Problem Set 5

514 - Networks and Combinatorial Optimization

Autumn 2023

Exercise 5.2 (10pts)

Let D = (V,A) be a directed graph. Prove that the node-edge incidence matrix $A \in \{-1,0,1\}^{V \times A}$ of D is totally unimodular.

Exercise 5.3 (10pts)

A set family $\mathcal{F} \subseteq 2^X$ is called *laminar* if for all $S, T \in \mathcal{F}$ one either has $S \subseteq T$ or $T \subseteq S$ or $S \cap T = \emptyset$. Let $A \in \{0,1\}^{\mathcal{F} \times X}$ be a matrix whose rows are the characteristic vectors of \mathcal{F} . Prove that A is totally unimodular.

Example. The following is one such a matrix: