set X, a set family F ⊆ 2X is called laminar if for
all S, T ∈ F one has either S ⊆ T or T ⊆ S or S ∩ T = ∅.

laminar family

Definition 9.15. Given a finite set X, a set family F ⊆ 2X is called a chain if one
can write F = {S1, . . . , Sm} so that S1 ⊆ S2 ⊆ . . . ⊆ Sm.

A chain is a special type of laminar family.

chain

We will illustrate a technique called uncrossing which can often be found in
proofs dealing with submodular functions.
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Lemma 9.16. Let f : 2X → R be a submodular function and let Q ⊆ RX be a
polyhedron. Then the linear program

min
{ ∑

S⊆X

zSf(S) |
∑

S⊆X

zs1S ∈ Q, zS ≥ 0 S ⊆ X
}

(LP)

has an optimum solution z∗ so that the support F := {S ⊆ X | z∗S > 0} is a chain.
In fact, any optimum solution minimizing

∑

S⊆X zS · |S| · |X \ S| will have that
property.

Proof. Let K ⊆ RX be the set of optimum solutions to (LP). Choose a vector z∗ ∈ K
that minimizes the quantity

∑

S⊆X zS · |S| · |X \ S|. Note that this itself is a linear
program as K is a polyhedron and hence that minimum is attained. Suppose for the
sake of contradiction that the support F := {S ⊆ X | z∗S > 0} is not a chain. Choose
two sets S, T ∈ F with S \ T 6= ∅ and T \ S 6= ∅ and set ε := min{z∗S , z∗T } > 0. We
can modify z∗ by increasing the value of z∗S∩T and z∗S∪T by ε and decreasing it on z∗S
and z∗T by ε. Let us call the modified solution z∗∗. Note that 1S∩T +1S∪T = 1S+1T
and so z∗∗ is still feasible for (LP). The change in the objective function is

ε · (f(S ∩ T ) + f(S ∪ T )− f(S)− f(T )) ≤ 0 (∗∗)

by submodularity, so z∗∗ ∈ K is also an optimum solution for (LP). This is not yet
a contradiction as the inequality in (∗∗) might not have been strict. But

∑

S⊆X z∗∗S ·
|S|·|X\S| > ∑

S⊆X z∗S ·|S|·|X\S| as one can verify. This is then a contradiction.

Note that we have reproven the insight from Theorem 9.10 that (Dual(M, c)) al-
ways has solution whose support is a chain — just that the statement in Lemma 9.16
is much more general.

9.5 The Matroid Intersection Polytope

For this section, we follow the exposition in Schrijver [Sch03], Chapter 41. In general,
if we have two polytopes P1 and P2 with vertices in {0, 1}n, then it is not true that
the vertices of P1 ∩ P2 are in {0, 1}n as well, see an easy example in n = 2 below:

P1
P2

P1 ∩ P2

But as we have seen in Section 9.1, the intersection of matroids is well behaved com-
binatorially, so there is some hope that the intersection of two matroid independence
polytopes is well behaved too. And in fact, we will see the result of Edmonds that
indeed P (I1∩I2) = P (I1)∩P (I2). In particular this implies that one can solve the
weighted matroid intersection problem in polynomial time.
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Again, it is immediate that P (I1 ∩ I2) ⊆ P (I1)∩P (I2) and it remains to prove
the reverse inclusion of P (I1)∩P (I2) ⊆ P (I1∩I2). As P (I1) = Q(M1) and P (I2) =
Q(M2) we know that it suffices to prove that max{cTx | x ∈ Q(M1) ∩Q(M2)} has
an integral optimum solution x ∈ {0, 1}X for every objective function c ∈ RX . Let
us write out that linear program and develop its dual:

(Primal(M1,M2, c)) :

max







∑

i∈X
cixi |

∑

i∈S xi ≤ rM1(S) ∀S ⊆ X
∑

i∈S xi ≤ rM2(S) ∀S ⊆ X
xi ≥ 0 ∀i ∈ X







(Dual(M1,M2, c)) :

min







∑

S⊆X

(
rM1(S)y

1
S + rM2(S)y

2
S

)
|

∑

S⊆X:i∈S
(y1S + y2S) ≥ ci ∀i ∈ X

y1S, y
2
S ≥ 0 ∀S ⊆ X







Note that the constraints of (Dual(M1,M2, c)) can also be written in the more
compact vector notation

∑

S⊆X(y1S + y2S)1S ≥ c.
We will an auxiliary result that we state in more generality than required:3:

Lemma 9.17. Let C ⊆ 2X be the union of two laminar families of subsets of X and
let A ∈ {0, 1}C×X be the incidence matrix of C. Then A is totally unimodular.

Proof. Any submatrix of A is again the incidence matrix of the union of two laminar
families, so it suffices to consider the case that A is a square matrix and prove
that det(A) ∈ {−1, 0, 1}. Let C = F1 ∪ F2 be the partition into the two laminar
families F1,F2 ⊆ 2X . Each of the families Fk with k ∈ {1, 2} induces a rooted forest
structure (that means it is a collection of trees that have a distinguished root) where
S being a child of T implies that S ⊂ T . Now, we define a new matrix A′ ∈ {0, 1}C×X

that emerges from A as follows: For each T ∈ Fk, while the matrix A contains the
row 1T ; the matrix A′ will contain the row 1T −∑

S∈Fk is child of T 1S . In particular
the rows of the leafs will simply be copied over.

1 1 1 1 1 0

1 1 1 0 0 0

1 0 0 0 0 0

1 1 1 1 1 1

0 0 1 0 1 1

1 1 0 0 0 0

F1

F2

matrix A

⇒
0 0 0 1 1 0

0 1 1 0 0 0

1 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 1 1

1 1 0 0 0 0

matrix A′

3In our application C will simply be the union of two chains.
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Subtracting rows from other rows does not change the determinant of a matrix, hence
det(A′) = det(A). Then in each column, the matrix A′ at most one +1 entry for
the first family and at most one +1 entry for the 2nd family. Hence A′ is the node-
edge incidence matrix of a bipartite undirected graph possibly plus some columns
containing at most one +1 entry. Such a matrix is TU by Theorem 5.13.

Now we can prove the crucial structural result that we need:

Theorem 9.18. Let M1 = (X, I1) and M2 = (X, I2) be matroids. For any c ∈ ZX ,
there is an optimum solution (y1, y2) to (Dual(M1,M2, c)) that is integral. Moreover
that solution can be chosen so that supp(y1) and supp(y2) are both chains.

Proof. Among all the optimum solutions to (Dual(M1,M2, c)), let (ȳ1, ȳ2) be one
minimizing the quantity

∑

S⊆X

(y1S + y2S) · |S| · |X \ S| (∗)

Then let F1 := {S ⊆ X | ȳ1S > 0} and F2 := {S ⊆ X | ȳ2S > 0} be the support. We
want to use Lemma 9.16 to argue that both F1 and F2 must be chains. To see this,
imagine to fix ȳ2 and reoptimize over the y1 variables, i.e. solve

min







∑

S⊆X

rM1(S) · y1S |

∑

S⊆X

y1S1S ≥ b

y1S ≥ 0 ∀S ⊆ X







where b := c−∑

S⊆X ȳ2S1S gives the part of the objective function that needs to be
covered by y1. Then ȳ1 is still an optimum solution minimizing

∑

S⊆X y1S ·|S|·|X\S|.
Crucially, the rank function rM1 is submodular by Lemma 9.13, hence Lemma 9.16
applies and F1 is a chain. Analogously we can obtain that F2 is a chain.

Now consider the LP that we obtain by deleting all variables not in F1 or F2

from (Dual(M1,M2, c)):

min







∑

S∈F1

rM1(S)y
1
S +

∑

S∈F2

rM2(S)y
2
S |

∑

S∈F1

1Sy
1
S +

∑

S∈F2

1Sy
2
S ≥ c

y1S ≥ 0 ∀S ∈ F1

y2S ≥ 0 ∀S ∈ F2







Then this LP is of the form min{rT y | Ay ≥ c, y ≥ 0} where A ∈ {0, 1}X×(F1∪F2)

is the transpose of the incidence matrix of the union of two laminar families and
that matrix A is TU by Lemma 9.17. Then by Theorem 5.7 there is an integral
optimum solution (ỹ1, ỹ2). The objective function value of (ỹ1, ỹ2) has to be at
least as good as the one of (ȳ1, ȳ2) and hence (ỹ1, ỹ2) is also optimal for the full LP
(Dual(M1,M2, c)).
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Now the main result of this section easily follows:

Theorem 9.19 (Matroid Intersection Polytope Theorem (Edmonds)). Let M1 =
(X, I1) and M2 = (X, I2) be matroids. Then all vertices of P (I1) ∩ P (I2) are in
{0, 1}X and P (I1 ∩ I2) = P (I1) ∩ P (I2).

Proof. To show that all vertices in P (I1)∩P (I2) = Q(M1)∩Q(M2) are integral, it
suffices to show that for all c ∈ ZX , (Primal(M1,M2, c)) has an integral optimum
value. This is the same as showing that (Dual(M1,M2, c)) has an integral optimum
value for all c ∈ ZX . And that is implied by Theorem 9.18.

Weighted Matroid Intersection

Input: Two matroid M1 = (X, I1), M2 = (X, I2) on the same groundset and
c ∈ RX .
Goal: Find max{∑i∈S ci | S ∈ I1 ∩ I2}.

Theorem 9.20. The Weighted Matroid Intersection problem can be solved in strongly
polynomial time assuming the oracles for M1 and M2 admit algorithms with running
time polynomial in |X|.

The argument uses two ingredients that we only cover in later chapters. However,
we give the proof for the sake of completeness.

Proof. By the Theorem of Frank and Tardos [FT87] (Theorem 12.1), we can replace
the original objective function c with an approximation c̃ that has the same set of
optimum solutions while the encoding length of c̃ is polynomial in |X|.

Using the Matroid Greedy algorithm we can optimize over P (M1) and P (M2)
in polynomial time in |X|. Hence by the equivalence of separation and optimization
(Theorem 11.9) we can also separate in polynomial time in |X| over P (M1) and
P (M2). Using the equivalence of separation and optimization a 2nd time, we can
also optimize any linear function over P (M1)∩P (M2) in time polynomial in |X| and
the encoding length of the objective function c̃ which is also bounded by a polynomial
in |X|.

As a sanity check, let us conside the consequence of Theorem 9.18 for the objective
function c := 1. Then (Dual(M1,M2,1)) has an optimum integral solution (y1, y2)
so that the support of y1 and the support of y2 are both chains. Recall that the only
constraint is

∑

S⊆X 1Sy
1
S +

∑

S⊆X 1Sy
2
S ≥ 1. Then in every chain one only needs

to select the unique maximal set to an extend of 1. With that observation we can
write the matroid intersection problem as

max
{
|Y | : Y ∈ I1 ∩ I2

} Thm 9.19
= (Primal(M1,M2,1))

LP-duality
= (Dual(M1,M2,1))

= min
{
rM1(S) + rM2(T ) | S ∪ T = X

}



120 CHAPTER 9. MATROIDS — ADVANCED TOPICS*

Finally by monotonicity of the rank function the sets S and T an be chosen to be
disjoint. Hence we recover an alternative proof of the Matroid Intersection Theorem
(Theorem 9.7).

Finally, note that given 3 matroids Mi = (X, Ii), i = 1, 2, 3, it is NP-hard to
determine max{|S| : S ∈ I1 ∩ I2 ∩ I3}. In particular, P (I1 ∩ I2 ∩ I3) 6= P (I1) ∩
P (I2) ∩ P (I3) in general.

9.6 Exercises

Exercise 9.1.

Derive König’s theorem4 from Edmonds’ matroid intersection theorem.

Source: This exercise is taken from Schrijver [Sch17].

Exercise 9.2.

Prove the following Theorem of Rado from 1942: Let M = (X, I) be a matroid and let
X1, . . . , Xm ⊆ X . Then there exists a transversal S ∈ I for X1, . . . , Xm, if and only if for
any J ⊆ [m] one has rM (

⋃

i∈J Xi) ≥ |J |.
Hint: Recall that a transversal for sets X1, . . . , Xm ⊆ X is a set S ⊆ X such that there

is an bijective map f : S → [m] with x ∈ Xf(x) for x ∈ S. For any sets X1, . . . , Xm ⊆ X ,
the pair M ′ = (X, I ′) with I ′ := {S ⊆ X | S is contained in a transversal of X1, . . . , Xm}
is a matroid, called the transversal matroid. Moreover the rank function of that matroid is

rM ′(T ) = min
J⊆[m]

{∣
∣
∣T ∩

⋃

i∈J

Xi

∣
∣
∣+m− |J |

}

You may use these properties without proof.

Source: This exercise is taken from Schrijver [Sch17].

4In any bipartite graph G = (V,E) one has ν(G) = τ (G).



Chapter 10

Semidefinite programming*

In this chapter we will introduce semidefinite programming which is a generalization
of linear programming. We will focus on two striking applications in the area of
approximation algorithms. Here, an approximation algorithm is an algorithm that
finds a solution that is provably close an optimum one in term of objective function
value. Typically one employs approximation algorithms for NP-hard problems where
exact efficient algorithms do not exist, assuming that NP 6= P.

10.1 Positive semi-definite matrices

We begin by reviewing some linear algebra facts. A matrix X ∈ Rn×n is symmetric
if Xij = Xji for all i, j ∈ [n]. We know the following:

Fact 10.1. For a symmetric matrix X ∈ Rn×n, all Eigenvalues are real.

That means the following definition makes sense:

Definition 10.2. A symmetric matrix X ∈ Rn×n is positive semidefinite if all its
Eigenvalues are non-negative. In that case we write X � 0.

For matrices A,B ∈ Rn×n we write

〈A,B〉 :=
n∑

i=1

n∑

j=1

Aij · Bij

as the Frobenius inner product.

Lemma 10.3. For a symmetric matrix X ∈ Rn×n, the following is equivalent

a) aTXa ≥ 0 ∀a ∈ Rn.

b) X is positive semidefinite.

121
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c) There exists a matrix U so that X = UUT .

d) There are u1, . . . , un ∈ Rr with Xij = 〈ui, uj〉 for i, j ∈ [n].

Proof. Any symmetric real matrix is diagonalizable, that means X = WDW T =
∑n

i=1 λiviv
T
i for a diagonal matrix D and a orthogonal matrix W where v1, . . . , vn ∈

Rn are the orthonormal Eigenvectors and λ1, . . . , λn ∈ R are the Eigenvalues. Then
we can verify the equivalences:
a) ⇒ b). For each i one has 0 ≤ vTi Xvi = λi‖vi‖22 = λi.
b) ⇒ c). Setting U := W

√
D gives X = WDW T = UUT .

c) ⇔ d). Choose ui as ith row of U .
c) ⇒ a). For any a ∈ Rn, one has aTXa = ‖Ua‖22 ≥ 0.

Definition 10.4. The cone of PSD matrices is

Sn≥0 := {X ∈ Rn×n | X symmetric,X � 0}
= {X ∈ Rn×n | X symmetric,

〈
X, aaT

〉
≥ 0 ∀a ∈ Rn}

From the 2nd description we can immediately derive:

Fact 10.5. Sn≥0 is convex.

Note that Sn≥0 is not a polyhedron.

K :=
{

(x, y) |
(
1 x
x y

)

� 0
}

1

2

3

4

0 1 2−1−2

K

x

y

10.2 Semidefinite programs

A semidefinite program is of the form:

max 〈C,X〉
〈Ak,X〉 ≤ bk ∀k = 1, . . . ,m

X symmetric

X � 0

where C,A1, . . . , Am ∈ Rn×n. In fact, the set of solutions to an SDP is convex by
Fact 10.5. In contrast to LPs, SDPs are less well behaved:
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• Issue 1: There is a dual to any SDP, but strong duality can fail.

• Issue 2: It is possible that all solutions of an SDP are irrational even if the
input C,Ak, bk is integer.

• Issue 3: It it possible that exact solutions to an SDP have exponential encoding
length even if the input C,Ak, bk is integer.

However, one can in fact solve SDPs up to small inaccuraries which typically is
enough for applications (in particular in the design of approximation algorithms).
For the sake of completeness we state this but ignore any such inaccuracies later on.

Theorem 10.6. Given rational input A1, . . . , Am, b1, . . . , bm, C,R and ε > 0, sup-
pose

SDP = max{〈C,X〉 | 〈Ak,X〉 ≤ bk ∀k; Xsymmetric; X � 0}
is feasible and all feasible points are contained in B(0, R). Then one can find an X∗

with
〈Ak,X

∗〉 ≤ bk + ε ∀k, X∗ symmetric, X∗ � 0

such that 〈C,X∗〉 ≥ SDP − ε. The running time is polynomial in the input length,
log(R) and log(1/ε) (in the Turing machine model).

Recall that Y � 0 is equivalent to Yij = 〈vi, vj〉 for some vectors vi. Making
that substitution in an SDP results in an equivalent program that is called vector
program.

SDP:

max
∑

i,j

CijYij

∑

i,j

Ak
ij · Yij ≤ bk ∀k

Y sym.

Y � 0

Vector program:

max
∑

i,j

Cij 〈vi, vj〉
∑

i,j

Ak
ij · 〈vi, vj〉 ≤ bk ∀k

vi ∈ Rr ∀i

Curiously, the right hand side vector program is not convex, but rather is equivalent
to a convex program (the SDP) and hence can be solved in polynomial time. Also
note that one cannot choose the dimension r of the vectors. In fact, solving a vector
program subject to the rank restriction r = 1 is again NP-hard.

10.3 MaxCut

In this chapter, we discuss one of the most prominent problems in optimization and
theoretical computer science, which is the MaxCut problem and the algorithm of
Goemans and Williamson [GW95].
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MaxCut

Input: An undirected graph G = (V,E) and weights w : E → R≥0

Goal: Find the cut S ⊆ V that maximizes the weight w(δ(S)) of the cut
edges.

S

It is NP-hard to find a solution that cuts even 94% of what the optimum cuts [Hås97].
This is might be surprising as the minimum cut problem is solvable in polynomial
time. In terms of obvious approximation algorithms note that a simple greedy algo-
rithm can already find a solution that cuts at least |E|/2 edges in the unit weight
setting or 1

2w(E) in the setting with non-negative weights.
We consider the following semidefinite program with equivalent vector program:

SDP:

max
1

2

∑

{i,j}∈E
wij · (1−Xij)

X � 0

Xii = 1 ∀i ∈ V

X ∈ Rn×n

Vector program:

max
1

2

∑

{i,j}∈E
wij · (1− 〈ui, uj〉)

‖ui‖2 = 1 ∀i ∈ V

ui ∈ Rr

We verify that these programs indeed provide a relaxation.

Lemma 10.7. If S∗ ⊆ V is optimum solution for MaxCut, then SDP ≥ w(δ(S∗)).

Proof. We choose vectors in dimension r := 1 and define ui ∈ R1 by

ui :=

{

1 if i ∈ S∗

−1 if i ∈ V \ S∗

Example 10.8. Consider the graph G which is a cycle on 5 nodes and unit weights
w(e) = 1. The optimum MaxCut is 4. On the other hand, choosing ui ∈ R2 with
ui := (cos(4iπ5 ), sin(4iπ5 )) we get a vector program solution of value 5· 12(1−cos(45π)) ≈
4.522.
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graph G

1

2

3

4

5

SDP solution:

0 u1

u2

u3

u4

u5

We need an algorithm that can transform a MaxCut SDP solution into an actual
cut δ(S) while being close in terms of the objective function value. The algorithm is
quite simple: randomly partition Rr into two halfspaces; then let S be the vertices
whose vectors ui lie in one of those halfspaces.

Hyperplane Rounding algorithm

Input: Graph G = (V,E) and edge weights w : E → R≥0

Output: Set S ⊆ V
(1) Solve the MaxCut SDP
(2) Sample a random standard Gaussian a ∈ Rr

(3) Define S := {i ∈ V | 〈a, ui〉 ≥ 0}

Note that the algorithm that we will analyze is randomized and we will prove that
the expected value of the produced cut is good.

b a

ui

uj

Lemma 10.9. For {i, j} ∈ E one has Pr[{i, j} ∈ δ(S)] = 1
πarccos(〈ui, uj〉).

Proof. First note that the angle between vectors is exactly θ := arccos(〈ui, uj〉) (as
〈ui, uj〉 = cos(θ)). Next, note that considering only the edge {i, j} the random
experiment is equivalent to drawing a random unit vector a in the 2-dimensional1

space U := span{ui, uj}. Then we can verify that indeed Pr[ui, uj separated] = 2θ
2π .

1The case that ui = ±uj is obvious.
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0
ui

uj

θ

a⊥

Theorem 10.10. One has E[w(δ(S))] ≥ 0.878 · SDP .

Proof. Fix an edge e = {i, j} ∈ E and abbreviate t := 〈ui, uj〉. Then the contribution
of that edge to the SDP objective function is wij · 1

2(1 − t). On the over hand, the
expected contribution of e to the cut value is wij ·Pr[{i, j} ∈ δ(S)] = wij · 1πarccos(t).
We can numerically verify that the ratio is indeed

1
πarccos(t)
1
2(1− t)

≥ 0.878 ∀t ∈ [−1, 1]

0.2
0.4
0.6
0.8
1.0

0 0.2 0.4 0.6 0.8 1.0−0.2−0.4−0.6−0.8−1.0

0.87

t

1
π
arccos(t)
1
2
(1−t)

The claim then follows by linearity of expectation.

10.4 Grothendieck’s Inequality

In this section, we discuss the integrality gap of a certain quadratic program. For a
matrix A ∈ Rm×n define

INT (A) := max
{ m∑

i=1

n∑

j=1

Aijxiyj | x ∈ {−1, 1}m, y ∈ {−1, 1}n
}

SDP (A) := max
{ m∑

i=1

n∑

j=1

Aij 〈ui, vj〉 | ‖ui‖2 = ‖vj‖2 = 1
}

Note that SDP (A) is indeed a vector program that can be solved in polynomial
time. We will show the following result:
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Theorem 10.11 (Grothendieck’s Inequality). For any matrix A ∈ Rm×n one has

INT (A) ≤ SDP (A) ≤ CG · INT (A)

where CG ≤ 1.783.

Note that the lower bound is clear. Grothendieck [Gro53] was the first to prove
that there is such a universal constant CG and later Krivine [Kri79] provided the
bound if CG ≤ 1.783. Here we will reproduce Krivine’s argument, following in part
the exposition of Vershynin [Ver18].

Given a solution to the SDP in form of some vectors ui, vj ∈ Rn, our goal will
be to produce integers xi, yj ∈ {−1, 1}. We want to follow the recipe that worked so
smoothly in case of MaxCut. For z ∈ R we define

sign(z) :=

{

1 if z ≥ 0

−1 if z < 0

Then we consider the following random experiment:

(1) Given vectors ui, vj ∈ Rr.

(2) Sample a Gaussian g in Rr and set

xi := sign(〈ui, g〉) and yj := sign(〈vj, g〉)

u1

u2

v1

u3
v2

g

u1

u2

v1

u3
v2

+1

−1

If we again want to compare the entry-wise contributions, then we need to analyze
how E[Aijxiyj] relates to Aij 〈ui, vj〉. That argument is very similar to the case of
maxcut.

Lemma 10.12. Let u, v ∈ Rr with ‖u‖2 = ‖v‖2 = 1. Then

E
g Gaussian

[
sign(〈g, u〉) · sign(〈g, v〉)

]
=

2

π
arcsin(〈u, v〉)

Proof. Let θ ∈ [0, π) be the angle between u and v, i.e. cos(θ) = 〈u, v〉. Then

E
g Gaussian

[
sign(〈g, u〉) · sign(〈g, v〉)

]
= 1− Pr[u, v separated]

= 1− 2θ

π

= 1− 2

π
arccos(〈u, v〉) = 2

π
arcsin(〈u, v〉)

Here we use that arccos(t) = π
2 − arcsin(t).
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To visualize the proof, note that the vectors u, v will be separated if the projection
of g into span({u, v}) falls into one of the two red-shaded angles of value θ each.

0 u

v

θ

θ

We can visualize the resulting curve:

2
π t

1

−1

1−1

t

t 2
πarcsin(t)

For example, for t ≥ 0, one has 2
π t ≤ 2

πarcsin(t) ≤ t. In fact, one can see that

• For Aij ≥ 0 and 〈ui, uj〉 ≥ 0 one has E[Aijxiyj] ≥ 2
π · Aij 〈ui, vj〉

• For Aij < 0 and 〈ui, uj〉 ≥ 0 one has E[Aijxiyj] ≥ Aij 〈ui, vj〉
One might be tempted to claim that a straightforward hyperplane rounding argument
shows that INT (A) ≥ 2

πSDP (A). But that is not true! Suppose we have only two
non-zero entries, one with value A11 = 1

ε and inner product 〈u1, v1〉 = ε and the
other one with A22 = −1 and 〈u2, v2〉 = 1. Then the SDP objective is 0. On the
other hand, the expected value of a hyperplane solution is −1 + 1

ε · 2
πarcsin(ε) ≈

−1 + 2
π ≈ −0.36. The issue here is the non-linearity of t 7→ 2

πarcsin(t)! The fix will
be to force the rounding to give a linear bound.

10.4.1 Tensors

We introduce some more linear algebra.

Definition 10.13. A kth order tensor A ∈ Rn1×...×nk is a k-dimensional array of
numbers; we write A = (Ai1,...,ik)i1∈[n1],...,ik∈[nk].

For example a vector a ∈ Rn is a 1st order tensor and a matrix A ∈ Rn1×n2 is a
2nd order tensor.
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Definition 10.14. For two tensors A,B ∈ Rn1×...×nk we define an inner product

〈A,B〉 :=
∑

i1,...,ik

Ai1,...,ik ·Bi1,...,ik

Again, for vectors this corresponds to the standard inner product.

Definition 10.15. For vector u ∈ Rn and k ∈ N, define the tensor product

u⊗ . . .⊗ u := u⊗k := (ui1 · . . . · uik)i1∈[n],...,ik∈[n]
The following is a useful fact:

Fact 10.16. For vectors u, v ∈ Rn one has
〈
u⊗k, v⊗k

〉
= 〈u, v〉k.

Definition 10.17. We call a function f : R → R (real) analytic if it can be written
as a convergent power series f(x) =

∑∞
k=0 akx

k for all x ∈ R.

Given a fixed r ∈ N, we can define a Hilbert space / infinite-dimensional vector
space of the form

H = {(U0, U1, U2, U3, . . .) | Uk is a k-tensor of size rk}
using the natural inner product.

Now we can “bend” any vectors to give any analytic function that we like:

Lemma 10.18. Let f(x) =
∑∞

k=0 akx
k and fix a dimension r ∈ N. Then there is a

Hilbert space H and maps F,G : Rr → H so that

〈F (u), G(v)〉 = f(〈u, v〉) ∀u, v ∈ Rr

Moreover the length of the mapped vectors satisfies

‖F (u)‖22 = ‖G(u)‖22 =

∞∑

k=0

|ak| · ‖u‖2k2

Proof. We use the maps

F (u) := (
√

|ak| · u⊗k)k∈Z≥0
, G(u) := (sign(ak) ·

√

|ak| · u⊗k)k∈Z≥0

Then for vectors u, v ∈ Rr one has

〈F (u), G(v)〉 =
∑

k≥0

sign(ak) · (
√

|ak|)2 ·
〈

u⊗k, v⊗k
〉

=
∑

k≥0

ak · 〈u, v〉k = f(〈u, v〉).

We can verify that the lengths of the transformed vectors are

‖F (u)‖22 = ‖G(u)‖22 =
∑

k≥0

(
√

|ak|)2 · ‖u⊗k‖22 =
∑

k≥0

|ak| · ‖u‖2k2

as claimed.
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10.4.2 Proof of Grothendieck’s Inequality

Now we apply Lemma 10.18 to linearize the function appearing in the hyperplane
rounding. More concretely, we will find maps F,G : Rr → H so that

2

π
arcsin(〈F (u), G(v)〉) = β · 〈u, v〉

for some constant β > 0.

Lemma 10.19. Let r ∈ N. Then there are maps F,G : Rr → H so that

〈F (u), G(v)〉 = sin
(

β
π

2
〈u, v〉

)

where β = 2
π ln(1 +

√
2) ≈ 1

1.783 . Moreover ‖F (u)‖22 = ‖G(u)‖22 = 1 for all u ∈ Rr

with ‖u‖22 = 1.

Proof. First, recall that

sin(x) =
∑

k≥0

(−1)k

(2k + 1)!
x2k+1 = x− 1

3!
x3 +

1

5!
x5 − . . .

sinh(x) =
∑

k≥0

1

(2k + 1)!
x2k+1

We apply Lemma 10.18 to the analytic function f(x) = sin(β π
2x) where we decide

β ∈ R later. Then for ‖u‖2 = 1, we can see that the length of the transformed vector
is

‖F (u)‖22 =
∑

k≥0

∣
∣
∣

(−1)k

(2k + 1)!
·
(

β
π

2

)2k+1∣∣
∣ = sinh

(

β
π

2

) β:= 2
π

arcsinh(1)
= 1

Rearranging we see that

β =
2

π
arcsinh(1) =

2

π
ln(1 +

√
2) ≈ 1

1.783
.

Now we can complete the proof of Grothendieck’s Inequality using Krivine’s
rounding argument.

Theorem 10.11. Consider a matrix A ∈ Rm×n and let ui, vj ∈ Rr be vectors with
‖ui‖2 = 1 = ‖vj‖2 attaining SDP (A). Construct the maps F,G : Rr → H from
Lemma 10.19. Sample a Gaussian g in H2 and set

xi := sign(〈g, F (ui)〉) ∀i ∈ [m] and yj := sign(〈g,G(vj)〉) ∀j ∈ [n]

2In order to avoid the discussion of what a Gaussian in an infinite dimension space should be,
note that only the subspace U := span({F (ui) : i = 1, . . . ,m} ∪ {G(vj) : j = 1, . . . , n}) of H with
dimension dim(U) ≤ m+ n is relevant which is isomorphic to Rm+n. So indeed it suffices to draw
a Gaussian from that subspace U .
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Then

E[xiyj]
Lem 10.12

=
2

π
arcsin(〈F (ui), G(vi)〉) = β · 〈ui, vi〉

By linearity of expectation we obtain

E
[ m∑

i=1

n∑

j=1

Aijxiyj

]

= β

m∑

i=1

n∑

j=1

Aij 〈ui, vj〉 = β
︸︷︷︸

≈ 1
1.783

·SDP (A)
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Chapter 11

Equivalence of Optimization and

Separation*

In this chapter, we will discuss the topic of linear optimization over polyhedra from a
more abstract point of view. Similar to the interior point method, the running times
will depend on the size of the numbers describing the LP. For an integer z ∈ Z we
define 〈z〉 := 1 + ⌈log2(|z| + 1)⌉ as the encoding length. Then for a rational number
α ∈ Q with α = p

q with p ∈ Z and q ∈ N coprime we set 〈α〉 = 〈p〉+ 〈q〉. Similarly,
for a vector c ∈ Qn and a matrix A ∈ Qm×n we denote 〈c〉 and 〈A〉 as the sum of
the encoding length of all entries. Note that 〈c〉 ≥ n and 〈A〉 ≥ nm.

11.1 The Ellipsoid Method

The Ellipsoid method was developed by Shor, Yudin and Nemirovski in the 1970s
for nonlinear optimization; later it was applied by Khachyian [Kha79] for solving
LP’s in polynomial time. It was actually the first method proven to be able to solve
LPs in polynomial time. While not being used in practice, the ellipsoid method has
an important function in the theory of linear programs that we elaborate here. In
this section, we follow the exposition of Korte and Vygen [KV12]. We will point out
some of the numerical issues without going into the (usually tedious) details. We
refer to [KV12] for more background.

There are several equivalent ways to define an ellipsoid. We choose the following:

Definition 11.1. Let B ∈ Rn×n be a matrix with B ≻ 0 and let c ∈ Rn. Then

E(B, c) :=
{
x ∈ Rn | (x− c)TB−1(x− c) ≤ 1

}

is called an ellipsoid.

We write B(c, r) := E(In, c) as the Euclidean ball of radius r and center c. Con-
sider the Eigen decomposition of B in the form B =

∑n
i=1 λiuiu

T
i where λ1, . . . , λn >

133
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0 are the Eigenvalues and u1, . . . , un are the orthonormal Eigenvectors. Then the
ellipsoid can be alternatively written as

E(B, c) =
{

x ∈ Rn |
n∑

i=1

〈x− c, ui〉2
λi

≤ 1
}

In particular c is the center of the ellipsoid and ui is the ith axis that has a length
of

√
λi.

√
λ1u1

√
λ2u2

0
E(B, c)

From this representation we can see that E(B, c) is the image of the linear map B1/2

shifted by c, i.e. E(B, c) = {B1/2y + c | y ∈ B(0, 1)}. We can also see that the
volume of this ellipsoid is

Voln(E(B, c))

Voln(B(0, 1))
=

n∏

i=1

√

λi = det(B1/2) =
√

det(B)

The idea behind the ellipsoid method is quite simple: say we have a target
polytope P ⊆ Rn and we know that it is contained in some large ellipsoid E0 =
E(A0, c0). Then we check whether c0 ∈ P — if yes, we are done. Otherwise, by
taking an inequality aTx ≤ b of P that is violated by c0 we learn that P is contained
in a half-ellipsoid E0 ∩H with H := {x ∈ Rn | aTx ≤ aT c0}. Then we can explicitly
compute an ellipsoid E1 that contains E0 ∩H but has a smaller volumne that E0.
Then we iterate.
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Ellipsoid method

Input: A ∈ Qm×n, b ∈ Qm and R > 0 so that P := {x ∈ Rn | Ax ≤ b} is
contained in B(0, R).
Output: Point x ∈ P .

(1) Set B0 := R2In, c0 := 0 so that E0 := E(B0, c0) = B(0, R).
(2) FOR k = 0 TO ∞

(3) If ck ∈ P THEN return ck
(4) Select an inequality aTk x ≤ βk from system Ax ≤ b with aTk ck > βk
(5) Set

dk :=
1

√

aTkBkak

Bkak

and update

ck+1 := ck −
1

n+ 1
dk, Bk+1 :=

n2

n2 − 1

(

Bk −
2

n+ 1
dkd

T
k

)

and Ek+1 := E(Bk+1, ck+1).

We note that the new ellipsoid Ek+1 is obtained by moving the center of Ek into
direction −ak, squeezing Ek in direction ak and slightly expanding it in directions
orthogonal to ak.

ck

P

Ek

aTk x ≤ aTk ck

aTk x ≤ bk
ak

ck

P

Ek+1

aTk x ≤ aTk ck

We will prove correctness of the ellipsoid method in form of the following theorem:

Theorem 11.2. Suppose P = {x ∈ Rn | Ax ≤ b} is contained in B(0, R) and P
contains some ball of radius r > 0. Then the ellipsoid method finds a point in P in
at most O(n2 log R

r ) many iterations.

It suffices to prove the following two properties:

(i) For all k ≥ 0 one has Ek+1 ⊇ Ek ∩ {x ∈ Rn | aTk x ≤ aTk ck}

(ii) For all k ≥ 0 one has Voln(Ek+1)
Voln(Ek)

≤ exp(− 1
2n+2).
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By (i) we have P ⊆ Ek for all k. Moreover, as P contains a radius r-ball, we know
that in each iteration k we have

rnVoln(B(0, 1)) = Voln(B(0, r))

≤ Voln(Ek)

(ii)

≤ exp
(

− k

2n+ 2

)

· Voln(E0)

= exp
(

− k

2n+ 2

)

·RnVoln(B(0, 1))

Rearranging gives

k ≤ n · (2n + 2) ln
(R

r

)

which establishes the upper bound on the number of iterations in Theorem 11.2.
It remains to prove (i) and (ii). We fix some iteration k. Note that applying

an affine linear transformation does not change the properties (i) and (ii). If we
transform the space so that Ek = B(0, 1) (i.e. Bk = In and ck = 0) and ‖ak‖2 = 1
then the update formula simplifies to

ck+1 = − 1

n+ 1
ak and Bk+1 =

n2

n2 − 1

(

In − 2

n+ 1
aka

T
k

)

This means that in direction ak we shrink the axis length to
√

n2

n2−1(1− 2
n+1) =

1 − 1
n ± O( 1

n2 ) while in directions orthogonal to ak we expand the axis length to
√

n2

n2−1 = 1 + 1
2n2 ± O( 1

n4 ). Note that one can prove that the update formula for

the ellipsoid are chosen so that Ek+1 is precisely the ellipsoid satisfying (i) that
minimizes the volume. That ellipsoid is also called the Löwner-John ellipsoid with
respect to the convex body Ek∩{x ∈ Rn | aTk x ≤ aTk ck}. However, in order to have a
cleaner proof we will instead analyze a different ellipsoid that is slightly larger along
the ak direction so that proving (i) is easier. Without loss of generality we may also
assume that ak = −e1, hence it suffices to proof the following standalone lemma:

Lemma 11.3. For n ≥ 2, define B ∈ Rn×n

B = diag
(( n

n+ 1

)2
,

n2

n2 − 1
, . . . ,

n2

n2 − 1
︸ ︷︷ ︸

n−1 entries

)

and c :=
1

n+ 1
e1

Then E0 := B(0, 1) and E1 := E(B, c) satisfy

(i) One has E1 ⊇ E0 ∩ {x ∈ Rn | x1 ≥ 0}

(ii) One has Voln(E1)
Voln(E0)

≤ exp(− 1
2n+2).
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E0 E1

0
c

e1

x1

Proof. First note that the ellipsoid E1 is of the form

E1 = {x ∈ Rn | (x− c)TB−1(x− c) ≤ 1}

=

{

x ∈ Rn |
(n+ 1

n

)2(

x1 −
1

n+ 1

)2
+

n2 − 1

n2

n∑

i=2

x2i ≤ 1

}

To show (i), we prove that for x ∈ Rn with ‖x‖2 ≤ 1 and x1 ≥ 0 one has x ∈ E1.
And indeed

(n+ 1

n

)2(

x1 −
1

n+ 1

)2
+

n2 − 1

n2

n∑

i=2

x2i

︸ ︷︷ ︸

≤1−x2
1

≤
((n+ 1

n

)2
− n2 − 1

n2

)

x21 − 2
1

n+ 1

(n+ 1

n

)2
x1 +

((n+ 1

n

)2 1

(n+ 1)2
+

n2 − 1

n2

)

=
2n+ 2

n2
· (x21 − x1)
︸ ︷︷ ︸

≤0

+1 ≤ 1

using that 0 ≤ x1 ≤ 1. To verify claim (ii) we estimate that

Voln(E1)

Voln(E0)
=

√

det(B) =

n∏

i=1

√

Bii

=
n

n+ 1
·
( n2

n2 − 1

)(n−1)/2
=

(

1− 1

n+ 1

)

·
(

1 +
1

n2 − 1

)(n−1)/2

≤ exp
(

− 1

n+ 1

)

· exp
( 1

n2 − 1
· n− 1

2

)

= exp
(

− 1

2(n+ 1)

)

Here we use that B is diagonal and the fact that 1 + y ≤ ey for all y ∈ R.
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11.1.1 Technical issues

If our goal is to solve any LP

max{cTx | Ax ≤ b} (11.1)

in time polynomial in the encoding length 〈A〉, 〈b〉 and 〈c〉 using the ellipsoid method,
then there are several technical issues to be resolved. In the following let P := {x ∈
Rn | Ax ≤ b}.

• Reduction from optimization to feasibility. There are two popular reductions.

(1) We can apply binary search to find the maximal value of β ∈ R so that
P ∩ {x ∈ Rn | cTx ≥ β} is feasible.

(2) We can combine the primal and the dual to the system

cTx = bT y, Ax ≤ b, AT y = c, y ≥ 0 (11.2)

Then any feasible solution to (11.2) must be an optimum solution to the
original LP in (11.1).

• Boundedness. The ellipsoid method is only defined for bounded polyhedra P .
But one can choose a large enough value M := 2poly(〈A〉,〈b〉) so that P 6= ∅ ⇔
P ∩ [−M,M ]n 6= ∅.

• Full-dimensionality. It may be that the polytope P is not full dimensional, and
so there is no positive radius ball contained in P in which case the ellipsoid
method might never terminate. Again, there are two strategies to solve this
issue:

(1) For ε > 0, let Pε := {x ∈ Rn | Ax ≤ b + ε1}. One can pick a value
ε := 2−poly(〈A〉,〈b〉) so that P 6= ∅ ⇔ Pε 6= ∅. In particular, for such a
choice of ε one can prove that a basis is feasible for P if and only if it is
feasible for Pε.

(2) There is a threshold δ := 2−poly(〈A〉,〈b〉) so that if Voln(Ek) ≤ δ, then one
can infer a hyperplane H that must contain all rational vectors in Ek that
have encoding length at most poly(〈A〉 , 〈b〉). In particular, P ⊆ H. Then
one can recurse. We cover this non-trivial argument later in Chapter 12.

• Rationality. The update formula

ck+1 := ck −
1

n+ 1

1
√

aTkBkak

Bkak

for the center contains a square root and in particular it is not true that the
numbers at every step of the ellipsoid method are rationals with polynomially
bounded encoding length. But one can choose the updated ellipsoid slightly
larger and then truncate all numbers after poly(〈A〉 , 〈b〉) many bits.
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We will not elaborate on these details and again refer to the book of Korte and
Vygen [KV12]. We summarize the exact statement that can be derived from the
ellipsoid method (or from the interior point method for that matter):

Theorem 11.4. Let A ∈ Qm×n, b ∈ Qm, c ∈ Qn. Then the LP max{cTx | Ax ≤ b}
can be solved in time polynomial in 〈A〉, 〈b〉 and 〈c〉 (or one can decide that the LP
is infeasible or unbounded).

11.1.2 The ellipsoid method with a separation oracle

Consider again a polytope P = {x ∈ Rn | Ax ≤ b} with A ∈ Qm×n and b ∈
Qm with B(c∗, r) ⊆ P ⊆ B(0, R) for some unknown point c∗ ∈ Rn and r ≤ R.
In Theorem 11.2 we have seen that the ellipsoid method takes O(n2 log R

r ) many
iterations to find a feasible point. That means the number of iterations does not
depend on the number m of inequalities. Instead of maintaining an explicit list of
all m inequalities in the system Ax ≤ b, it would suffice if in every iteration, the
algorithm could determine one inequality violated by the current center ck. This is
called the separation problem for P .

Separation Problem for polyhedron P ⊆ Rn

Input: Point y ∈ Qn

Goal: Find a a ∈ Qn with aT y > aTx ∀x ∈ P or assert y ∈ P .

y

a

P

Then running the ellipsoid method with a separation oracle and solving again all the
technical issues that we mentioned earlier gives the following:

Theorem 11.5. Let P = {x ∈ Rn | Ax ≤ b} be a polyhedron with A ∈ Qm×n, b ∈
Qm, and let c ∈ Qn be an objective function and let ϕ ≥ maxi=1,...,m{〈Ai〉+〈bi〉}+〈c〉.
Suppose one can solve the following problem in time poly(ϕ):

Separation problem. Given y ∈ Qn with encoding length poly(ϕ)
as input. Decide, whether y ∈ P . If not find an a ∈ Qn with aT y >
aTx ∀x ∈ P .

Then there is an algorithm that on input of (c, ϕ) yields in time poly(ϕ) either

• x∗ ∈ Qn attaining max{cTx | x ∈ P} (x∗ will be a vertex if P has vertices)

• P empty
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• Vectors x, y ∈ Qn with x+ λy ∈ P ∀λ ≥ 0 and cT y ≥ 1.

Note that the algorithm would need to know ϕ in order to construct the ini-
tial ellipsoid E0 containing P and in order to decide when to recurse on a lower
dimensional subspace.

11.2 Optimization vs. separation

As we have just seen, we can optimize a linear function cTx over a polyhedron
P as long as we can solve the separation problem for P . In this section, we will
prove that if we can optimize over P , then we can also solve the separation problem
for P . In other words, optimization and separation is equivalent from the point of
view of polynomial time algorithms. To some extend we will follow the very readable
exposition of Cook, Cunningham, Pulleyblank and Schrijver [CCPS98] and add some
details from [KV12].

We want to make this equivalence formal which requires some care. For the sake
of simplicity, we restrict our attention to the (more interesting) bounded case. We
will also talk about class of polytopes rather than a single polytope. We have set of
objects T and with every object t ∈ T we associate a rational polytope Pt ⊆ Rnt .
For example each object t ∈ T might be a (weighted) graph or a matrix or a flow
network etc. For each such object we write 〈t〉 as the encoding length. We need a
technical condition that is usually trivial to verify.

Definition 11.6. A class of polyhedra P = {Pt : t ∈ T } with Pt = {x ∈ Rnt |
A(t)x ≤ b(t)} is called proper if (A) each Pt is bounded and A(t) and b(t) are rational;
(B) there is a polynomial time algorithm that takes the object t ∈ T as input and

provides the dimension nt ∈ N and a number st ∈ N with st ≥
〈
A

(t)
i

〉
+

〈
bti
〉

for all
constraints i.

Then we want an algorithm that can optimize any linear function over a polyhe-
dron from that class P :

Optimization problem for class P = {Pt : t ∈ T }.
Input: t ∈ T and c ∈ Qnt

Goal: Find a point x∗ ∈ Pt attaining max{cTx | x ∈ Pt} or decide that Pt is
empty.

We can also formalize what it means to find a violated inequality for the class:

Separation problem for class P = {Pt : t ∈ T }.
Input: t ∈ T and z ∈ Qnt

Goal: Either decide correctly that z ∈ Pt or provide a vector a ∈ Qnt with
aTx < aT z for all x ∈ Pt.
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Before we come to the main theorem, we need to introduce a new concept. Note
that a convex body is a set K ⊆ Rn that is convex, compact (i.e. closed and bounded)
and fulldimensional.

Definition 11.7. For a convex body K ⊆ Rn, the polar is defined as

K◦ = {y ∈ Rn | yTx ≤ 1 ∀x ∈ K}

Intuitively, the polar is obtained by turning feasible points into valid inequalities
and vice versa. We write int(K) := {x ∈ Rn | ∃ε > 0 : B(x, ε) ⊆ K} as the interior
of K. One can show the following properties:

Proposition 11.8. Let P ⊆ Rn be a polytope with 0 ∈ int(P ). Then:

(A) P ◦ is a polytope with 0 ∈ int(P )

(B) (P ◦)◦ = P

(C) a is a vertex of P ⇔ aTx ≤ 1 is a facet-defining inequality for P ◦.

Note that similar statements can be shown for general convex bodies.

〈a, x〉 ≤ 1

0

P

P ◦

a

1
‖a‖2

Theorem 11.9 (Equivalence of Optimization and Separation — Grötschel, Lovasz,
Schrijver [GLS88]). Let P = {Pt : t ∈ T } be a proper class of polyhedra. Then
the optimization problem for P is solvable in polynomial time if and only if the
separation problem for P is solvable in polynomial time.

Proof. To keep the argument simple, we assume that the polyhedra Pt are full di-
mensional with 0 ∈ Pt and the inequalities are normalized so that Pt = {x ∈ Rnt |
aTx ≤ 1 ∀a ∈ At}. We show both directions separately.

(I) Separation ⇒ Optimization. This is exactly the task done by the ellipsoid
method as stated in Theorem 11.5.
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(II) Optimization ⇒ Separation. Suppose we are given a point z ∈ Qn for which
have to find a violated constraint, that means a vector a ∈ At with aT z > 1
(if there is any). Consider the polar of Pt which is

P ◦
t =

{
y ∈ Rnt : yTx ≤ 1 ∀x ∈ Pt

}

Observe that for the separation problem for P ◦
t one is given a y∗ and has to

determine whether there is an x ∈ Pt with xT y∗ > 1. But that is exactly the
optimization problem for Pt for which we have a polynomial time algorithm
by assumption. Then by (I), we can solve the optimization problem for P ◦

t in
polynomial time using the ellipsoid method. By Proposition 11.8.(B) we know
that (P ◦

t )
◦ = Pt. Applying (I) with reversed roles, the optimization oracle for

P ◦
t implies we can solve the separation problem for (P ◦

t )
◦ = Pt. That concludes

the claim.

AAAAAAA
A

AAAAAAA
A

AAAAAAA
A

AAAAAAA
A

ellipsoid method

optimization
over Pt

separation
for P ◦

t

optimization
over P ◦

t

separation
for Pt

Overview over the
optimization ⇒ separation direction



Chapter 12

The Frank-Tardos Algorithm*

There are two popular computational models:

• The Turing machine model where the alphabet has constant size and one op-
eration manipulates one symbol on a tape.

• The Random access machine (RAM) where one memory slot can store any
integer or rational number and we can add / multiply / divide in one operation.

If the input consists of vector a ∈ Qn, then the input length in the Turing machine
model is the encoding length 〈a〉 and in the RAM model it is the number of objects
n. We say that an algorithm that takes a ∈ Qn as input has strongly polynomial
time if its running time is poly(〈a〉) if counted in the Turing machine model and
poly(n) if counted in the RAM model. Here we use the same notation 〈a〉 that we
introduced in Chapter 11. For example, the algorithm by Tardos for minimum cost
circulation (see Section 6.6) is strongly polynomial while the interior point method
(Section 8) is only weakly polynomial, i.e. to solve an LP max{cTx | Ax ≤ b} it
takes poly(〈A〉 , 〈b〉 , 〈c〉) iterations in both the Turing machine model and the RAM
model. In this chapter, we want to provide a useful tool for turning some weakly
polynomial time algorithms into strongly polynomial ones. During this chapter we
will say that on input of a ∈ Qn, an algorithm runs in at most poly(n) many RAM
operations where we implicitly mean that also the intermediate numbers have an
encoding length of at most poly(〈a〉)1.

For z ∈ R we set

sign(z) :=







1 if z > 0

0 if z = 0

−1 if z < 0

The central result of this chapter will be:

1This technicality is needed. For example it is possible to solve the NP-hard Knapsack problem
in poly(n) many RAM operations if arbitrary intermediate numbers are allowed.

143



144 CHAPTER 12. THE FRANK-TARDOS ALGORITHM*

Theorem 12.1 (Frank, Tardos [FT87]). Given a vector w ∈ Qn and N ∈ N, one
can compute a vector w̃ ∈ Zn with ‖w̃‖∞ ≤ 2O(n3)NO(n2) so that

sign(wTx) = sign(w̃Tx) ∀x ∈ {−N, . . . ,N}n

The number of RAM operations is bounded by a polynomial in n and log(N).

Intuitively this means that if we have any optimization problem where the solu-
tions are contained in {−N, . . . ,N}n, then we can replace a linear objective function
x 7→ wTx by another one x 7→ w̃Tx so that the set of optimum solutions does
not change. Then the encoding length of the objective vector as been reduced to
〈w̃〉 ≤ poly(n, log(N)).

b

b

b

b

b

b

b

b

b

0 w

w̃

x
b

12.1 Simultaneuous Diophantine Approximation

The most important ingredient for our algorithm is a consequence of the celebrated
LLL-algorithm by Lenstra, Lenstra and Lovász [LLL82] to efficiently find a simul-
tanuous diophantine approximation to a rational vector. First, recall Minkowski’s
Theorem which is usually stated as the fact that any symmetric convex body K ⊆ Rn

with Voln(K) ≥ 2n must have K ∩ (Zn \ {0}) 6= ∅. It will be convinient for us to
restate a lattice variant:

Theorem 12.2 (Lattice variant of Minkowski’s First Theorem). Let B ∈ Rn×n be
a full rank matrix. Then there exists an x ∈ Zn \{0} so that ‖Bx‖∞ ≤ |det(B)|1/n.

Minkowski’s result is based on the pigeonhole principle and does not provide an
algorithm for finding the vector x. However, the lattice basis reduction algorithm
by Lenstra, Lenstra and Lovász (also called the LLL-algorithm) can be used to find
a 2n-approximation to the shortest vector in a lattice. In our case this gives the
following:

Theorem 12.3 (LLL algorithm [LLL82]). Let B ∈ Qn×n be a full rank matrix. Then
in time poly(〈B〉) one can find an x ∈ Zn \ {0} so that ‖Bx‖∞ ≤ 2n−1 · |det(B)|1/n.

Now to our application to find good rational approximations:
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Theorem 12.4. Given α ∈ [−1, 1]n and N ∈ N, there is an algorithm to find integers
p1, . . . , pn, q ∈ Z so that q ∈ {1, . . . , 22n2

Nn} so that

|qαi − pi| ≤
1

N
∀i ∈ [n]

The number of RAM operations is bounded by a polynomial in n and log(N).

Note that the condition means that the numbers αi are approximated by a ratio-
nal number pi

q with common denominator up to an error of 1
qN . This is a lot better

than just picking any q and rounding each αi to the nearest multiple of 1
q .

Proof of Theorem 12.4. For some parameter Q > 0 that we determine later, consider
the (n+ 1)× (n+ 1) matrix

B =










1 0 . . . 0 −α1

0 1 . . . 0 −α2
...

...
. . .

...
0 0 . . . 1 −αn

0 0 . . . 0 1
Qn+1










We note that det(B) = 1
Qn+1 and hence by Minkowski’s Theorem (Theorem 12.2)

there is a nonzero integer vector x = (p1, . . . , pn, q) with ‖Bx‖∞ ≤ 1
Q . However,

instead we use the constructive version from Theorem 12.3 and compute an x =
(p1, . . . , pn, q) with ‖Bx‖∞ ≤ 2n

Q in polynomial time. By symmetry we may assume
that q ≥ 0. Writing out the properties we see that

|pi − αiq| ≤
2n

Q
∀i = 1, . . . , n and |q| ≤ 2nQn

Setting Q := 2nN then gives the claim (also note that q = 0 is impossible). However
there is one small technicality: the way we stated the argument, the running time
would depend on 〈α〉. But we can first truncate αi’s after poly(n, log(N)) bites
before applying the LLL algorithm and absorb the made error into the slack that we
have.

12.2 Warmup

To warm up, we want to prove the following:

Lemma 12.5. Let w ∈ Qn and N ∈ N. Then there is an algorithm to find w̃ ∈ Zn

with ‖w̃‖∞ ≤ 23n
2
Nn in poly(n, log(N)) many RAM operations so that

∀x ∈ {−N, . . . ,N}n : sign(w̃Tx) 6= 0 =⇒
(
sign(wTx) = sign(w̃Tx)

)
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Proof. We may scale w so that ‖w‖∞ = 1. Applying Theorem 12.4 with w and
parameter N ′ := 2nN , we can obtain a q ∈ N with q ≤ 22n

2
(2nN)n ≤ 23n

2
Nn and

w̃ ∈ Zn so that |qwi− w̃i| ≤ 1
2nN for all i = 1, . . . , n. Fix an x ∈ {−N, . . . ,N}n with

sign(w̃Tx) 6= 0. For symmetry reasons suppose w̃Tx ≥ 1. Then

|(qw − w̃)Tx| ≤
n∑

i=1

|qwi − w̃i|
︸ ︷︷ ︸

≤ 1
2nN

· ‖x‖∞
︸ ︷︷ ︸

≤N

≤ 1

2

and so qwTx ≥ w̃Tx− 1
2 ≥ 1

2 , i.e. sign(wTx) = sign(w̃Tx).

Note that if w̃Tx = 0, then we cannot say anything about the sign of wTx. On
the other hand, there must be some coordinate where ‖w‖∞ = 1 is attained — say
|w1| = 1. Then |qw1 − w̃1| ≤ 1

2nN < 1. Hence qw1 − w̃1 = 0. So one could iterate
and approximate w − w̃

q which is a lot shorter than the original vector w and also
has support at most n− 1.

0

w̃

w

x

·

[−1, 1]n

12.3 The main proof

Now, we want to extend Lemma 12.5 to an iterative argument.

Lemma 12.6. Let w ∈ Qn and N ∈ N. There is an algorithm that in time
poly(n, log(N)) computes vectors v1, . . . , vk ∈ Zn and coefficients λ1, . . . λk > 0
with k ≤ n so that

(i) w =
∑k

i=1 λivi

(ii) ‖vi‖∞ ≤ 22n
2
Nn for all i ≥ 1.

(iii) λi

λi−1
≤ 1

N‖vi‖∞ for all i ≥ 2.

(iv) ‖w‖∞ = ‖λ1v1‖∞
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Proof. The claim is invariant under scaling w, hence we may assume that ‖w‖∞ = 1.
We apply Theorem 12.4 to w and parameter N and obtain a vector v1 ∈ Zn and q1 ∈
{1, . . . , 22n2

Nn} so that ‖q1w−v1‖∞ ≤ 1
N . Note that in particular ‖v1‖∞ ≤ 22n

2
Nn.

We set λ1 := ‖w‖∞
q1

= 1
q1

. Similar as before, |supp(w − λ1v1)| = |supp(q1w − v1)| ≤
n − 1. Also note that ‖w‖∞ = ‖v1

q1
‖∞ = ‖λ1v1‖∞ which gives (iv). We apply

induction (over the support of the vector) to the remainder w − λ1v1 and obtain
v2, . . . , vk ∈ Zn and λ2, . . . , λk > 0 so that

(i′) w − λ1v1 =

k∑

i=2

λivi (ii′) ‖vi‖∞ ≤ 22n
2
Nn ∀i ≥ 2

(iii′)
λi

λi−1
≤ 1

N‖vi‖∞
∀i ≥ 3 (iv′) ‖w − λ1v1‖∞ = ‖λ2v2‖∞

We note that (i′) can be rearranged to w =
∑k

i=1 λivi which gives (i). Combining
(ii′) and the choice of v1 gives (ii). Finally to complete (iii), we note that

λ2

λ1

(iv′) & λ1=
1
q1=

1

‖v2‖∞
q1‖w − λ1v1‖∞
︸ ︷︷ ︸

≤1/N

≤ 1

N‖v2‖∞

Now we can finish the proof of the main result.

Theorem 12.1. We are given a vector w ∈ Qn and a parameter N ∈ N. Apply
Lemma 12.6 with vector w and parameter N ′ := 4nN . Let v1, . . . , vk ∈ Zn and
λ1, . . . , λk > 0 be the obtained vectors and coefficients with ‖vi‖∞ ≤ 22n

2
(N ′)n ≤

23n
3
Nn. We set M := 4 · 24n2

Nn+1 and set

w̃ :=

k∑

i=1

Mk−ivi

Note that w̃ ∈ Zn and ‖w̃‖∞ ≤ ∑k
i=1 M

k−i‖vi‖∞ ≤ 2Mk22n
2
(N ′)n ≤ 2O(n3)NO(n2)

as claimed. Next fix an x ∈ {−N, . . . ,N}n; our goal is to prove that sign(wTx) =
sign(w̃Tx). First consider the case that vT1 x = . . . = vTk x = 0. Then wTx =
∑k

i=1 λiv
T
i x = 0 and w̃Tx =

∑k
i=1M

k−ivTi x = 0 and hence sign(wTx) = sign(w̃Tx)
is satisfied. It remains to analyze the case where vTi x 6= 0 for at least one index. In
that case, the least such index will determine the sign.
Claim I. Suppose there is an index j ∈ {1, . . . , k} with vT1 x = . . . = vTj−1x = 0 and

vTj x 6= 0. Then sign(wTx) = sign(vTj x).

Proof of Claim I. Assume w.l.o.g. that vTj x ≥ 1. Then

wTx ≥
j−1
∑

i=1

λi v
T
i x

︸︷︷︸

=0

+λj v
T
j x

︸︷︷︸

≥1

−n
k∑

i=j+1

λi‖vi‖∞
︸ ︷︷ ︸

≤λi−1/(4nN)

‖x‖∞
︸ ︷︷ ︸

≤N

≥ λj−
1

4
(λj + . . . + λk)
︸ ︷︷ ︸

≤2λj

> 0
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Now back to the main statement. Suppose that vT1 x = . . . = vTj−1x = 0 and
vTj x ≥ 1. Then

w̃Tx =

k∑

i=1

Mk−ivTi x

≥ Mk−j vTj x
︸︷︷︸

≥1

−
k∑

i=j+1

Mk−i · n · ‖vi‖∞
︸ ︷︷ ︸

≤23n3Nn

· ‖x‖∞
︸ ︷︷ ︸

≤N

≥ Mk−j − 24n
2
Nn+1

( k∑

i=j+1

Mk−i
)

︸ ︷︷ ︸

≤2Mk−(j+1)

≥ Mk−j − 2 · 24n2
Nn+1Mk−(j+1) > 0

as M = 4 ·24n2
Nn+1. Hence sign(w̃Tx) = sign(vTj x) = sign(wTx) using Claim I.

12.4 Applications

Finally, we discuss a few applications. First, we can turn any binary weakly polyno-
mial optimization problem into a strongly polynomial one.

Theorem 12.7. Let F ⊆ {0, 1}n. If there is a weakly polynomial time algorithm
for max{cTx | x ∈ F}, then there is also a strongly polynomial time algorithm for
the same problem.

Proof. We use Theorem 12.1 to replace the vector c ∈ Qn in poly(n) arithmetic
operations by a vector c̃ ∈ Zn with ‖c̃‖∞ ≤ 2O(n3) so that sign(cTx) = sign(c̃Tx) for
all x ∈ {−1, 0, 1}n. Then every solution x ∈ F that is optimal for c̃ is also optimal
for c. Hence we can run the weakly polynomial time algorithm on objective function
c̃ with takes time poly(n) since 〈c̃〉 ≤ poly(n).

Theorem 12.8. Given A ∈ Qm×n, b ∈ Qm and c ∈ Qn. Then one can solve the LP
max{cTx | Ax ≤ b} in poly(〈A〉 , 〈b〉) many RAM operations.

Proof. For the sake of simplicity assume the LP is feasible and bounded. Let
P = {x ∈ Rn | Ax ≤ b}. There is some M > 0 with ‖M‖∞ ≤ poly(〈A〉 , 〈b〉)
so that Q := P ∩ [−M,M ]n contains an optimum solution. Next, one can choose
N ≤ poly(〈A〉 , 〈b〉) so that all extreme points of N · Q are integral. Then apply
Theorem 12.1 with vector c and parameter MN and obtain an approximation c̃.
Then solve the LP max{c̃Tx | x ∈ N ·Q}.

We can extend this to the LP feasibility problem and drop the dependence on
〈b〉:
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Theorem 12.9. Let A ∈ Qm×n and b ∈ Qm and set P := {x ∈ Rn | Ax ≤ b}. Then
one can compute a point x∗ ∈ P in RAM-time poly(〈A〉) or decide that P = ∅.

Proof. First we show that we can test whether P 6= ∅ in time polynomial in 〈A〉.
And in fact, by the Farkas Lemma (Prop 3.22.(I)) we have

P 6= ∅ ⇐⇒ min{bT y | AT y = 0, y ≥ 0} = 0

and the right hand side can be evaluated in time poly(〈A〉) using Theorem 12.8.
Now assume P 6= ∅. In order to actually find a feasible point, we define

P (I, J) :=
{
x ∈ Rn | Ax ≤ b and Aix = bi ∀i ∈ I, xj = 0 ∀j ∈ J

}

for index sets I ⊆ [m] and J ⊆ [n]. Then using the above test repeatedly on
P (I, J) we can compute an inclusion-wise maximum pair (I∗, J∗) so that P (I∗, J∗) 6=
∅. Then there will be a unique solution x to system of linear equations Aix =
bi ∀i ∈ I∗, xj = 0 ∀j ∈ J∗ and that solution can be computed using Gaussian
elimination.

It is indeed possible to solve any LP max{cTx | Ax ≤ b} in time poly(〈A〉), that
means without any dependence on b and c. This was proven by Tardos [Tar86]. On
the other hand, whether any LP can be solved in strongly polynomial time is still a
major open problem.
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Chapter 13

Submodular functions*

Numerous optimization problems from machine learning over approximation algo-
rithms to combinatorial optimization share a diminishing returns property. Instead
of problem-specific approaches one can capture many such problems with the frame-
work of submodular functions. We already mentioned submodular functions briefly
in Chapter 9, however this chapter is written so that it can be read independently
of Chapter 9.

13.1 Introduction

The key definition is as follows:

Definition 13.1. Let X be a finite set. A function f : 2X → R is called submodular
if

f(A ∪ {j}) − f(A) ≥ f(B ∪ {j}) − f(B) ∀A ⊆ B ⊆ X ∀j ∈ X \B

In other words: a set function is submodular if adding a new element j to a
smaller set A causes greater (or equal) increase than adding it to a larger set B.
Before we discuss concrete examples, we want to elaborate that there are several
equivalent definitions:

Lemma 13.2 (Equivalent Characterizations Submodularity). Let f : 2X → R.
Then the following is equivalent

(I) One has f(A∪ {j})− f(A) ≥ f(B ∪ {j})− f(B) ∀A ⊆ B ⊆ X ∀j ∈ X \B
(II) One has f(A) + f(B) ≥ f(A ∩B) + f(A ∪B) ∀A,B ⊆ X

Additional desirable properties or subclasses of submodular functions are:

• Non-negativity, i.e. f(S) ≥ 0 ∀S ⊆ X
• Monotonicity, i.e. f(A) ≤ f(B) ∀A ⊆ B ⊆ X
• Symmetry, i.e. f(S) = f([n] \ S) ∀S ⊆ X

151
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We want to give a few examples of submodular functions.

• Coverage functions. Let S1, . . . , Sn ⊆ U be a set family over a ground set U .
Then the number of covered elements given by f(I) := |⋃i∈I Si| is a monotone
submodular function.

• Cut functions in graphs. Let G = (V,E) be an undirected graph with edge
weights w : E → R≥0. Then the function f(S) := w(δ(S)) =

∑

{i,j}∈E:|{i,j}∩S|=1w(i, j)
giving the value of the cut S is a symmetric submodular function (though it is
not monotone!). Similar for directed graphs D = (V,A), the value w(δ+(S))
of a directed cut is submodular (though neither symmetric nor monotone).

• Matroid rank functions. As we already showed in Section 9.4, for any ma-
troid M = (X, I), the rank function rM : 2X → Z≥0 is monotone submodular.

• Log determinant function. Let A ∈ Rn×n be symmetric and positive defi-
nite matrix. For S ⊆ [n] we denote AS,S as the |S| × |S| principal submatrix
with rows and columns from S. Then using Ky Fan’s inequality one can show
that the function f(S) := ln(det|S|(AS,S)) is submodular.

The two main results that we want to prove in the remainder of this chapter are:

(i) For the problem of maximizing a monotone submodular function subject to
a cardinality constraint one can find a (1 − 1

e )-approximate solution using a
simple greedy algorithm,

(ii) One can minimize any submodular function in polynomial time.

For both algorithms it suffices to have oracle access to the function f , that means
the algorithms only need to be able to evaluate the function value f(S) for any given
set S. Note that the standard algorithm to find a minimum cut in a graph is not
quite trivial. One consequence of (ii) is that one find a minimum cut in a graph in
polynomial time without knowing the graph, as long as we can determine the values
of the cuts.

13.2 Maximizing a monotone submodular functions with

a cardinality constraint

In this section, we study the following problem

Monotone Submodular Function Maximization

Input: A non-negative monotone submodular function f : X → R≥0 and a
parameter k ∈ N.
Goal: Solve max{f(S) : S ⊆ X and |S| ≤ k}.
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Without the cardinality constraint |S| ≤ k, the optimum would simply be attained by
S = X. Note that this problem already captures the maximum set coverage problem
max{|⋃i∈I Si| : |I| ≤ k} which is known to be NP-hard to approximate within a
factor of 1− 1

e−ε for any ε > 0. On the positive side, we will see that a simple greedy
algorithm can already achieve this constant. We denote f(A | B) := f(A∪B)−f(A)
as the marginal increase when adding A to B. In particular for single elements i ∈ X
we will write f(i | A) = f(A ∪ {i}) − f(A).

The Submodular Greedy Algorithm
Input: A monotone submodular function f : 2X → R≥0 and k ∈ Z≥0

Output: A set (1− 1
e )-approximation to max{f(S) | |S| = k}.

(1) Set S0 := ∅
(2) FOR i = 1 TO k DO

(3) Let xi ∈ X \ Si−1 be the element maximizing f(xi | Si−1)
(4) Set Si := Si−1 ∪ {xi}

(5) Return Sk

The analysis is due to Nemhauser while in the exposition we follow the survey
of Buchbinder and Feldman[BF18]. A useful inequality is the following:

Lemma 13.3. Let f : 2X → R be a submodular function. Then for any A,B ⊆ X
one has

∑

i∈B f(i | A) ≥ f(B | A).

Proof. W.l.o.g. suppose B = {1, . . . , k}. Then

f(B | A) =
k∑

i=1

f(i | A ∪ {1, . . . , i− 1})
f submod.

≤
k∑

i=1

f(i | A).

Now we can analyze the algorithm:

Theorem 13.4 (Nemhauser, Wolsey, Fisher [NWF78]). The greedy algorithm gives
a (1− 1

e )-approximation for maximizing a non-negative monotone submodular func-
tion subject to a cardinality constraint.

Proof. Let S∗ := argmax{f(S) | S ⊆ X, |S| = k} be the optimum solution. We will
prove that f(Sk) ≥ (1 − 1

e )f(S
∗) where Sk is the last iterate in the algorithm. Let

i ∈ {1, . . . , k}. The crucial argument is that the marginal increase f(xi | Si−1) is at
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least as large as if we were adding an average element from S∗. More precisely,

f(Si)− f(Si−1) = f(xi | Si−1)

≥ E
x∼S∗

[
f(x | Si−1)

]

f subm.+Lem 13.3

≥ 1

k

(
f(S∗ ∪ Si−1)− f(Si−1)

)

f monotone

≥ 1

k

(
f(S∗)− f(Si−1)

)

In other words, in every iteration we close at least a 1
k -fraction of the remaining gap

to the optimum value. This can be rearranged to

f(S∗)− f(Si) ≤
(

1− 1

k

)

· (f(S∗)− f(Si−1)).

Iterating this inequality k times gives

f(S∗)− f(Sk) ≤
(

1− 1

k

)k

︸ ︷︷ ︸

≤1/e

·
(
f(S∗)− f(S0)

︸ ︷︷ ︸

≥0

)
≤ 1

e
· f(S∗)

which means that f(Sk) ≥ (1− 1
e ) · f(S∗) as claimed.

We would also like to note that the greedy algorithm makes at most nk queries
to the function f .

13.3 Polymatroids

In order to design a polynomial time algorithm to minimize any submodular function
we need to take a detour and discuss a polyhedral generalization of matroids first.
Our exposition will follow Chapter 44 of Schrijver [Sch03]. For a vector x ∈ RX and
S ⊆ X we use as before the notation x(S) :=

∑

i∈S xi.

Definition 13.5. For a submodular function f : 2X → R we define the polymatroid
associated with f as

Pf :=
{
x ∈ RX

≥0 | x(S) ≤ f(S) ∀S ⊆ X
}

The extended polymatroid is

EPf :=
{
x ∈ RX | x(S) ≤ f(S) ∀S ⊆ X

}

The base polytope of f is

Bf := EPf ∩
{
x ∈ Rn | x(X) = f(X)

}
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Here is an example in dimension X = {1, 2}:

x2

x1

x1 ≤ f({1})

x2 ≤ f({2})

x1 + x2 ≤ f({1, 2})

Pf EPf

x2

x1

x2

x1

Bf

For example, for a matroid M = (X, I), the matroid independence polytope P (I)
(see Sec 9.3) is identical to the polymatroid PrM associated with the rank function
of the matroid. Moreover we have conv{1S : S ⊆ X is basis of M} = BrM .

In order to obtain some more intuition about the geometry of polymatroids, we
will show that the inequalities inducing a face of the polyhedron EPf come from
sets S that are closed under union and intersection:

Lemma 13.6. Let x ∈ EPf where f : 2X → R is submodular. Then the family of
sets F := {S ⊆ X | x(S) = f(S)} is closed under taking unions and intersections.

Proof. We fix x ∈ EPf and consider the function g(S) := f(S) − ∑

i∈S xi. This
is again a submodular function and g(S) gives the slack that the point x has with
respect to the inequality induced by S. Then g(S) ≥ 0 for all S ⊆ X and g(S) = 0
for all S ∈ F . Now consider A,B ∈ F . Then

0 ≤ g(A ∪B)
︸ ︷︷ ︸

≥0

+ g(A ∩B)
︸ ︷︷ ︸

≥0

subm.

≤ g(A)
︸︷︷︸

=0

+ g(B)
︸ ︷︷ ︸

=0

A,B∈F
= 0

Hence all inequalities have to be equalities and so A ∪B,A ∩B ∈ F .

As a side remark, the proof also shows the following:

Corollary 13.7. Let f : 2X → R be a submodular function and let F be the family
of minimizers of f . Then F is closed under taking unions and intersections.

Note that the same claim is in general false for the set of maximizers.
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13.4 The Polymatroid Greedy algorithm

Next, we want to find a polynomial time algorithm to optimize a non-negative ob-
jective function c ∈ RX

≥0 over the extended polymatroid EPf . In order to develop
some intuition, let us first revisit the matroid greedy algorithm from Chapter 2.2.
Clearly, that algorithm uses the notion of independent sets which does not exist for
polymatroids, so we first develop a different view on the matroid greedy algorithm.

13.4.1 Another look at the Matroid Greedy algorithm

Consider a matroid M = ([n], I) and a objective function vector c ∈ Rn with the
indices sorted so that c1 ≥ c2 ≥ . . . ≥ cn. Recall that the matroid greedy algorithm
goes through the elements 1, . . . , n in this order and picks elements if the current
set remains independent. In each iteration i the greedy algorithm maintains a basis
of {1, . . . , i} and so we know that if rM ({1, . . . , i}) = rM ({1, . . . , i − 1}) + 1, then
we select the ith element into the independent set and otherwise — that means if
rM ({1, . . . , i}) = rM ({1, . . . , i−1}) — then we would not pick the ith element. Then
the matroid greedy algorithm could be equivalently described as follows:

Matroid Greedy algorithm

Input: Matroid M = ([n], I) and c ∈ Rn.
Output: x∗ = argmax{cTx | x ∈ P (I)}

(1) Set x∗ := 0
(2) Sort indices so that c1 ≥ c2 ≥ . . . ≥ cn ≥ 0
(3) FOR i = 1 TO n DO

(4) Set xi := rM ({1, . . . , i}) − rM ({1, . . . , i− 1})
(5) Return x∗

From our previous analysis it then follows that the computed vector x∗ is the char-
acteristic vector of an optimum independent set and hence also optimum solution to
max{cTx | x ∈ P (I)}. The above algorithm does not rely on the notion of indepen-
dent sets but just on the rank function. Moreover — at least syntactically — the
algorithm appears to make sense also without the special properties of the rank func-
tion such as integrality, monotonicity and the fact that rM (S∪{i})−rM (S) ∈ {0, 1}.

13.4.2 The Greedy algorithm for extended polymatroids

Now we want to extend these ideas for a more general problem:

Extended Polymatroid Optimization

Input: A submodular function f : 2[n] → R and an objective c ∈ Rn.
Goal: Solve max{cTx | x ∈ EPf}.
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For an algorithm that solves the extended polymatroid optimization problem, we
can make 3 simplifying assumptions:

• Assumption I. One has f : 2[n] → R≥0. Reason is that if f is not non-negative,
then EPf = ∅ and the problem is infeasible.

• Assumption II. One has f(∅) = 0. Note that if f is non-negative and f(∅) >
0, then one can set f(∅) := 0 without changing EPf and while keeping f
submodular.

• Assumption III. One has c ∈ Rn
≥0. Easy to see that if c is not non-negative,

then the problem is unbounded.

Then inspired by the matroid greedy algorithm, we suggest the following generaliza-
tion

Greedy algorithm for Extended Polymatroids
Input: Submodular function f : 2[n] → R with f(∅) = 0 and c ∈ Rn

≥0.
Output: x∗ = argmax{cTx | x ∈ EPf}

(1) Set x∗ := 0
(2) Sort indices so that c1 ≥ c2 ≥ . . . ≥ cn ≥ 0
(3) FOR i = 1 TO n DO

(4) Set x∗i := f({1, . . . , i})− f({1, . . . , i− 1}).

Note that we do not make the assumption that f is monotone, so if one thinks of the
computed point x∗ as a sequence of iterates, then it is not true that all the iterates
are in EPf . This is different from the matroid greedy algorithm where we always
maintain an independent set:

EPf

x2

x1

c
f(∅) = 0

f({1}) = 2
f({2}) = 2

f({1, 2}) = 1

x∗

On the other hand, if f is monotone, then clearly x∗ ≥ 0 and automatically
x∗ ∈ Pf ⊆ EPf .
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x2

x1

Pf

c

x∗

Visualization of polymatroid greedy
algorithm if f is monotone

13.4.3 Correctness of the Polymatroid Greedy Algorithm

It remains to prove that the Polymatroid Greedy Algorithm indeed computes an
optimum solution. First we verify that the computed solution is feasible.

Lemma 13.8. The point x∗ computed in the Polymatroid Greedy Algorithm is in
EPf .

Proof. Assume again that c1 ≥ . . . ≥ cn ≥ 0. Let us denote Pi := {x ∈ Rn | x(S) ≤
f(S) ∀S ⊆ {1, . . . , i}}. Then by induction over i we can prove that x∗ ∈ Pi. The
base case is true as x∗ ∈ Rn = P0. Now suppose x∗ ∈ Pi−1 and for S ⊆ {1, . . . , i}
with i ∈ S we want to prove that also x∗(S) ≤ f(S). And indeed,

x∗(S) = x∗(S \ {i}) + x∗i
induction

≤ f(S \ {i}) + x∗i
choice x∗

i= f(S \ {i}
︸ ︷︷ ︸

S∩[i−i]

) + f( [i]
︸︷︷︸

S∪[i−1]

)− f([i− 1])

f subm.

≤ f(S)

It remains to prove optimality of the Polymatroid Greedy Algorithm which will
be do using LP duality. One can easily verify that the following is a pair of primal
and dual LPs, see Theorem 3.26:

(Primal(f, c))

max
∑n

i=1 cixi
∑

i∈S xi ≤ f(S) ∀S ⊆ [n]

(Dual(f, c))

min
∑

S⊆[n] f(S)yS
∑

S⊆[n] yS1S = c ∀S ⊆ [n]

yS ≥ 0 ∀S ⊆ [n]

Note that (Primal(f, c)) is precisely the polymatroid optimization problem. In
order to show that the polymatroid greedy algorithm finds an optimum solution to
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(Primal(f, c)) we will provide a solution to (Dual(f, c)) that has the same objective
function value.

For a vector c1 ≥ . . . ≥ cn, the greedy algorithm constructs a solution x∗ where
the constraints x∗([i]) ≤ f([i]) seem to be the only relevant constraints — then it is
natural to suspect that there is an optimum dual solution that puts positive weight
only on the dual variables that correspond to those constraints.

Lemma 13.9. Let f : 2[n] → R be submodular with f(∅) = 0 and let c ∈ Rn
≥0

with c1 ≥ . . . ≥ cn. Then the following pair (x∗, y∗) are optimum solutions to
(Primal(f, c)) and (Dual(f, c)):

x∗i := f([i])− f([i− 1]) ∀i ∈ [n]
y∗[i] := ci − ci+1,

y∗[n] = cn,

y∗S := 0 otherwise

Proof. We have already proven that x∗ ∈ EPf meaning that x∗ is feasible for
(Primal(f, c)). Next, clearly y∗ ≥ 0 and moreover

∑

S⊆[n] y
∗
S1S =

∑n
i=1 y

∗
[i]1[i] =

∑n−1
i=1 (ci− ci+1)ei+ cnen = c. Hence y∗ is feasible for (Dual(f, c)). Then it remains

to verify that the objective function values coincide. And indeed

cTx∗ =

n∑

i=1

ci
(
f([i])− f([i− 1])

)
=

n−1∑

i=1

f([i]) · (ci − ci+1) + f([n])cn =
∑

S⊆[n]

f(S)y∗S

Overall, this implies that the greedy algorithm finds an optimum solution. We
summarize:

Theorem 13.10 (Edmonds [Edm70]). Let c ∈ Rn and let f : 2[n] → R be submod-
ular. Then one can find an optimum for max{cTx | x ∈ EPf} in polynomial time.
The only access to f are O(n) many value oracle calls.

13.4.4 Consequences

We want to briefly discuss a few immediate consequences of the polymatroid greedy
algorithm. First, it seems a bit odd that the greedy algorithm optimizes over the
unbounded object EPf instead of over Pf . But we can obtain the following:

Theorem 13.11. Let f : 2X → R be submodular and let c ∈ RX . Then one can
solve the problem max{cTx | x ∈ Pf} in polynomial time. The only access to f is
through a polynomial number of oracle calls.

Proof. By Theorem 13.10 and the equivalence of optimization and separation from
Theorem 11.9, we can solve the separation problem for EPf in polynomial time. Since
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Pf = EPf ∩ RX
≥0 we can also separate in polynomial time over Pf . Again using the

equivalence of optimization and separation we can then optimize any linear function
over Pf in polynomial time.

We can also draw some consequences if the submodular function is integral:

Lemma 13.12. Let f : 2X → Z be submodular. Then EPf is an integral polyhe-
dron.

Proof. Suppose again that X = {1, . . . , n}. It suffices to show that for any objective
function c ∈ Rn the LP max{cTx : x ∈ EPf} is either unbounded or has an integral
optimum solution. Assume c ∈ Rn

≥0 since otherwise the LP is unbounded. Then the
polymatroid greedy algorithm computes an optimum solution x∗ whose coordinates
are of the form x∗i = f({π(1), . . . , π(i)})− f({π(1), . . . , π(i−1)}) ∈ Z where π is the
permutation with cπ(1) ≥ . . . ≥ cπ(n) ≥ 0.

13.5 Polynomial time minimization of submodular func-

tions

Next, we want to show how one can use the polymatroid greedy algorithm to min-
imize an arbitrary submodular function f . Note that it is far from obvious how
that would work as function f merely appears as right hand sides of the extended
polymatroid EPf .

Submodular Function Minimization

Input: A submodular function f : 2X → R.
Goal: Solve min{f(S) | S ⊆ X}.

First, we translate f so that1 f(∅) = 0. Note that then, the submodular function
minimization problem is only non-trivial if f(S∗) < 0 for the optimum set S∗ ⊆
[n]. The key ingredient is the definition of an auxiliary submodular function with
interesting properties:

Lemma 13.13. Let f : 2X → R be a submodular function with f(∅) = 0. Define the
function fmin : 2X → R by fmin(S) := minA⊆S f(A). Then (I) fmin is submodular
and (II) EPfmin

= EPf ∩ RX
≤0.

Proof. We leave it to the reader to verify (I). Next, we prove both inclusions of
(II). Each x ∈ EPfmin

satisfies xi ≤ fmin({i}) ≤ f(∅) = 0 for each i ∈ X and so
x ∈ RX

≤0. Also
∑

i∈S xi ≤ fmin(S) ≤ f(S) and so x ∈ EPf . On the other hand,

1Formally we could minimize the function f ′ : 2[n] → R with f ′(S) := f(S) − f(∅) which again
is submodular and satisfies f ′(∅) = 0.
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suppose x ∈ EPf ∩RX
≤0. We claim that for S ⊆ X one also has x(S) ≤ fmin(S). Let

A∗ := argmin{f(A) | A ⊆ S} be the set attaining that minimum. Then

x(S)
xi≤0 ∀i
≤ x(A∗) ≤ f(A∗) = fmin(S)

and hence x ∈ EPfmin
.

At first it doesn’t seem that the function fmin is helpful — even evaluating
fmin(X) is as hard as minimizing f in the first place. Still we can use it to prove the
following:

Lemma 13.14. Let f : 2X → R be submodular with f(∅) = 0. Then

max
{∑

i∈X
xi | x ∈ EPf ∩RX

≤0

}

= min
{
f(S) | S ⊆ X

}

Proof. Let us revisit the characterization of the optimum primal and dual LP solution
from Lemma 13.9 for the objective function c := 1 and the submodular function fmin:

max
{∑

i∈X
xi | x ∈ EPfmin

}

= min
{ ∑

S⊆X

fmin(S)yS |
∑

S⊆X

yS1S = 1 ∀S ⊆ X, y ∈ R2X
≥0

}

Then we know that the right hand side is attained by a vector y∗ with y∗X = 1 and
y∗S = 0 for all ∅ ⊆ S ⊂ X. With this insight we see that

max
{∑

i∈X
xi | x ∈ EPf ∩ RX

≤0

}

= max
{∑

i∈X
xi | x ∈ EPfmin

}

= fmin(X) = min
{
f(S) | S ⊆ X

}

as claimed.

EPf

x2

x1

EPf ∩Rn
≤0

x∗ = (a, 0)

1

f(∅) = 0
f({1}) = a < 0
f({2}) = b > 0

a < f({1, 2}) < a+ b

It then follows:
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Theorem 13.15 ([GLS88]). Let f : 2X → R be a submodular function. Then one
can find an optimum S∗ to min{f(S) | S ⊆ X} in polynomial time.

Proof. We can shift the function so that f(∅) = 0. By Theorem 13.11, we can solve
the separation problem for EPf in polynomial time. Then trivially we can also
separate over EPf ∩ Rn

≤0 in polynomial time. Then using the ellipsoid method /
the equivalence of optimization and separation from Theorem 11.9 can also optimize
any linear function over EPf ∩ Rn

≤0 in polynomial time. Then by Lemma 13.14 we
can determine the value of min{f(S) | S ⊆ X} in polynomial time. Then using
a standard argument we can determine one element in the optimum set after the
other.
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