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Chapter 1

Turing machines

In this course we consider mathematical aspects of computation. The driving

questions will be what functions can be computed at all and which ones can be

computed efficiently. First, we need a mathematical model of what a computer

actually is and what it can do. We use the following (somewhat lengthy) defini-

tion:

Definition 1.1. For k ∈ N, a k-tape Turing machine is described by a tuple M =
(Γ,Q,δ) containing:

• A finite set of symbols Γ (called the alphabet) where we assume that “ä′′

(blank) and “>” (start) are in Γ.

• A finite set of states Q with designated states qstart, qhalt ∈Q

• A transition function δ : Q ×Γ
k+1 →Q ×Γ

k+1 × {L,S,R}k+2

The Turing machine has

• a read only input tape that is initialized with >, x1, . . . , xn

• k read+write working tapes initialized with >,ä,ä, . . .

• a write-only output tape initialized with blanks.

All the tapes are infinite in one direction. Each tape has an individual head po-

sition that can move. The Turing machines starts in state qstart. In one itera-

tion, the Turing machine does the following: Say the Turing machine is in state

q ∈ Q and the symbols at the current positions (indicated by the heads) on the

input tape and k working tapes are σ0, . . . ,σk ∈ Γ. Moreover suppose the cor-

responding entry in the transition function is δ(q,σ0, . . .σk) = (q ′,σ′
1, . . . ,σ′

k+1
, z)

5



6 CHAPTER 1. TURING MACHINES

with z ∈ {L,S,R}k+2. Then for i ∈ {1, . . . ,k +1} the machine writes σ′
i

on the cur-

rent position of the i th tape (where we denote the output tape by index k + 1).

Moreover for i ∈ {0, . . . ,k +1},

• if zi = L, then the i th head moves one position to the left

• if zi = S, then the i th head stays put

• if zi = R , then the i th head moves one position to the right

σ0

σ1

σk

input tape

working tape 1
...

working tape k

output tape

R

R

S

L

before iteration

σ′
1

σ′
k

σ′
k+1

after iteration

Then the Turing machine moves into state q ′and the iteration is concluded. Then

we iterate until at some point the Turing machine reaches state qhalt, then it has

halted (i.e. terminated). Note that it is also possible that the Turing machine

never reaches qhalt.

Maybe more intuitively, one may think of a Turing machine as a computer

that has a finite number of states (say finite RAM), an infinite amount of storage

(one may think of hard drive) and it is is given some input x1, . . . , xn . Then the

Turing machine has a hard coded program that processes the input. Here the

computation in each step is very local as only O(1) symbols are being processed

(and k, |Γ| and |Q| are constants that do not depend on the input).

input tape

working tape

output tape

> x1 x2 . . . xn ä ä . . .

> ä ä . . . ä ä ä . . .

ä ä ä . . . ä ä ä . . .

Initial state of a Turing machine with k = 1 working tapes
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Recall that {0,1}∗ =
⋃

k≥0{0,1}k denotes the set of binary strings of any length. We

write |x| as the length of a string.

Definition 1.2. We say that a Turing machine M computes a function f : {0,1}∗ →
{0,1}∗, if on every input x ∈ {0,1}∗, M halts with the string f (x) written on the

output tape. We additionally say that the Turing machine M computes f in time

T (n) if for every input x ∈ {0,1}∗, M halts after at most T (|x|) iterations.

We also use the notation M(x) for the content of the output tape when M

halts on input x. It might seem that the Turing machine model is rather restric-

tive, but as an exercise the reader is encouraged to verify that there are Turing

machines that can

• add / multiply two numbers given in binary encoding

• sort n strings lexicographically

• compute the prime factorization of a number given in binary encoding

length

Describing details of a Turing machine program is tedious and usually not very

enlightening. In the arguments that we give, we will often just provide a sketch

and omit many details (that could be filled in if needed).

In many cases we are interested in computing functions f : {0,1}∗ → {0,1},

meaning that for each input x the Turing machine only needs to make a decision

between accepting or rejecting the input. In those cases, we agree that the Turing

machine M does not have an output tape and instead of qhalt it has the two dis-

tinguished halting states qaccept and qreject. We define the function computed by

M as

M(x) =
{

1 if on input x, M halts in state qaccept

0 if on input x, M halts in state qreject

assuming the Turing machine halts on every input.

1.1 Robustness of the model

In the literature one may find many different variations of how the concept of

Turing machines is defined. We want to explain that the exact details did not

matter for its expressive power.

Definition 1.3. A function T : N→N is called time-constructable if T (n) ≥ n and

there is a Turing machine M that on input x, computes the binary encoding of

T (|x|) in time T (|x|).
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Here the condition T (n) ≥ n avoids some oddities; note that any Turing ma-

chine that at least reads the input fully must have running time T (n) ≥ n. All

typical running times that one may encounter, like ⌈n log(n)⌉, ⌈nc⌉ for some con-

stant c ∈Q≥1, 2n , 22n
are time constructable.

First, we want to argue that using a larger alphabet cannot increase the set of

computable functions:

Theorem 1.4. Let f : {0,1}∗ → {0,1}∗ be a function computed by a k-tape Turing

machine M in time-constructable time T (n) using alphabet Γ. Then there is a

k-tape Turing machine M̃ with alphabet {0,1,ä,>} computing f in time O(T (n) ·
log |Γ|).

Sketch. We replace each cell on a working tape of M by log |Γ| bits in M̃ . Then

each original operation of M takes time O(log |Γ|) in M̃ .

For example the book of Sipser uses a different definition of a Turing machine

where there is a single tape that serves as input, working and output tape. We can

verify that this model is not different in terms of its expressive power.

Theorem 1.5. Suppose that f : {0,1}∗ → {0,1}∗ is computable in time-constructable

T (n) time by a k-tape Turing machine M . Then there is a Turing machine M̃

with a single combined input/working/output tape and that computes f in time

O(T (n)2).

Proof. Suppose M uses alphabetΓ. Then M̃ uses the alphabet Γ̃ := {0,1}∪(Γk+2×
{HEAD,NO HEAD}k+2). Using this larger alphabet, each cell of M̃ ’s tape encodes the

content of all the k +2 cells at the same position in M ’s tapes. Moreover we also

encode the position of M ’s heads using the larger alphabet. The only technical

problem in now simulating M ’s computation lies in the fact that the k +2 heads

of M may be at different positions, while M̃ only has a single head. But each

iteration of M can be simulated by scanning from position 1 to T (|x|) and back.

Overall this results in a running time of O(T (|x|)2).

1.2 The Universal Turing machine

Each given string x ∈ {0,1}∗ can be interpreted as a description of a Turing ma-

chine that we denote by Mx (i.e. a binary encoding of the transition function

δ). It does not matter how exactly the transition function is being encoded. In

reverse, if M is a Turing machine, then we write [M] ∈ {0,1}∗ as the binary en-

coding of it. Occasionally it will be useful to denote Mi as the Turing machine
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corresponding to the binary encoding of the number i ∈N. This way we will be

able to talk about a list M1, M2, . . . of all possible Turing machines. But we get

back to that later.

First, we want to discuss what appears to be a major drawback of our Turing

machines: their functionality is hard coded and each of them can only solve a

single problem. This is very different from our understanding of a modern com-

puter which clearly can run arbitrary programs. But astonishingly, there is not

actually a distinction.

Definition 1.6. A universal Turing machine is a Turing machine U that receives

(x,α) as input with x,α ∈ {0,1}∗ and computes U (x,α) = Mα(x). Moreover the

Turing machines halts on (x,α) whenever Mα halt on x.

We will prove that there exists a universal Turing machine. In fact, the univer-

sal Turing machine that we construct will have an additional property:

Definition 1.7. A Turing machine M is called oblivious if for each tape the posi-

tion of the head only depends on (a) the length of the input |x| and (b) the time

step t .

It will often be easier to reason about a Turing machine that is oblivious.

Theorem 1.8. There is an oblivious 2-tape universal Turing machine U . In par-

ticular for each Turing machine M and all T : N → N with T (n) ≥ n so that M

halts on input x after T (|x|) steps one has: (i) U (x, [M]) = M(x) and (ii) on input

of (x, [M]), U halts after at most C T (|x|) log2 T (|x|) steps where C :=CM > 0.

Proof. First, we explain the construction of a simple OM (T (|x|)2)-time universal

Turing machine that uses one working tape. Suppose (x, [M]) is the input for

U and M = (Γ,Q,δ) has k working tapes. Then U creates “virtual tapes” (on its

single working tape) which are

• the k working tapes with alphabet Γ

• a tape with the head position of each of the k working tapes

• a tape with the description of M

• a tape recording the current state of Q
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input tape

working tape 1

head of tape 1

working tape 2

head of tape 2

description of M

state (in Q)

output tape

simulation of a TM M with k = 2 tapes

virtual tapes

implemented on the

one working tape of U

Since U ’s alphabet size is fixed, the encoding is done in binary and the cells of

the virtual tapes are listed alternatingly on the “physical” tape. Then a single

computation of M can be simulated by OM (1) many left to right sweeps where

the memory needed in every moment is not dependent on M . Each sweep may

cover a length of T (|x|) cells which results a OM (T (|x|)2) time. We do note that (if

properly implemented) this Turing machine is oblivious.

Before we discuss how to improve the running time of the simulation, we

want to give an alternative way to obtain the same OM (T (|x|)2) running time. In-

stead of 1-way infinite tapes we use 2-way infinite tapes.

>

pos. 0

1-way infinite tape

2-way infinite tape

In fact, a Turing machine with 2-way infinite tapes can be simulated by a Turing

machine with the same number of 1-way infinite tapes with a constant overhead.

We use the same representation with virtual tapes. But now, if for working tape i

in M , the head is supposed to move to the right (or left), then instead we shift the

whole virtual tape one position to the left (or right, resp). This way, we can keep

the heads always at position 0. On the other hand, shifting a tape by one position

can take time OM (T (|x|)) so we end up at with the same OM (T (|x|)2) running

time.
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Now we describe how to improve the simulation to obtain the promised OM(T (|x|)·
log(T (|x|))) running time. We add a special symbol ⊠ to our alphabet which we

use as spaceholder on the virtual tapes. More precisely we allow ⊠ to be inserted

at arbitrary positions without changing the semantics. For example that means

the tape content 0⊠⊠10⊠1 is equivalent to 0101. But on the other hand, when

shifting a virtual tape we do not have to shift all of the T (|x|) positions as we can

make use of the spaceholders and get away with shifting only part of the tape.

We partition each virtual tape into zones. Starting at position 0 we have zones

R0,R1,R2, . . . when going to the right and zones L0,L1,L2, . . . when going to the

left. Here the zones contain |Li | = |Ri | = 2 ·2i many cells.

R0 . . . RiL0. . .Li

pos. 0

2 ·2i2 ·2i

We initialize the virtual tapes so that in each zone Li and Ri half the cells contain

the placeholder ⊠. We say that the zones are half-full. In contrast, we call a zone

full if all cells contain data (i.e. no ⊠) and empty if it contains no data (i.e. all

cells are filled with ⊠). Position 0 is not part of a zone and always contains a data

symbol (i.e. not ⊠). During the simulation we will maintain two invariants:

(i) Each zone Li and Ri is either empty, half-full (i.e. exactly 2i cells contain

⊠) or full.

(ii) In Li ∪Ri , exactly half the cells contain data, the other half contains ⊠.

Now we describe one iteration of the simulation: say that we need to simulate

that the head moves to the right, so all the data needs to be shifted one position

to the left. Find the minimal index i0 so that Ri0 is not empty and let a ∈ Γ be the

first non-⊠ symbol in Ri0 . In particular R0, . . . ,Ri0−1 are empty and by invariant

(i )+ (i i ) we know that L0, . . . ,Li0−1 are full. We redistribute the cells in Li0 ∪ . . .∪
L0∪pos 0∪R0∪. . .∪Ri0 so that the symbol a moves to position 0 and all the inner

zones Li0−1, . . . ,L0,R0, . . . ,Ri0−1 become half full. There are two possibilities as to

how Li0 and Ri0 are treated:

(A) If Ri0 was full, then Li0 was empty and after the shift both are half-full.

(B) If Ri0 was half-full, then also Li0 was half full and after the shift Ri0 is empty

and Li0 is full.

A visualization of case (A) is as follows:



12 CHAPTER 1. TURING MACHINES

R0 . . . Ri0L0. . .Li0

a

pos. 0

left shift

empty full

R0 . . . Ri0L0. . .Li0

ahalf-full

We leave it to the reader to verify that because |Li | = |Ri | = 2 ·2i , this is indeed

possible. We also need to analyze the time that it takes to perform this single

shifting operation. Naively, one could shift the O(2i0) cells in question one by

one in time OM (2i0 )2 — but then we would not improve over the quadratic time

we had already proven earlier. Instead we make use of the second physical tape

that the Turing machine U possesses to implement the shift in time O(2i0 ).

One can prove that only every 2i0 many left shifts we may have a shift that

goes until index i0. That means amortized (i.e. averaged) over all iterations we

pay OM (1) time per zone and per time unit. As there are at most O(log T (|x|))

many zones, the simulation can be implemented in total time OM(T (|x|)·log(T (|x|)))

as claimed.

1.3 The class P

So far we said that Turing machines are computing functions. But if M computes

a binary function of the form f : {0,1}∗ → {0,1} then we also say that it decides the

language

L = {x ∈ {0,1}∗ : f (x) = 1}

Obviously this is an equivalent interpretation and we will use those notions inter-

changeably. We want to pay more attention to the running time that it takes to

decide a language.

Definition 1.9. For a function T : N→ N we define DTIME(T (n)) as all the lan-

guages L for which there is a constant c > 0 and a Turing machine deciding L that

runs in time c ·T (n).

That means DTIME(T (n)) is the complexity class of functions/boolean func-

tions that can be computed in time O(T (n)). Here the D in DTIME stands for

deterministic. A key concept in complexity theory are the languages that can be

decided in (deterministic) polynomial time.
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Definition 1.10. We define P :=
⋃

c>0 DTIME(nc).

We also want to justify that the concept of a Turing machine was the right one

to make:

Church Turing Thesis. Every physically realizable device can be sim-

ulated with a Turing machine.

Note that this is not a proven theorem but more of a law of nature that is widely

believed and still stands after almost a century. There is also a stronger form:

Strong Church Turing Thesis. Every physically realizable device can

be simulated with a Turing machine with polynomial overhead.

Quantum computers — if they ever materialize — would likely violate this thesis.

So there is less of a consensus on this stronger form.

1.4 The Halting problem

One might be tempted to believe that any function could be computed once we

give it enough time. But that is not true.

Theorem 1.11. There is a function UC : {0,1}∗ → {0,1} that is not computable by a

Turing machine.

Proof. For x ∈ {0,1}∗, we define

UC(x) :=







1 if Mx halts on input x with Mx (x) = 0

0 if Mx halts on input x with Mx (x) = 1

1 if Mx does not halt on input x

Now suppose there is a Turing machine M that computes UC. In particular M

always halts. Consider the input x := [M] that corresponds to the encoding of

the Turing machine. Then UC(x) 6= Mx (x) by construction.

From an abstract point of view, there is an infinite list of Turing machines Mx

and we explicitly constructed the function UC so that for every of those Turing

machines Mx the function UC disagrees on at least one input. It was convenient

to have Mx and UC disagree on diagonal entries, which is the reason that the

technique is usually called diagonalization.
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M0

M1

M00

Mx

...

T
u

ri
n

g
m

a
ch

in
e

s

inputs

0 1 00 . . . x

. . .

In Chapter 3 we will see more complex arguments where the entries are chosen

rather differently — in particular in those applications the diagonal entries will

not suffice. We should also mention that diagonalization has been used before

the invention of computing by Cantor.

Theorem 1.12 (Cantor 1891). For all sets S, there is no surjective function f : S →
2S .

A set S is called is called countable if there is an surjective map f : N→ S. In

other words, if S is countable then the elements of S can be “listed” in the form

f (1), f (2), f (3), . . .. For example N,Z,Q and Zk for any fixed k are countable. Also

the set of Turing machines is countable as they can be listed as M1, M2, M3, . . .. On

the other hand, the set of functions f : {0,1}∗ → {0,1} is not countable by Cantor’s

Theorem1. That means Theorem 1.11 already follows from Cantor’s Theorem.

But the simple explicit choice of UC is useful too.

We define a function

HALT(x,α) =
{

1 if Turing machine Mα halts on input x

0 otherwise

Theorem 1.13. There is no Turing machine computing HALT.

Proof. Suppose for the sake of contradiction that there is a Turing machine MHALT

deciding HALT. We will show that we can decide UC on any input x. Recall that

UC(x) :=







1 if Mx (x) = 0

0 if Mx (x) = 1

1 if Mx does not halt on input x

1Already the restriction to functions g : {1n : n ∈N} → {0,1} is not countable by Cantor.
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We run MHALT(x, x) and can decide whether we are in the last case. If not, then

we run the universal Turing machine on input (x, x) (which then must halt even-

tually) and reverse its output.

We will revisit the technique of diagonalization in more detail in Chapter 3.
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Chapter 2

NP and NP completeness

The complexity class next to P that is most important for us is the following:

Definition 2.1. A language L ⊆ {0,1}∗ is in NP if there is a polynomial p : N→N

and a polynomial time Turing maching M so that

L =
{

x ∈ {0,1}∗ | ∃u ∈ {0,1}p(|x|) with M(x,u) = 1
}

Here NP stands for non-deterministic polynomial-time. The Turing machine

M is also called the verifier and the string u is called the certificate. Intuitively, a

language is in NP if solutions can be verified efficiently. Note that P ⊆ NP. The

reason why NP is so important is that so many relevant problems fall into it.

We want to give a few examples:

• Independent Set. Let G = (V ,E ) be an undirected graph. Then a set S ⊆ V

of vertices is called an independent set if for all distinct u, v ∈ S one has

{u, v} 6∈ E .

indep. set S

Then we define a language

INDSET= {(G ,k) : G contains an independent of size k}

Then INDSET ∈ NP where the certificate is simply the size-k independent

set S and the verifier checks whether for all distinct u, v ∈ S one has {u, v} 6∈
E .

17
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• Satisfiability. A SAT formula over variables x1, . . . , xn is of the form
∧

i=1,...,m(
∨

ℓ=1,...,ki
ui ,ℓ)

where each ui ,ℓ ∈ {x1,¬x1, . . . , xn ,¬xn} is a literal. For example

(x1 ∨¬x2 ∨x4)∧ (x2 ∨¬x3 ∨x4)

is a SAT formula. A SAT formula is called satisfiable if there exists at least

one satisfying assignment that makes all clauses true. We set

SAT= {ψ |ψ is a satisfiable formula}

We claim that SAT ∈ NP. The certificate is the assignment x1, . . . , xn ∈ {0,1}

that makes the formula true and the verifier simply checks for all clauses

whether the assignment satisfies it.

• Composite. We define the problem

COMPOSITE= {n ∈N | ∃p, q ∈Z≥2 : n = p ·q}

Then COMPOSITE ∈ NP where the certificate are the numbers p, q (or just

one of them). Actually it is even true that COMPOSITE ∈ P, but proving that

is much harder and requires a substantial amount of number theory.

It is believed that NP is strictly more powerful than P:

Conjecture 1. P 6= NP.

In all the decades of complexity research, no approach came every close to

proving this and we will explain some difficulties and obstacles that any proof

will face. We define EXP as the class of languages that can be solved in exponen-

tial time.

Definition 2.2. EXP :=
⋃

c>0 DTIME(2nc
).

At least we can give one simple inclusion:

Lemma 2.3. One has P ⊆ NP ⊆ EXP.

Proof. The first inclusion is clear. Next, let L ∈ NP, i.e. there is a deterministic

polynomial time TM M so that

L =
{

x ∈ {0,1}∗ : ∃u ∈ {0,1}p(|x|) : M(x,u) = 1
}

for some polynomial p. Then we can try out all the 2p(|x|) choices for u and com-

pute M(x,u) which together can be done in exponential time 2|x|O(1)
.
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2.1 Non-deterministic Turing machines

Let us go back to the definition of Turing machines for decision problems, i.e.

Turing machines that have no output tape but rather distinguished states qaccept

and qreject. Recall that the transition function in that case is of the form δ : Q ×
Γ

k+1 →Q×Γ
k ×{L,S,R}k+1. A non-deterministic Turing machine M has the same

components, just that the transition function now gives a set of possible transi-

tions, i.e. it is of the form

δ : Q ×Γ
k+1 →P(Q ×Γ

k × {L,S,R}k+1)

and in each single iteration M may pick any possible transition. Here for a set

A, P(A) := {B | B ⊆ A} is the power set which in the finite case has cardinality

|P(A)| = 2|A|. That means on the same input x ∈ {0,1}∗ there are many computa-

tion paths that the non-deterministic Turing machine could possibly take. Some

of these paths may end up in qaccept and some of the paths may be “dead ends”

in the sense that they end in a state (q,σ0, . . . ,σk) with δ(q,σ0, . . . ,σk ) =;1.

Definition 2.4. We say that a non-deterministic Turing machine (NTM) M accepts

an input x if at least one possible computation path leads to qaccept . The running

time of M on input x is defined as the maximum length of any computation path.

We should note that while non-determinism is a highly useful concept in the-

ory there does not seem to be a physical computer that it would represent. We

define an analogue to DTIME:

Definition 2.5. For a function T : N→N we set

NTIME(T (n)) :=
{

f : {0,1}∗ → {0,1} | there is a NTM M computing f in time O(T (n))
}

In our definition of NP we could have alternatively used NTMs.

Theorem 2.6. One has NP =
⋃

c>0 NTIME(nc ).

Proof. Let L ∈ NP. We can write L = {x ∈ {0,1}∗ | ∃u ∈ {0,1}p(|x|) : M(x,u) = 1}

where M is a (deterministic) Turing machine with some polynomial running time

q(n). We design a NTM that on input x first writes a sequence of bits u1, . . . ,up(|x|) ∈
{0,1} on a separate tape where we use the non-determinism to decide whether a

bit should be 0 or 1. Then we run the TM M in time q(|x|+p(|x|)) which again is

a polynomial.

1We do not actually need the rejecting state qreject here — we can simple use a dead end for

the same purpose.
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Let L ∈
⋃

c>0 NTIME(nc ), meaning there is some k-tape NTM M deciding L

in polynomial time p(|x|). In each step, M has the choice between at most B :=
|Q×Γ

k ×{L,S,R}k+1| many options, where B is a constant. We choose the witness

u ∈ (Q ×Γ
k × {L,S,R}k+1)p(n) (encoded in log(B) · p(|x|) bits). Now, we rebuild

the NTM so that instead of making a non-deterministic move in iteration i , it

uses the choice encoded in ui . Clearly there is a way to reach qaccept using the

certificate if and only if there was one using non-determinism.

The second direction makes an argument that is often helpful: a NTM M

could make all the non-deterministic choices at the very beginning and after that

only make deterministic decisions.

2.2 Reductions and the Cook-Levin Theorem

Ideally we would like to be able to prove that for example SAT ∉ P, but we have

no current approach to do that. Then the second best option is to at least show

that certain groups of problems are equally hard — so they are all either in P or

all not in P. This is done via reductions.

Definition 2.7 (Karp Reduction). For languages A,B ⊆ {0,1}∗ we write A ≤p B if

there is a polynomial time computable function f : {0,1}∗ → {0,1}∗ so that

∀x ∈ {0,1}∗ :
(

x ∈ A ⇔ f (x) ∈B
)

We can summarize a few properties of this reduction:

Lemma 2.8. The following holds for languages A,B ,C :

(1) If A ≤p B and B ≤p C then A ≤p C .

(2) If A ≤p B and B ∈ P then A ∈ P.

Proof. (1). Suppose f is the reduction from A to B computable in time p(n)

and suppose g is the reduction from B to C computable in time q(n). Then x ∈
A ⇔ g ( f (x)) ∈ C and the composition g ( f (x)) is computable in time O(p(|x|)+
q(p(|x|))) which is again a polynomial.

(2). Suppose f is the reduction from A to B . Then on input x we first compute

f (x) and then test whether f (x) ∈B . Both operations take polynomial time.

Note that we have just proven that ≤p is a partial order. Next, we are wonder-

ing whether there are some problems in NP that are “hardest”.

Definition 2.9. A language L ⊆ {0,1}∗ is called NP-hard if L′ ≤p L for every L′ ∈ NP.

A language L ∈ {0,1}∗ is called NP-complete if it is NP-hard and L ∈ NP.
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Note that it is not obvious that NP contains NP-complete problems. One

could have imagined that there are problems in NP that have no common upper

bound (called join) w.r.t. ≤p or maybe there could have been an infinite chain

of harder and harder problems. But fortunately enough, there are indeed very

natural hardest problems in NP:

Theorem 2.10 (Cook-Levin). SAT is NP-complete.

Proof. We already proved that SAT ∈ NP, hence only the hardness is missing. We

prove an auxiliary result first.

Claim I. Every boolean function f : {0,1}k → {0,1} can be written as a CNF with

at most 2k clauses.

Proof of Claim I. First, for any v ∈ {0,1}k the clause

Cv (x) :=
( ∨

i :vi=1

¬xi

)

∨
( ∨

i :vi=0

xi

)

has Cv (v)= 0 and Cv (x) = 1 for all x 6= v . Then

f (x) =
∧

v∈{0,1}k : f (v)=0

Cv (x)

does the job.

Note that in Claim I the CNF size is exponential in the number of variables

— but we will only use this fact for k ≤ O(1). Now to the main part of the proof.

Let L ∈ NP be any problem in NP. We can write L = {x ∈ {0,1}∗ | ∃u ∈ {0,1}p(|x|) :

M(x,u) = 1} where p is a polynomial. Following the result of Theorem 1.5 we

may assume that M is an oblivious Turing machine with polynomial running

time q and with states Q that has a single combined input and working tape2

using alphabet Γ. We fix an input x ∈ {0,1}∗ of length n := |x|. Let POS(t ) be the

position of the head at time t (which otherwise only depends on n). Note that

we may assume that T (n) := q(n + p(n)) is the running time and also the max-

imum number of cells on the tape that is being used. We want to encode the

working of the Turing machine M . We index the iterations as t = 0, . . . ,T (n) and

denote zt = (zt (1), . . . , zt (T (n))) ∈ Γ
T (n) as the content of the tape in the t th itera-

tion. Moreover, we denote qt ∈Q as the state of the Turing machine in iteration t .

Then for some functions F : Q×Γ→Γ and G : Q×Γ→Q implied by the transition

2This restriction merely makes the notation easier and we can afford the restriction as we do

not care about a polynomial blowup here.
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function δ, the Turing machine can be encoded as

z0 = (>, x1, . . . , xn ,u1, . . . ,up(n),ä, . . . ,ä) (2.1)

zt (i ) = zt−1(i ) ∀t ∈ [T (n)] and i with i 6= POS(t −1)

zt (POS(t −1)) = F (qt−1, zt−1(POS(t −1))) ∀t ∈ [T (n)]

qt = G(qt−1, zt−1(POS(t −1))) ∀t ∈ [T (n)]

q0 = qstart

qT (n) = qaccept

tape state

z0 qstart> x1 . . . xn u1 . . .up(n)ä ä ä . . . ä

zt−1 qt−1

POS(t −1)

zt qt

zT (n) qaccept

GF

...
...

...
...

...
...

...
...

...

Then x ∈ L if and only if there are u1, . . . ,up(n) ∈ {0,1} so that the equations in (2.1)

hold. Note that the variables that we have used are not boolean as zt (i ) ∈ Γ and

qt ∈ Q. But by using the binary encoding of symbols in Q and Γ each can be re-

placed by a constant number of boolean variables. Each equation in (2.1) then

transforms into the form that a boolean variable equals a boolean function de-

pending only on a constant number of other boolean variables. Hence by Claim

I, each such equation can be transformed into a CNF of constant size. Then tak-

ing the
∧

of all obtained CNFs gives a (larger) CNF ψ. That SAT formula contains

variables u1, . . . ,up(n) ∈ {0,1} plus a polynomial number of auxiliary boolean vari-

ables y and it is satisfied by an assignment (u, y) if and only if M(x,u) = 1. That

concludes the proof.

2.3 More NP-complete problems

We have a few other natural problems for which we will demonstrate how to

prove NP-completeness. Again, the harder part here will be proving the NP-

hardness. It may seem that we would need to modify the Cook-Levin Theorem



2.3. MORE NP-COMPLETE PROBLEMS 23

each time that we have a new target language. While this could in principle be

done, it will be much easier to make use of the following observation:

Lemma 2.11. Let A and B be any languages. If A is NP-hard and A ≤p B , then B

is NP-hard.

Proof. Let L ∈ NP. Then L ≤p A ≤p B and hence L ≤p B by transitivity.

We define 3SAT as the language of all satisfiable SAT formulas ψ where each

clause contains at most 3 literals.

Lemma 2.12. 3SAT is NP-complete.

Proof. One has 3SAT ∈ NP by the same argument as for SAT. By the Cook-Levin

Theorem we know that SAT is NP-hard, hence it suffices to show that SAT≤p 3SAT.

Consider any SAT instance ψ with variables x1, . . . , xn . Let u1 ∨u2 ∨ . . .∨uk be a

clause C with k ≥ 4 where each ui is a literal (i.e. it is either a variable x j or its

negation¬x j ). Then we introduce k−3 extra variables zC ,1, . . . , zC ,k−3 and replace

the clause C by the 3SAT formula φC which is

(u1∨u2∨zC ,1)∧(¬zC ,1∨u3∨zC ,2)∧. . .∧(¬zC ,k−4∨uk−2∨zC ,k−3) . . . (¬zC ,k−3∨uk−1∨uk)

Note that each auxiliary variable zC ,i is contained exactly twice, once positively

and once negated. For any clause C with at most 3 variables we simply copyφC :=
C . Then one can verify that f (ψ) :=

∧

C φC is a 3SAT formula that is satisfiable if

and only if ψ is satisfiable. Moreover f is computable in polynomial time and so

SAT≤p 3SAT.

The problems of SAT and 3SAT are so similar that it did not actual come as a

surprise that there is a reduction between them. But we can also show a reduc-

tion between very differently structured problems:

Lemma 2.13. INDSET is NP-complete.

Proof. We already argued that INDSET ∈ NP. To show that INDSET is NP-hard, we

prove that 3SAT≤p INDSET. Consider a 3SAT formula ψ=
∧

i=1,...,m Ci where each

clause is of the form3 where each ui j is a literal and we have variables x1, . . . , xn .

3Well, we have defined 3SAT instance ψ as having at most 3 literals per clause. But in a re-

duction it will be notationally convenient to assume exactly 3 literals from distinct variables per

clause. We can replace a clause C with 2 variables by two clauses C ∧ z1, C ∧¬z1. Similarly a

clause C with 1 variable can be replaced by 4 clauses with all combinations of z1, z2. Here z1, z2

are newly introduced variables.
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We create an undirected graph G = (V ,E ) with 7m vertices where for each clause

Ci , we introduce |Vi | = 7 nodes that corresponds to the 7 possible partial assign-

ments uC ,1 = a1,uC ,2 = a2,uC ,3 = a3 with a ∈ {0,1}3 \ {(0,0,0)}. Then V =
⋃m

i=1
Vi .

We insert an edge between two vertices if their partial assignments are inconsis-

tent. In particular the vertices belonging to the same clause are inconsistent, i.e.

each set Vi corresponds to a clique. But also nodes belonging to different clauses

Ci and Ci ′ are inconsistent if their variables overlap and are set to different val-

ues4.

clause C1 clause Cm

(1,1,1)

(1,1,0)

(1,0,1)

(0,1,1)

(1,0,0)

(0,0,1)

(0,1,0)

clause Ci

. . . . . .

Vi

We claim that ψ ∈ 3SAT ⇔ (G ,m) ∈ INDSET and want to verify both directions.

Claim I. ψ ∈ 3SAT⇒ (G ,m)∈ INDSET.

Proof of Claim I. Let x ∈ {0,1}n be a satisfying assignment for ψ. For each clause

Ci , exactly one of the 7 partial assignments is consistent with x. We let S ⊆ V

be the |S| = m nodes corresponding to those partial assignments. As we picked

only one vertex per Vi and for different clauses only vertices that are consistent,

there is no edge running inside S. That means S is an independent set and so

(G ,m)∈ INDSET.

Claim II. (G ,m)∈ INDSET⇒ψ ∈ 3SAT.

Proof of Claim II. Consider an independent set S ⊆ V of size m. Since each Vi

corresponds to a clique we know that |S ∩Vi | = 1. For each clause Ci we select

the partial assignment in S ∩Vi and use it to define 3 variables in an assignment

x ∈ {0,1}n . Since there are no edges running inside of S, we definitions will be

consistent (i.e. is we set x j := 1 due to one clause then this will also be the as-

signment from any other clause that contains the variable). By construction this

assignment x satisfies all clauses5.

In the homework we will see more NP-completeness proofs. Note that as

4For example the partial assignments ¬x1 = 1, x2 = 1, x3 = 1 and x1 = 1, x4 = 1, x5 = 1 are incon-

sistent since the variable x1 is once set to 0 and once to 1.
5It could happen that some variable did not appear in any clause, then the corresponding

variable will be undefined — but then it’s value is irrelevant anyway.
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the number of known NP-complete problems grows, it becomes easier to prove

NP-hardness for any new problem since we may pick the closest and most con-

venient problem for a reduction.

We also want provide a comment on the nature of the Karp reduction. If A ≤p

B with a map f , then YES instances of A are mapped to YES instance of B and NO

instances of A are mapped to NO instances of B . But in general f is not surjective

and the instances that f produces can be rather specific.

YES:

NO:

A

Ā

f (A)

f (Ā)

B

B̄

f

For example all the instances (G ,k) produced by the reduction in Lemma 2.13

have the special property that the graph can be partitioned into k cliques and so

we know that INDSET is still NP-hard if restricted to those instances.

2.4 The structure of NP

Out of the thousands of problems that are known to be in NP essentially all are

also known to be either NP-complete or to be in P. There are only a few arcane

examples such as factoring integers where the status is open. So one might be

tempted to believe that P 6= NP and each problem in NP is indeed either NP-

complete or in P. But that is provably not the case.

Theorem 2.14 (Ladner’s Theorem). If P 6= NP then there are problems in NP \ P

that are not NP-complete.

The proof has a quite delicate component, so we want to prove a weaker state-

ment to convey the idea behind the argument. Here the choice for the function

loglogn that we make is arbitrary and any growing function would have worked.

Lemma 2.15. Assume NP 6⊆ DTIME(nO(loglogn)). Then there is a language L ∈ NP

that is neither in P nor NP-complete.

Proof. Consider the language

PADDEDSAT :=
{

(ψ,1nlog logn

) : |ψ| = n and ψ ∈ SAT
}
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of feasible SAT formulas padded with a slightly super polynomial number of ones.

We claim the following picture:

P
NP

complete

PADDEDSAT

NP

Because SAT ∈ NP, also PADDEDSAT ∈ NP.

Claim I. PADDEDSAT ∉ P.

Proof of Claim I. Now suppose for the sake of contradiction that PADDEDSAT ∈ P

which means there is an algorithm deciding length-m inputs for PADDEDSAT in

time cmc . Then for a length-n SAT formula ψ we can use that algorithm to test

feasiblity in time c(n+nloglogn)c ≤ n2c log logn for n large enough. That is a contra-

diction to the assumption.

Claim II. PADDEDSAT is not NP-complete.

Proof of CLaim II. Suppose for the sake of contradiction that PADDEDSAT is in-

deed NP-complete. That means there is a function T that maps a length-n SAT

formula ψ to (T (ψ),1mlog logm
) where m := |T (ψ)| where

ψ ∈ SAT ⇔ (T (ψ),1mlog logm

) ∈ PADDEDSAT ⇔ T (ψ) ∈ SAT

By assumption, the function T can be computed in time cnc for some constant

c > 0. Then mloglogm ≤ cnc ⇒ m ≤ cnc/log logn ≤ n
2 for all n large enough. That

means SAT is self-reducible to a shorter SAT formula. Iterating the reduction

log(n) times we reach a constant size SAT formula that we can solve trivially. This

gives a polynomial time algorithm to decide whether ψ ∈ SAT which is a contra-

diction to the assumption.

ψ

T (ψ) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

reduction

n

m mloglogm

≤ cnc
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2.5 coNP and NEXP

For a language L ⊆ {0,1}∗ we define its complement as L̄ := {0,1}∗ \ L. We make

the following definition:

Definition 2.16. coNP := {L̄ : L ∈ NP}.

By taking the complement in the original definition of NP one could have also

defined coNP as follows:

Definition 2.17 (Alternative coNP definition). We say that a language L ⊆ {0,1}∗

is in coNP if there is a polynomial p and a polynomial time Turing machine M so

that

L =
{

x ∈ {0,1}∗ | ∀u ∈ {0,1}p(|x|) : M(x,u) = 1
}

Recall that for L ∈ NP and x ∈ L there is an efficiently verifiable certificate for

the fact that x ∈ L. In contrast, for L ∈ coNP and x ∉ L, there is an efficiently

verifiable certificate for the fact that x ∉ L. Note that P ⊆ NP∩coNP.

We can give an example of a problem in coNP. A boolean formula is in dis-

junctive normal form (DNF) if it is of the form
∨

i=1,...,m(
∧

ℓ=1,...,ki
ui ,ℓ) where ui ,ℓ

are literals of boolean variables.

Example 2.18. Consider the language

TAUTOLOGY=
{

ψ |ψ is a DNF that is a tautology6
}

Then TAUTOLOGY ∈ coNP and in fact TAUTOLOGY is coNP-complete.

If NP = coNP, then for example one could efficiently certify that a SAT for-

mula (i.e. a CNF) is not satisfiable which does not seem very plausible. So we

make the following conjecture (which in particular implies that P 6= NP):

Conjecture 2. NP 6= coNP.

We can also define a non-deterministic analogue to EXP.

Definition 2.19. NEXP :=
⋃

c>0 NTIME(2nc
).

Clearly P ⊆ NP ⊆ EXP ⊆ NEXP while in the only separations that are known

are P 6= EXP and NP 6= NEXP. We will prove those separations later in Chapter 3.

It is a little harder to motivate the study of classes like EXP and NEXP, but their

relationship has implications for P and NP as well:

6Recall that a boolean formula is a tautology if it is satisfied by every assignment.
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Theorem 2.20. (EXP 6= NEXP) ⇒ (P 6= NP).

Proof. It is easier to reason on the contrapositive which is (P = NP) ⇒ (EXP =
NEXP). So we assume P = NP and consider a language L ∈ NTIME(2nc

) for some

constant c > 0 that is decided by some O(n2c
)-time NTM M . Define the padded

version of L as

Lpad :=
{

(x,12|x|
c

) : x ∈ L
}

Then the non-deterministic computation of M(x) takes time O(2|x|c ) which is

polynomial in the length of (x,12|x|
c

). Hence Lpad ∈ NP = P. But if x
?
∈ L can be

decided deterministically in time polynomial in |x|+2|x|c , then this means that

L ∈ EXP.

We conclude with the conjectured picture of the complexity relations:

PNP coNP

EXP

NEXP



Chapter 3

Diagonalization

In this chapter, we revisit the technique of diagonalization that we briefly dis-

cussed in Chapter 1.4 and we will use it to derive some of the most striking results

in complexity.

If we have a language L ∈ DTIME(T (n)) computed by a Turing machine M ,

then all we know is that for some constant C :=CM > 0, M takes at most CM T (n)

iterations. But that constant CM may depend on M and in order to separate

DTIME(T (n)) from other classes we need to consider inputs that are long enough

to make CM irrelevant. There is a small trick that will be helpful:

Lemma 3.1 (The Recurrent Turing Machine Sequence). There is a sequence M1, M2, M3, . . .

of Turing machines that contains every Turing machine infinitely often. More-

over given n ∈N, computing [Mn] takes time O(logn).

Proof. Write the binary encoding of n as x01k where x ∈ {0,1}∗. Then use Mn :=
Mx .

3.1 The Time Hierarchy Theorems

We can (completely unconditionally) prove that with a little more running time

we can solve strictly more problems.

Theorem 3.2 (Time Hierarchy Theorem 1965). For any time-constructable func-

tions f , g : N→N with f (n) log( f (n)) ≤ o(g (n)) one has

DTIME( f (n)) ⊂ DTIME(g (n))

Proof. In order to keep the argument readable we prove the special case that for

any rational numbers c ≥ 1 and ε > 0 one has DTIME(nc ) ⊂ DTIME(nc+ε). So

29
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we need to construct a function that is in DTIME(nc+ε) and that disagrees with

every nc -time Turing machine on at least one input. We do that by constructing

a Turing machine D. Note that we only define D on inputs of the form 1n and we

do not care what it does for other inputs. In the following, we write Mi as the i th

Turing machine in the recurrent Turing machine sequence from Lemma 3.1.

Turing machine D: On input 1n , run the universal Turing machine

U for nc+ε iterations1 on input ([Mn],1n). If the simulation of Mn

did not terminate, output 0. If the simulation of Mn did terminate,

reverse the output.

First, the running time of D on an input of length n is bounded by a constant

times nc+ε and hence the language L that D computes is in DTIME(nc+ε). Now,

for the sake of contradiction assume that there is a Turing machine M taking

O(nc ) iterations that also computes L. Then by Theorem 1.8 there is a constant

CM > 0 (depending on M) so that the simulation of M takes time CM nc log(nc ).

Then there is some large enough n so that M = Mn and CM nc log(nc ) < nc+ε. For

this choice of n the simulation will be completed and D will have returned the

reversed output of M , i.e. D(1n) 6= M(1n).

In particular this gives us a separation of two classes that we have introduced

earlier

Corollary 3.3. P 6= EXP.

We can also prove a non-deterministic analogue of Theorem 3.2.

Theorem 3.4 (Nondeterministic Time Hierarchy Theorem). If f , g : N → N are

time-constructable functions satisfying f (n +1) = o(g (n)) then

NTIME( f (n)) ⊂ NTIME(g (n))

The reader should note that the natural adaptation of the proof of Theorem 3.2

will not work because NTIME( f (n)) is asymmetric. In particular if L ∈NTIME( f (n))

then it is not clear why one would have L̄ ∈ NTIME( f (n)). This makes flipping the

output highly problematic.

Proof. Again we show the simpler statement of NTIME(nc ) ⊂ NTIME(nc+ε) for

some rational constant c ≥ 1 and ε> 0. We define an enourmously growing func-

tion h with h(1) = 2 and h(i +1) := 2(h(i )+1)2c
. We define a non-deterministic Tur-

ing machine D. Again we only specify the behavior on inputs of the form x = 1n

1This refers to the running time of U ; not to the (smaller) number of simulated iterations of

Mn .
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— the machine may do whatever on other inputs. As before, we denote Mi as the

i th Turing machine in the recurrent Turing machine sequence (see Lemma 3.1).

Turing machine D. On input 1n :

(1) Compute i with h(i ) < n ≤ h(i +1).

(2) If h(i ) < n < h(i +1) then simulate Mi non-deterministically on

input 1n+1 for time nc+ε and output its answer

(3) If n = h(i+1) then deterministically simulate M on input 1h(i )+1

(by brute force) for time nc+ε and flip the output.

Now suppose for the sake of contradiction that there is a Turing machine M cor-

responding to NTIME(nc) that computes the same function as D. Consider a

large enough index i with M = Mi (and hence also n will be large enough). Then

in time (2) completing the non-deterministic simulation takes time CM (n+1)c ≤
nc+ε. In (3) we have to simulate a non-deterministic nc-time Turing machine

on an input of length h(i ) + 1. By trying out all possible choices of the non-

determinism, this can be done in time (C ′
M

)(h(i )+1)c ≤ h(i + 1) where C ′
M

is the

maximum number of choices that M makes in any iteration and we used the as-

sumption that i is large enough. Then all simulations will complete in time and

the output will satisfy

D(1n) = M(1n+1) for all h(i ) < n < h(i +1) and D(1h(i+1)) 6= M(1h(i )+1)

input length

h(i ) h(i +1)

M

D

n

n +1

= = = = = = =

6=

But if M and D compute the same function then also D(1n) = M(1n) for all n —

that is implossible!

The intuition behind the proof is that flipping the input of a non-determinstic

machine has to be done by trying out all non-deterministic choices which takes

exponential time. But if this is only done for an input that is vastly shorter than

D’s input, then this can be tolerated.
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3.2 Oracle Turing machines and Limits of Diagonal-

ization

As we have seen, diagonalization appears to be the most effective proof tech-

nique for separating complexity classes. Naturally one might want to prove P 6=
NP using diagonalization as well. But there are arguments that this might not be

easy (or maybe it is impossible).

Definition 3.5. For a language O ⊆ {0,1}∗, an oracle Turing machine MO with

oracle O is a Turing machine that has an extra tape (called oracle tape) and 3

special states qquery, qyes, qno. The Turing machine can write a string z on the

oracle tape and enter qquery. In the next iteration the Turing machine is in qyes iff

z ∈O and in qno otherwise.

Intuitively this means we give the Turing machine MO access to queries of

the form z
?
∈O at cost of 1 iteration.

Definition 3.6. For a language O ⊆ {0,1}∗ we define PO as the set of languages

decided by deterministic polynomial time oracle Turing machines with access to

an oracle for O. Similar we define NPO and DTIMEO(T (n)).

Proofs by diagonalization tend to relativize, i.e. they also work relative to ora-

cles. Here is an example:

Corollary 3.7. For any language A ⊆ {0,1}∗ and rational c ≥ 1, ε > 0 one has

DTIMEA(nc) ⊂ DTIMEA(nc+ε).

The reader may verify that the exact same argument as in Theorem 3.2 of

simulating a machine in DTIMEO(nc ) and flipping its output works also in the

presence of an oracle. Also Theorem 3.4 relativizes. Next, we prove a result that

explains a major obstacle towards proving that P 6= NP.

Theorem 3.8. There are languages A,B ⊆ {0,1}∗ so that PA = NPA and PB 6= NPB .

For the first part, we select A as a language that is so powerful that the non-

determinism of NP does help. We define

EXPCOM :=
{

(M , x,1n) : TM M outputs 1 on input x in time 2n
}

which essentially is the naturally EXP-complete language. To show that for A :=
EXPCOM one has PA = NPA it suffices to show:
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Lemma 3.9. One has EXP
(∗)
⊆ PEXPCOM ⊆ NPEXPCOM

(∗∗)
⊆ EXP.

Proof. For (∗), let L ∈ EXP and let M be a Turing machine deciding L in time c2nc

for some c > 0. Then on input x we ask the oracle whether (M , x,1c|x|c ) ∈ EXPCOM
which takes polynomial time2.

Next, consider (∗∗). Let M be a non-deterministic polynomial time Turing

machine with oracle access to EXPCOM. Say that M halts after p(n) iterations

for some polynomial p and the maximum number of non-deterministic choices

in the transition funtion of M is C > 0. Then we can try out the at most C p(n)

many candidate choices for the non-determinism. Moreover we can decide each

EXPCOM oracle call on input (M̃, x̃,1ñ) in deterministic time poly(|x̃|+|M̃ |)·log(2ñ)·
2ñ by a simulation with the universal Turing machine using that |[M̃ ]|+ |x̃ |+ ñ ≤
p(n). Overall the total running time is O(2nO(1)

).

Next, we need to construct a language B so that PB 6= NPB . The idea is that

a deterministic algorithm can only query a polynomial number of strings in B

so we make sure that the queries are not useful. On the other hand, a non-

deterministic algorithm can just guess the right string. This argument crucially

uses that B is a black box only accessible through queries and it does not seem

that such an argument would make sense for P 6= NP.

Lemma 3.10. There is a language B ∈ {0,1}∗ so that the language L(B) := {1n | ∃y ∈
B : |y | = n} satisfies L(B) ∈ NPB and L(B) ∉ PB .

Proof. First, for any choice of B , one has that L(B) ∈ NPB . To see this, consider

an input 1n . Then we guess y ∈ {0,1}n and use the oracle access to test whether

y ∈ B .

The subtle point lies in how to construct B so that L(B) ∉ P. As before, we con-

sider a recurrent sequence of oracle Turing machines M1, M2, . . . (see Lemma 3.1).

The set B will be the result of an infinite iterative process. For i = 1,2, . . . we do the

following: set n1 := 2 and ni+1 := 1
2 ·2

ni +1 which is an enourmously fast growing

function. Run M
Bi−1

i
on input 1ni for 1

2
·2ni iterations. There must be some string

y of length ni that was not queried by Mi . We set B0 :=∞ and for i ≥ 1,

Bi :=
{

Bi−1 ∪ {y} if M
Bi−1

i
(1ni ) = 0

Bi−1 if M
Bi−1

i
(1ni ) = 1

(in the case that the TM does not terminate, pick any output). We define B :=
⋃

i≥0 Bi which is also the limit of the sequence B0 ⊆ B1 ⊆ . . ..

2Recall that we do not pay any running time for the oracle computation itself.
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Now we prove that L(B) ∉ P. Suppose for the sake of contradiction that there

is a Turing machine M that decides L(B) in polynomial time. There is an i so

that M = Mi and i and ni are large enough so that MBi−1 is able to terminate

on input 1ni in time 2ni /2. Note that for j > i , n j is exponentially larger and

hence all strings that are added later are so long that MBi−1 will not have been

able to query them and y is the string that is not queried anyway. That means

MBi−1 (1ni ) = MB (1ni ). Then

MB (1ni ) = 0 =⇒ MBi−1 (1ni ) = 0 =⇒ y ∈ B =⇒ 1ni ∈ L(B)

and analogously

MB (1ni ) = 1 =⇒ MBi−1 (1ni ) = 1 =⇒ y 6∈ B =⇒ 1ni 6∈ L(B)

Hence MB
i

does not compute L(B).



Chapter 4

Space Complexity

So far we have focused on the time that a Turing machine takes to decide a lan-

guage. But it also makes sense to bound the space that is needed.

4.1 Introduction to space complexity

We make the following definitions

Definition 4.1. We set

DSPACE(S(n)) :=
{

L ⊆ {0,1}∗ | ∃TM M that decides L using at most O(S(|x|))

cells on any work tape and any input x

}

NSPACE(S(n)) :=






L ⊆ {0,1}∗ |

∃NTM M that decides L using at most O(S(|x|))

cells on any work tape on any

computation path on any input x







We note that DSPACE(0) and DSPACE(1) correspond to the regular languages1.

For technical reasons we will limit the function S(n) that we consider2.

Definition 4.2. A function S : N→ N is space-constructable if S(n) ≥ log(n) and

there is a deterministic TM M using space O(S(n)) that takes x as input and pro-

duces the binary encoding of the number S(|x|).

We also want to define a few specific classes that take the centerstage in space

complexity:

1Having O(1) space is not helpful since the TM can also remember the content of its working

tape in its state. Then DSPACE(0) corresponds to automata that can go back and forth when

reading the input. But one can prove that this is not more powerful than reading the input once.
2Basically we are saying that the TM M needs to be able to produce a binary encoding of S(n)

on the space that it has.

35
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Definition 4.3. We define

PSPACE :=
⋃

c>0 DSPACE(nc ) polynomial space

NPSPACE :=
⋃

c>0 NSPACE(nc ) non-deterministic polynomial space

L := DSPACE(logn) log space

NL := NSPACE(logn) non-deterministic log space

It may not be obvious what can be computed in space less than n. But for ex-

ample one can multiply (or at least verify a multiplication) in logarithmic space.

Integer multiplication. For a bit string a ∈ {0,1}∗ let N (a) ∈ Z≥0 be the natural

number with bit encoding a. Consider the language

MULT :=
{

(a,b,c) | a,b,c ∈ {0,1}∗, N (c) = N (a) ·N (b)
}

Then MULT ∈ L. In fact, one can construct a Turing machine that runs the stan-

dard multiplication algorithm using pointers to positions in a,b,c while keep-

ing track of the carry-over. This can all be done in space O(log n) where n :=
|a|+ |b|+ |c|.

Paths in directed graphs. Consider the following problem

PATH :=
{

(G , s, t ) | G = (V ,E ) is a directed graph with s, t ∈V

containing an s-t path

}

We claim that PATH ∈ NL. Let n := |V | be the number of vertices in the graph.

A NTM can take a non-deterministic walk starting at s and guessing in each

step the next edge to take while accepting if t is reached. The NTM maintains a

counter and it stops the walk after n steps. This can be implemented in O(logn)

space and there is an accepting computation path if and only if there is an s-t

path. It is unknown whether PATH ∈ L. However the variant for undirected graph

is indeed in L which was proven in 2005 by Reingold.

4.2 Configuration graphs

We introduce the key concept when dealing with space bounded Turing machines:

Definition 4.4. Let M = (Γ,Q,δ) be a (either deterministic or non-deterministic)

S(n)-space k-tape Turing machine and let x ∈ {0,1}∗. We define the configuration

graph GM ,x = (V ,E ) as the directed graph with vertices

V = {x}× (Γk )S(|x|)
︸ ︷︷ ︸

tape content

× {1, . . . , |x|}× {1, . . . ,S(|x|)}k

︸ ︷︷ ︸

head pos.

× Q
︸︷︷︸

state

(4.1)
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and edges

E :=
{

(C1,C2) ∈V ×V | TM M can transition in one iteration

from C1 to C2 according to transition fct. δ

}

The nodes in V are also called configurations.

In other words, each of the configurations gives a complete description of the

state and “memory content” of the Turing machine in one iteration.

Note that we added x to the description of the nodes to be consistent with

the textbook — though it is redundant. The graph GM ,x contains a distinguished

node

Cstart =
(

x,äkS(|x|),1k+1, qstart

)

that corresponds to the first configuration of M on input x. Since we are inter-

ested only in space restrictions, we can make the convention that once a Turing

machine is about to accept an input, it writes blanks on all used cells in the work-

ing tapes, moves all the heads to the left and moves finally into state qaccept. Then

there is a unique configuration

Caccept =
(

x,äkS(|x|),1k+1, qaccept

)

that corresponds to accepting an input. If M is deterministic then the out-degree

of every configuration is 1. If M is non-deterministic then the configurations in

GM ,x can have any out-degree in {0, . . . ,B} where B is a constant depending on M .

In both cases (M deterministic or not), for all x ∈ {0,1}∗ one has

M accepts x ⇐⇒ ∃ path from Cstart to Caccept

Of course in the deterministic case, one can simply follow the single outgoing

edge from Cstart to determine that path.

Cstart

Cstart Cstart Cstart

Caccept

Cstart Cstart

graph GM ,x for NTM M and M(x) = 1

Lemma 4.5. Let M be a TM using S(n)-space. Then GM ,x = (V ,E ) with n := |x|
satisfies the following
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(a) GM ,x has |V | ≤ n2O(S(n)) many vertices.

(b) For a vertex C ∈V , let [C ] ∈ {0,1}O(S(n)) be the corresponding binary encod-

ing. Then there is a CNF formula ϕM ,x of size O(S(n)+ log(n)) so that

∀C1,C2 ∈V : ϕM ,x ([C1], [C2]) = 1 ⇔ (C1,C2) ∈ E

Proof. (a) follows from the definition of V in (4.1); note that |Γ|, |Q|,k ≤O(1). We

will not provide details, but (b) can be proven using arguments as in the Cook-

Levin Theorem 2.10.

We can use the configuration graphs to obtain a simple chain of inclusions:

Theorem 4.6. For all space-constructive functions S(n) one has

NTIME(S(n)) ⊆ DSPACE(S(n)) ⊆ NSPACE(S(n)) ⊆ DTIME(2O(S(n)))

Proof. The first two inclusions are clear and we only prove the last one. Let

L ∈ NSPACE(S(n)) and let M be the corresponding O(S(n))-space bounded NTM.

We construct the graph GM ,x (which has size 2O(S(|x|))) and use standard graph

algorithm to determine whether there is a path from Cstart to Caccept which can

be done in (deterministic) time 2O(S(|x|)).

In particular this implies the following:

Corollary 4.7. L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ NPSPACE ⊆ EXP ⊆ NEXP

One can prove some separation analogous to the Time Hierarchy Theorems

in Section 3.1.

Theorem 4.8. Let f , g be space constructable with f ≤ o(g (n)). Then

DSPACE( f (n)) ⊂ DSPACE(g (n)) and NSPACE( f (n)) ⊂ NSPACE(g (n))

The proof at least for DSPACE( f (n)) ⊂ DSPACE(g (n)) works again by simu-

lating the O( f (n))-time machine and flipping the output. When counting space,

a constant factor overhead suffices for the simulation. Theorem 4.8 also implies

that L 6= PSPACE and NL 6= NPSPACE. But the following conjectures are still open.

Conjecture 3. P 6= PSPACE.

Conjecture 4. L 6= NP.
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4.3 PSPACE-completeness

Recall that PSPACE is the set of languages that can be decided in polynomial

space. We can define a notion of completeness that is analogous to NP-completness

(see Sec 2.2). Here we use the same Karp-reductions ≤p .

Definition 4.9. A language A is PSPACE-hard if B ≤p A for all B ∈ PSPACE. A

language A is PSPACE-complete if A ∈ PSPACE and A is PSPACE-hard.

The class PSPACE seems massive and it is not clear that there would be any

natural PSPACE-complete language. But curiously there is. Let ϕ be any boolean

formula depending on variables x1, . . . , xn ∈ {0,1}. We do not restrict ϕ to be a

CNF or DNF.

Definition 4.10. A quantified boolean formula (QBF) is of the form

Q1x1Q2x2 . . .Qn xn ϕ(x1, . . . , xn)

where Qi ∈ {∃,∀} and ϕ is an arbitrary boolean formula with variables x1, . . . , xn ∈
{0,1}.

For example

∃x1∃x2∀x3 (¬x1 ∧¬x2)∨¬(x3 ∧x1)

is a QBF. Since each variable xi appears exactly once with a quantifier in front,

each QBF either evaluates to true or to false. We define the language of tautolog-

ical QBFs

TQBF :=
{

Φ : Φ is a QBF that evaluates to true
}

For example if ϕ is a CNF in variables x1, . . . , xn , then

ϕ ∈ SAT ⇐⇒ ∃x1∃x2 . . .∃xnϕ ∈ TQBF

Hence SAT ≤p TQBF and TQBF is at least NP-hard. But in fact, one can prove the

following stronger result:

Theorem 4.11. TQBF is PSPACE-complete.

Proof. First we prove that TQBF ∈ PSPACE. Let Φ be the input QBF. We give a

recursive algorithm to decide whether Φ ∈ TQBF that requires only linear space.

Suppose for symmetry reasons that the first quantifier in Φ is an ∃ and so we

write

Φ=∃x1 Q2x2 . . .Qn xn ϕ(x1, . . . , xn)
︸ ︷︷ ︸

=:F (x1)
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We recursively compute F (0) and F (1) sequentially, reusing the space, only keep-

ing the two bits F (0),F (1) ∈ {0,1}. The terms F (0) and F (1) are again each a QBF

with n − 1 variables. Then we output F (0)∨ F (1). This algorithm indeed takes

space at most O(|Φ|).

Next, we prove that TQBF is PSPACE-hard. Consider a language L ∈ PSPACE

and let M be a Turing Machine that uses space S(n) where S(n) is a polynomial

in n. For an input x with n := |x|, we consider the configuration graph GM ,x . That

graph has size 2O(S(n)) which does not seem to be helpful. But GM ,x is actually

very structured and we know that (as S(n) ≥ log(n)) there is an O(S(n))-size CNF

ϕM ,x that encodes all the edges, i.e.

∀C ,D ∈V : ϕM ,x (C ,D) = 1 ⇔ (C ,D)∈ E

We will use this fact to recursively construct a more general formula ψi for i ≥ 0,

satisfying

ψi (C ,D) = 1⇔∃ path of length ≤ 2i in GM ,x from C to D

The base case is

ψ0(C ,D) := (C = D)
︸ ︷︷ ︸

dist. 0

∨ϕM ,x (C ,D)
︸ ︷︷ ︸

dist. 1

For the recursive step, we observe that there is a path of length at most 2i from C

to D if and only if there is some configuration F “in the middle” so that it takes at

most 2i−1 steps from C to F and at most 2i−1 steps from F to D. Then the natural

choice would be to set

ψi (C ,D) := ∃F :
(

ψi−1(C ,F )∧ψi−1(F,D)
)

(4.2)

for i ≥ 1. There is a problem however: using this definition, the size of the con-

structed formula would double and hence grow proportional to 2i . A more effi-

cient way is to define instead

ψi (C ,D) :=∃F∀C ′∀C ′′((((C ′,C ′′) = (C ,F ))∨ ((C ′,C ′′) = (F,D))
)

⇒ψi−1(C ′,C ′′)
)

(4.3)

We encourage the reader to verify that (4.2) and (4.3) are indeed equivalent. Next,

we analyze the size of the constructed QBF. We note that |ψ0| ≤ O(S(n)) and the

recursion gives |ψi | ≤ |ψi−1|+O(S(n)) which resolves to |ψi | ≤O((i +1) ·S(n)) for

all i ≥ 0. Finally, the Turing machine M takes at most 2O(S(n)) iterations on input

x, hence setting i :=O(S(n)) gives

x ∈ L ⇔ψO(S(n)) ∈ TQBF

The final QBF has size |ψO(S(n))| ≤O(S(n)2) which concludes the claim.
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We note that the argument to prove Theorem 4.11 did not actually use the

that Turing machine M is deterministic and would have worked as well for a

non-deterministic one. That means TQBF is actually NPSPACE-complete and so

PSPACE = NPSPACE. We can refine this claim as follows3:

Theorem 4.12 (Savich 1970). For any space-constructable function4 S(n) one has

NSPACE(S(n)) ⊆ DSPACE(S(n)2).

Proof. Let L ∈ NSPACE(S(n)) and let M be the non-deterministic Turing machine

deciding L in O(S(n)) space. Fix an input x ∈ {0,1}∗. As we have seen in the proof

of Theorem 4.11, there is an efficiently constructable QBF ψ of size O(S(|x|)2) so

that x ∈ L if and only if ψ ∈ TQBF. We also have seen in Theorem 4.11 that one can

decide in space O(|ψ|) whether ψ ∈ TQBF. That gives the claim.

We want to comment on the fact that we allowed QBFs to be arbitrary boolean

formulas rather than in standard form of DNF or CNF. And in fact, there are for

example O(n)-size DNFs in n boolean variables for which every equivalent CNF

has size 2Ω(n). So one cannot easily convert boolean formulas — as long as one

keeps the set of variables fixed. Now consider a QBF of the form

ψ=Q1x1Q2x2 . . .Qn xn ϕ(x1, . . . , xn)

Then there is a polynomial time Turing machine that on input of ϕ and values

x1, . . . , xn , evaluates ϕ(x1, . . . , xn). Then by the Cook-Levin Theorem there is a

CNF φ′ of size at most poly(|ϕ|) containing the old variables x as well as new

variables y so that for all x ∈ {0,1}n one has

ϕ(x) =∃y ∈ {0,1}poly(|ϕ|) : φ′(x, y)

That means one could actually transform any QBF in polynomial time into an

equivalent one where the boolean formula is indeed a CNF. But this comes at the

cost of additional variables.

4.4 More on logarithmic space

Next, we want to introduce a notion of completeness for NL. Note that NL ⊆ P

and likely this inclusion is strict. We cannot use a reduction like the Karp re-

duction ≤p that allows arbitrary polynomial time computation in the reduction

3We make it look like that Savitch’s Theorem is just a trivial observation. But the reader may

note that the result Savich preceeds the one of PSPACE-hardness for TQBF.
4With some extra work one can drop the assumption that the function S(n) is space-

constructable but we skip this here.
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because then the reduction itself is (likely) more powerful than the class NL itself.

In order to draw meaningful conclusions from the existence of a reduction we

should restrict it to logarithmic space as well.

Definition 4.13. For languages A,B ⊆ {0,1}∗ we write A ≤ℓ B (we say A is logspace

reducible to B) if there is a function f : {0,1}∗ → {0,1}∗ that is computable in space

O(logn) so that

x ∈ A ⇔ f (x) ∈B ∀x ∈ {0,1}∗

In the definition, the Turing machine computing f has a read-only input tape

containing x, a write-only output tape for writing f (x) and k = O(1) working

tapes with space O(logn).

Lemma 4.14. For languages A,B ,C ⊆ {0,1}∗ one has

(a) If A ≤ℓ B and B ≤ℓ C then A ≤ℓ C

(b) If A ≤ℓ B and B ∈ L then A ∈ L

(c) If A ≤ℓ B and B ∈ NL then A ∈ NL

Proof. We prove only (a); (b) and (c) use similar arguments. Let f be the function

in the reduction A ≤ℓ B computed by Turing machine M f and let g be the func-

tion in the reduction B ≤ℓ C computed by Mg . Now let x be an input for A. The

obvious way to compute g ( f (x)) would be to first compute f (x) using M f and

then compute g ( f (x)) simulating Mg . But the problem is that we cannot store

the output f (x) since we only have logarithmic space available. But we can mod-

ify M f so that on input of (x, i ) it computes the bit f (x)i in O(logn) space. Now

we simulate Mg on input f (x) so that each time a bit f (x)i is being requested we

run the simulation of M f .

Now we make the natural definition using the log space reduction:

Definition 4.15. A language A ⊆ {0,1}∗ is NL-hard if B ≤ℓ A for all B ∈ NL. More-

over A is NL-complete if A ∈ NL and A is NL-hard.

Next, it would be nice to have a natural problem that is NL-complete. And

in fact, PATH has that property. Recall that PATH contains all the tuples (G , s, t )

where G is a directed graph that contains an s-t path.

Theorem 4.16. PATH is NL-complete.

Proof. We have already argued that PATH∈ NL, so it remains to show NL-hardness.

Let L ∈ NL and let M be a O(logn)-space NTM that decides L. Fix an input

x ∈ {0,1}∗ and consider the configuration graph GM ,x = (V ,E ). Since M uses only
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O(logn) space, the configurations are represended by O(logn) bits as well. Then

the reduction is simply f (x) = (GM ,x ,Cstart,Caccept). Here the GM ,x is written on

the write-once output tape where it is crucial that given two configurations C

and D we can check in O(log n)-space whether (C ,D)∈ E .

Revisiting the Cook-Levin Theorem (Theorem 2.10) we can see that the con-

struction of the SAT formula can also be done in logarithmic space. Hence in fact,

SAT is also NP-complete under log-space reduction.

4.5 NL = coNL

In the time complexity world, we conjecture that NP 6= coNP as there does not

seem to be a time-efficient way to certify that say a SAT formula is not satisfiable.

Oddly, in the space-constrained world the classes that we consider behave very

differently. First we want to give an alternative definition for NL that corresponds

to the alternative NP-definition using the notion of a verifier.

Definition 4.17 (Alternative definition of NL). A language L ⊆ {0,1}∗ is in NL if

there is a deterministic Turing machine M and a polynomial p so that

L =
{

x ∈ {0,1}∗ | ∃u ∈ {0,1}p(|x|) : M(x,u) = 1
}

Here M has

• a read-only input tape containing x

• k =O(1) working tapes with O(logn) cells each

• a read-only read-once tape containing u

Here a read-once tape means that the head only has the options to either stay

put or move to the right. It cannot move back to the left. Intuitively this models

that a Turing machine corresponding to NL can make polynomially many non-

deterministic choices but it doesn’t have the space to remember the choices that

it made in the past. We leave it to the reader to formally verify that definitions of

NL in Def 4.3 and Def 4.17 are indeed equivalent. We also note that dropping the

assumption of a read-once tape for the certificate we would actually recover the

much more powerful class of NP.

We define coNL := {L̄ | L ∈ NL}. Then we prove the following result, which

apparently was a surprise to researchers when it was first discovered:

Theorem 4.18 (Immerman-Szelepcsényi 1987). NL = coNL.
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Proof. We know that PATH is NL-complete, hence it remains to prove that PATH ∈
NL. It suffices to design a deterministic O(logn)-space Turing machine M so

that for each directed graph G = (V ,E ) and two vertices s, t there is a read-once

certificate u ∈ {0,1}p(n) with M((G , s, t ),u) = 1 if and only if t is not reachable

from s. In other words, we need to design a certificate for the fact that there is

no s-t path that we could check in O(logn)-space. Note that there is actually a

very simple certificate that certifies that s and t are disconnected: simply pick a

set S ⊆ V with s ∈ S, t ∉ S and (u, v) ∉ E for all u ∈ S, v ∉ S. The problem is that

this natural certificate is not verifiable in a read-once fashion. So we design a

more complicated read-once certificate. The intuition is that the certificate will

describe the sets C0, . . . ,Cn with Ci = {v ∈V | v reachable from s in ≤ i steps}.

s

v

t
Pv,i

C0

C1 . . .
Ci . . .

Cn

More formally, the certificate will look as follows (where the order is impor-

tant as the verifer cannot remember more than O(logn) bits and can read the

certificate only once). We assume that the vertices of G = (V ,E ) are V = {1, . . . ,n}.

Certificate. Define c0 := 1. For i = 1, . . . ,n the certificate contains a

number ci ∈N and pairs (u(i )
k

,P (i )
k

)k=1,...,ci
of vertices with their certifi-

cate of inclusion in Ci . Moreover we include pairs (v (i )
k

,Q(i )
k

)k=1,...,n−ci

of nodes with their certificates of exclusion from Ci .

Here the truthful choice would be that ci = |Ci |, Ci = {u(i )
1 , . . . ,u(i

ci
} and [n] \

Ci = {v (i )
1 , . . . , v (i )

n−ci
} where the nodes are expected in increasing order. Each P (i )

k

is expected to be an s-u(i )
k

path and Q(i )
k

is expected to be ci−1 many paths from s

to all the nodes in Ci−1 in increasing order of their end nodes. The verifier works

as follows:

(1) FOR i = 1 TO n

(2) Verify that u(i )
1 < . . . < u(i )

ci
and that P (i )

k
is an s-u(i )

k
path in G of length

at most i . If i = n then verify that t is not in the list.

(3) Verify that v (i )
1 < . . . < v (i )

n−ci
. Fo each k verify that Q(i )

k
is a set of ci−1

many paths of length at most i − 1 from s to some nodes w1 < . . . <
wci−1

. Also verify that (wℓ, v (i )
k

) ∉ E for ℓ= 1, . . . ,ci−1.
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(4) Accept if all verifications are successful.

It is important to keep in mind that in iteration i the algorithm only needs to

remember the numbers ci and ci−1 and a constant number of nodes at a time. If

indeed there is no s-t path then as certificate one may simply pick the truthful

choice described above. The tricky part is to prove the following:

Claim. Let G = (V ,E ) be a graph with s, t ∈V that contains an s-t path. Then

the verifier will reject any certificate.

Proof of claim. We prove the contrapositive, i.e. assuming the verifier accepts,

we show that there is no s-t path. Consider an arbitrary certificate (u(i )
k

,P (i )
k

)k=1,...,ci

and (v (i )
k

,Q(i )
k

)k=1,...,n−ci
for i = 1, . . . ,n that the verifier accepts. We denote C∗

i
:=

{v ∈ V | v reachable from s in ≤ i steps} as the actual set of vertices reachable

in i steps. We keep in mind that the verifier does not know C∗
i

. We set Ci :=
{u(i )

1 , . . . ,u(i )
ci

} as the set that the certificate claims to be C∗
i

and let C̄i = {v (i )
1 , . . . , v (i )

n−ci
}

be the set that the certificate claims to be the complement of C∗
i

. Here we set

C0 := {s} for convenience. By induction, for i ∈ {0, . . . ,n + 1} suppose the certifi-

cate has been truthful before iteration i , i.e. C j =C∗
j

for all j < i . If i = n +1 then

the verifier only accepted because t does not appear in the final list and so there

is no s-t path. So suppose that 0 ≤ i ≤ n. Now consider the verifier in iteration i .

Due to the order of the nodes, the verifier can check that the list defining Ci con-

tains indeed ci many different nodes and for each node u(i )
k

it can verify whether

P (i )
k

indeed is a path of length at most i from s to u(i )
k

. From that we know that

|Ci | = ci and Ci ⊆ C∗
i

. Now consider what the verifier does in (3). Again due to

the order of the nodes we know that indeed |C̄i | = n − ci . For each k the verifier

can also verify whether Q(i )
k

indeed represents ci−1 paths of length at most i −1

to different nodes w1 < . . . < wci−1
that have no edge going to v (i )

k
. In particular

{w1, . . . , wci−1
} ⊆C∗

i−1
. By choice of the index i , the number ci−1 is indeed correct,

i.e. ci−1 = |Ci−1| = |C∗
i−1|. From that we know that indeed {w1, . . . , wci−1

} = C∗
i−1.

That means we have verified that there is no edge going from C∗
i−1 to v (i )

k
which

means that in fact v (i )
k

∉C∗
i

. Hence C̄i ⊆V \C∗
i

. Since |Ci |+ |C̄i | = n we know that

Ci =C∗
i

and C̄i =V \C∗
i

. That concludes the claim.
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Chapter 5

The polynomial hierarchy

A relevant problem in logic is the one of minimizing the size of boolean formulas.

This can be formalized as the language

MINDNF=
{

(ϕ,k) |ϕ is a DNF that has an equivalent DNF of size ≤ k
}

This problem does not seem to obviously fall in either NP or coNP. But one can

rewrite

MINDNF=
{

(ϕ,k) | ∃ϕ′∀x : ϕ,ϕ′ are DNFs and |ϕ′| ≤ k and ϕ(x) =ϕ′(x)
}

which means that one can express MINDNF efficiently with two quantifiers. That

motivates the following the following definition:

Definition 5.1. A language L ⊆ {0,1}∗ is in Σ
P
k

if there are polynomials p1, . . . , pk

and a polynomial time Turing machine M so that

L =
{

x ∈ {0,1}∗ | ∃u1 ∈ {0,1}p1(|x|)∀u2 ∈ {0,1}p2(|x|) . . .Qk uk ∈ {0,1}pk (|x|) : M(x,u1, . . . ,uk) = 1
}

where Qk =∃ if k is odd and Qk =∀ if k is even.

Moreover L is in Π
P
k

if there are p1, . . . , pk and M so that

L =
{

x ∈ {0,1}∗ | ∀u1 ∈ {0,1}p1(|x|)∃u2 ∈ {0,1}p2(|x|) . . .Qk uk ∈ {0,1}pk (|x|) : M(x,u1, . . . ,uk) = 1
}

where Qk =∀ if k is odd and Qk =∃ if k is even.

Note that ΠP
k
= {L̄ | L ∈ Σ

P
k

} by definition. We also observe that P = Σ
P
0 = Π

P
0

and NP = Σ
P
1 while coNP =Π

P
1 . We can also see that MINDNF ∈ Σ

P
2 . The following

is also clear from the definition:

47
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Lemma 5.2. For all k ≥ 0, ΣP
k
⊆Π

P
k+1

and Π
P
k
⊆Σ

P
k+1

.

It will also be interesting to consider the class of problems that can be ex-

pressed with any (unspecified) constant number of alternating quantifiers:

Definition 5.3. We define the polynomial hierarchy as PH :=
⋃

k≥0 Σ
P
k
=

⋃

k≥0 Π
P
k

.

Σ
P
0 =Π

P
0

= P
Σ

P
2

Σ
P
1

= NP

Π
P
1

= coNP
Π

P
2

. . . . . .

PH

As usually it will be interesting to understand complete problems for these classes.

Definition 5.4. A language A ∈ {0,1}∗ is ΣP
k

-complete if A ∈ Σ
P
k

and B ≤p A for all

B ∈Σ
P
k

.

We define Π
P
K and PH-completeness analogously. It might not come totally

surprising that we consider the natural restrictions of TQBF to k alternations of

different quantifiers.

Definition 5.5. Define ΣkSAT be the set of quantified boolean formulas of the

form

∃x1∀x2 . . .Qk xkϕ(x1, . . . , xk )

that evaluate to true. Here each xi is a vector of boolean variables. Similarly

ΠkSAT is the set of quantified boolean formulas of the form

∀x1∃x2 . . .Qkϕ(x1, . . . , xk )

Using insight from the Cook-Levin Theorem one can prove:

Theorem 5.6. ΣkSAT is ΣP
k

-complete and ΠkSAT is ΠP
k

-complete.

We skip the argument here. One can also show that MINDNF is Σ
P
2 -complete

though the argument is more involved. It is conjectured that ΣP
k
6=Π

P
k

for all k ≥ 1

and Σ
P
k
6=Σ

P
k+1

for all k ≥ 0. Finally we can show that the class PH likely does not

have complete problems.
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Theorem 5.7. The following holds:

(a) For all k ≥ 1 one has: (ΣP
k
=Π

P
k

) ⇒ (PH =Σ
P
k

)

(b) (P = NP) ⇒ (P = PH)

If (a) happens for a value of k, then we say that the polynomial hierarchy

collapses to level k.

Proof. We only show (b), (a) works similarly. To be more precise we prove:

Claim. P = NP ⇒∀k ≥ 0 : ΣP
k
=Σ

P
k+1

.

Proof of Claim. Let L ∈Σ
P
k+1

. First consider the case that k +1 is even. Then

L =
{

x ∈ {0,1}∗ | ∃u1 ∈ {0,1}p1(|x|) . . .∀uk+1 ∈ {0,1}pk+1(|x|) : V (x,u1, . . . ,uk+1) = 1
}

=
{

x ∈ {0,1}∗ | ∃u1 ∈ {0,1}p1(|x|) . . .¬∃uk+1 ∈ {0,1}pk+1(|x|)V (x,u1, . . . ,uk+1) = 0
︸ ︷︷ ︸

(∗)

}

where p1, . . . , pk+1 are polynomials and V is a deterministic polynomial-time Tur-

ing machine. By assumption, the computation in (∗) is in NP = P and hence can

be replaced by a deterministic polynomial time Turing machine U so that

L =
{

x ∈ {0,1}∗ | ∃u1 ∈ {0,1}p1(|x|) . . .∃uk ∈ {0,1}pk(|x|) : U (x,u1, . . . ,uk ) = 1
}

.

That means L ∈Σ
P
k

. The claim with k +1 odd is similar (easier in fact as the nega-

tion is not needed).

The levels on the polynomial hierarchy can also be expressed using oracles.

Recall that for a language O ⊆ {0,1}∗ we denote NPO as the set of languages that

can be computed using a non-deterministic polynomial time Turing machine

that has access to an oracle for O.

Theorem 5.8. The following holds

(a) Σ
P
2 = NPSAT

(b) Π
P
2 = coNPSAT

(c) Σ
P
k+1

= NPΣkSAT

Proof. We prove (a); (b) and (c) are similar.

Claim I. ΣP
2 ⊆ NPSAT.

Proof of Claim I. Let L ∈Σ
P
2 . Then we can write

L =
{

x ∈ {0,1}∗ | ∃u1 ∈ {0,1}p1(|x|)∀u2 ∈ {0,1}p2(|x|) : V (x,u1,u2) = 1
}

=
{

x ∈ {0,1}∗ | ∃u1 ∈ {0,1}p1(|x|)¬∃u2 ∈ {0,1}p2(|x|) : V (x,u1,u2) = 0
}
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Then an NPSAT algorithm on input x works as follows: guess u1, then use the

Cook-Levin Theorem to compute a SAT formula ψ in polynomial time so that

ψ(x,u1,u2) = 1 ⇔V (x,u1,u2) = 0. Then we call the oracle to test whether ψ ∈ SAT
and flip the outcome.

Claim II. NPSAT ⊆Σ
P
2 .

Proof of Claim II. Let L ∈ NPSAT. Let M be the non-deterministic Turing machine

with oracle access to SAT that decides L in polynomial running time T (n). Con-

sider an input x ∈ {0,1}∗. Then M guesses some computation path P of length

at most T (n) on which it queries a set (ψi )i∈I of SAT instances. Let I1 ⊆ I be the

satisfiable ones and let I0 ⊆ I be the unsatisfiable ones. That means we can write

x ∈ L ⇔ ∃computation path P, SAT formulas (ψi )i∈I , partition I = I0∪̇I1,

assignments x(i ) for ψi with i ∈ I1 :

∀assignments y (i ) for ψi with i ∈ I0 :

P is indeed an accepting computation path quering the SAT formulas

(ψi )i∈I , x(i ) is satisfying for ψi for all i ∈ I1, y (i ) is not satisfying for

ψi for all i ∈ I0

This formulation is indeed in Σ
P
2 .

5.1 Time space tradeoffs for SAT

At the time of this writing we cannot rule out that SAT ∈ DTIME(n) and we cannot

rule out that SAT ∈ DSPACE(logn). But curiously we can prove that there is no

algorithm that satisfies both bounds.

Definition 5.9. For functions S,T : N→ N we define DTIME-SPACE(T (n),S(n))

as the set of languages L ⊆ {0,1}∗ that are decided by a deterministic Turing ma-

chine M that on any input x takes time O(T (|x|)) and space O(S(|x|)).

First we prove a more general result:

Theorem 5.10. For 0< ε≤ 1
8 one has NTIME(n) 6⊆ DTIME-SPACE(n1+ε,nε).

Proof. For the sake of contradiction, we assume that NTIME(n) ⊆ DTIME-SPACE(n1+ε,nε)

for a small enough constant ε> 0 that we determine later. By the usual padding

argument we then know that for any function g (n) that is time and space-constructable

one has

NTIME(g (n))⊆ DTIME-SPACE(g (n)1+ε, g (n)ε) (5.1)
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We will prove the following which then gives a contradiction to the Nondetermin-

istic Time Hierarchy Theorem (Theorem 3.4) because (1+3ε)·(1+ε)2 < 2 for ε≤ 1
8 .

Claim. Assuming (5.1) one has NTIME(n2) ⊆ NTIME(n(1+3ε)(1+ε)2
).

Proof of Claim. Let L ∈ NTIME(n2). Applying (5.1) with g (n) = n2 we know that

NTIME(n2) ⊆ DTIME-SPACE(n2+2ε,n2ε). Hence there is a deterministic Turing

machine M deciding L in time n2+2ε on space n2ε. Let x ∈ {0,1}∗ be an input

with n := |x| for which we have to decide whether x ∈ L. Consider the configu-

ration graph GM ,x = (V ,E ) (see Sec 4.2). We know that all configurations can be

encoded with O(n2ε) bits and if x ∈ L, then there is a path of length n2+2ε from

Cstart to Caccept. On the shortest computation path, pick a configuration every

O(n1+ε) time steps and denote them with C0, . . . ,Cn1+ε .

C0 C1
. . . Cn1+ε

Cstart Caccept

O(n1+ε) steps

O(n2+2ε) steps

There is a Turing machine U that computes the function

U (x,C ,D) =
{

1 if there is a path in GM ,x from C to D in O(n1+ε) steps

0 otherwise

for configurations C ,D ∈V . Since the number of steps is bounded by O(n1+ε) and

the encoding length of C and D is O(n2ε) we can bound the non-deterministic

running time of U by O(n1+ε ·n2ε). Applying (5.1) with g (n) = n1+3ε we know in

particular that NTIME(n1+3ε) ⊆ DTIME(n(1+3ε)(1+ε)). That means we may assume

that U is a deterministic Turing machine that takes time O(n(1+3ε)(1+ε)). Next, we

write

x ∈ L ⇔ ∃C1, . . . ,Cn1+ε ∈V : ∀i ∈ [n1+ε] : U (x,Ci−1,Ci ) = 1

⇔ ∃C1, . . . ,Cn1+ε ∈V : ¬∃i ∈ [n1+ε] : U (x,Ci−1,Ci ) = 0
︸ ︷︷ ︸

(∗)

⇔ ∃C1, . . . ,Cn1+ε ∈V : ¬W (x,C1, . . . ,Cn1+ε) = 1

We can we phrase the computation in (∗) as a non-deterministic Turing machine

W that takes input x,C1, . . . ,Cn1+ε , guesses the index i ∈ [n1+ε] and runs the de-

terministic Turing machine U that takes time O(n(1+3ε)(1+ε)). Overall the non-

deterministic time is dominated by O(n(1+3ε)(1+ε)). Applying (5.1) there is a de-

terministic version of W that we denote by Wdet that runs in time O(n(1+3ε)(1+ε)2
).
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Then

x ∈ L ⇔∃C1, . . . ,Cn1+ε ∈V : Wdet(x,C1, . . . ,Cn1+ε ) = 0
︸ ︷︷ ︸

(∗∗)

Then (∗∗) is a non-deterministic computation that is in NTIME(n(1+3ε)(1+ε)2
). That

finishes the claim.

Corollary 5.11. For any 0 < δ< 1
8

one has SAT ∉ DTIME-SPACE(n1+δ,nδ).

Proof sketch. Suppose the claim is false. Let L ∈ NTIME(n) and fix an input x ∈
{0,1}∗ for L with n := |x|. Then by revisiting the Cook-Levin Theorem one can

show that in time n logO(1) n and space logO(1) n one can construct a SAT fomula

ψ of size O(n logn) with x ∈ L ⇔ ψ ∈ SAT. Then one can decide whether ψ ∈
SAT in time O((n logn)1+δ) and space O((n logn)δ). That is a contradiction to

Theorem 5.10 for δ< 1
8 .



Chapter 6

Boolean circuits

6.1 Introduction to boolean circuits

In this chapter we want to discuss boolean circuits.

Definition 6.1. A boolean circuit C is a directed acyclic graph G = (V ,E ) with n

sources labelled by x1, . . . , xn and a distinguished sink. All non-source nodes are

labelled with one of the operations ∨,∧,¬. Nodes labelled with ∨ or ∧ have in-

degree (also called fan-in) of 2 and nodes labeled ¬ have fan-in 1. The size |C | of

the boolean circuit is the number of vertices. On input of x ∈ {0,1}n the circuit

computes a boolean value of C (x) ∈ {0,1} at the sink node in the natural way.

x1 x2

¬ ¬

∧ ∧

∨

sources

sink

Circuit C computing the function C (x1, x2) = (x1 = x2)

Naturally we are interested in the size of a circuit needed to compute certain

boolean functions.

Theorem 6.2. Any boolean function f : {0,1}n → {0,1} can be computed by a cir-

cuit of size O(2n/n).
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Proof. We prove a O(2n) bound and leave the slightly better bound for the home-

work. We can write a function f as

f (x) = (x1 ∧ f (1, x2, . . . , xn))∨ (¬x1 ∧ f (0, x2, . . . , xn))

Then recursively replace the function f (1, x2, . . . , xn) and f (0, x2, . . . , xn) that both

have n−1 variables by circuits. If sn is the circuit size that this recursive approach

gives for n variables, then one can see that sn ≤ 2sn−1 +O(1) and s1 = O(1). This

can be resolved to sn ≤O(2n).

One can also prove a surprisingly tight lower bound.

Theorem 6.3. For every n there is a function f : {0,1}n → {0,1} for which all cir-

cuits have size at least Ω(2n/n).

Proof. We will use a counting argument. Fix a number s ≥ n so that every func-

tion f : {0,1}n → {0,1} has indeed a circuit of size at most s. We discuss how to

encode a circuit C where |C | ≤ s. We number the nodes by 1, . . . (at most) s. For

each gate we use O(logn) bits to encode the type (∨, ∧ or ¬ or x1, . . . , xn) and

O(log(s)) bits to encode the at most 2 predecessors. For the whole circuit we will

need at most C s log(s) bits for some constant C > 0 as s ≥ n. Since there are many

22n
functions of the form f : {0,1}n → {0,1} we have

2C s log(s) > 22n

⇒ C s log(s)> 2n ⇒ s ≥Ω(2n/n)

One can rephrase the proof of Theorem 6.3 to also give that most functions

f : {0,1}n → {0,1} need circuits of size Ω(2n/n). On the downside, Theorem 6.3

does not provide a lower bound for any natural function.

6.2 Circuits and complexity classes

We can also introduce complexity classes dealing with circuits:

Definition 6.4. For a function T : N→N we define

SIZE(T (n)) :=
{

f : {0,1}∗ → {0,1} | f can be computed by a family of

circuits (Cn)n∈N of size |Cn | ≤ T (n)

}

Note that one circuit only works for one input size n. So if we say that a func-

tion f : {0,1}∗ → {0,1} is computed by a family (Cn)n∈N of circuits then we mean

that f (x) =Cn(x) for all n ≥ 0 and all x ∈ {0,1}n . Then the class of functions with

polynomial size circuits is the following:
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Definition 6.5. P/poly :=
⋃

c>0 SIZE(cnc ).

We will later explain the reason for the name P/poly.

Theorem 6.6. For any time constructable function T (n) one has DTIME(T (n)) ⊆
SIZE(O(T (n) · log(n))).

The proof works by applying the argument from the Cook-Levin Theorem to

a deterministic Turing machine. The logarithmic blowup comes from making

the Turing machine oblivious. Then an oblivious Turing machine with running

time T ′(n) can be turned into a circuit of size O(T ′(n)). We will not give details

here. Theorem 6.6 implies the following:

Corollary 6.7. P ⊆ P/poly.

There is also a rather simple hierarchy theorem for circuits:

Theorem 6.8. There is a universal constant C > 0 so that for all S(n) ≤ o(2n/n)

one has SIZE(S(n)) 6⊆ SIZE(C ·S(n)).

Proof. Let us abbreviate size( f ) as the minimum size of a circuit computing f .

We know that there are constants C1 < C2 so that for all n there is a function f :

{0,1}n → {0,1} with size( f ) ≥C12n/n while all functions f have size( f ) ≤C22n/n.

Pick m minimal so that S(n) < C12m/m. Then there is a function f ∗ only de-

fined on the first m coordinates so that size( f ∗) ≥C12m/m > S(n). But size( f ∗) ≤
C22m/m ≤ 2C2

C1
·S(n).

6.3 Uniform vs. non-uniform computation

Let M1, M2, . . . be the recurrent Turing machine sequence from Lemma 3.1 that

contains every possible Turing machine infinitely often. Consider the unary vari-

ant of the Halting problem

UHALT :=
{

1n | Mn halts on input 1n
}

Then we know that there is no Turing machine computing UHALT. But it is easy

define a family of circuits (Cn)n∈N with size |Cn| ≤ O(n) computing UHALT. That

means UHALT ∈ P/poly. The issue is that Turing machines are a uniform model of

computing where one has one Turing machine for all input lengths. In contrast

circuits are a non-uniform model of computing where we have a different circuit

for every input length n.

If one wants to compare the power of circuits with Turing machines, then the

right model is the following:
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Definition 6.9. Let T,α : N→Nbe functions. A language L ∈ {0,1}∗ is in DTIME(T (n))/α(n)

if there is a sequence of strings (an)n∈N with an ∈ {0,1}α(n) so that

L =
{

x ∈ {0,1}∗ | M(x, a|x|) = 1
}

for a deterministic T (n)-time Turing machine M .

If L ∈ DTIME(T (n))/α(n), then we also say that L is decidable by a time-T (n)

Turing machine with α(n) bits of advice. And in fact, problems computable by

polynomial size circuits correspond exactly to those computable by Turing ma-

chines taking poly(n) bits of advice:

Theorem 6.10. One has P/poly =
⋃

c>0 DTIME(nc)/nc

The proof is straightforward and we just sketch the argument.

Proof sketch. If L ∈ P/poly then for input n the advice is just the circuit Cn decid-

ing the inputs of length n and on input of x ∈ {0,1}n the Turing machine M just

evaluates Cn(x).

Now let L ∈ DTIME(nc )/nc and fix an input length n with advice string an ∈
{0,1}nc

. Then M(x,αn ) is a deterministic Turing machine machine that can be

turned into a circuit following Theorem 6.6.

Could it be true that SAT can be solved in polynomial time with polynomial

advice? We cannot rule this out but we can give some evidence that this is un-

likely as it would cause the polynomial hierarchy to collapse on the second level.

Theorem 6.11 (Karp, Lipton 1980). (NP ⊆ P/poly) ⇒ (PH =Σ
P
2 ∩Π

P
2 ).

Proof. First we prove an auxiliary result. Here we will make use of circuits that

have more than one output bit which extends the original definition in a straight-

forward way.

Claim I. Assume NP ⊆ P/poly. Let M be a polynomial time Turing machine.

Then there is a family of circuits (Cn,m)n,m∈N with Cn,m : {0,1}n → {0,1}m of size

poly(n +m) so that for all x ∈ {0,1}n one has M(x,Cn,m (x)) = 1 ⇔ ∃y ∈ {0,1}m :

M(x, y) = 1.

Proof of Claim I. Fix x and set n := |x|. By the Cook-Levin Theorem there is a SAT

formulaϕ so that ∃(y, z) : ϕ(y, z) = 1 ⇔∃y : M(x, y) = 1 where z are some auxiliary

variables. Assuming NP⊆ P/poly we know that there is a Turing machine M ′ with

an advice string a ∈ {0,1}poly(|ψ|) that can decide whether ϕ′ ∈ SAT in polynomial

time for all instances ϕ′ with |ϕ′| = |ϕ|. We first run M ′ to test whether ϕ ∈ SAT. If
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so, we go through all the variables in (y, z) and set them to 0 or 1, testing feasibil-

ity each time and keeping it satisfiable1. Then we obtain a Turing machine that

using the advice string can find a satisfying assignment (y, z) in polynomial time

if there is one. Then we turn that Turing machine with polynomial advice into a

circuit, see Theorem 6.10.

Now we come to the main proof. We assume that NP ⊆ P/poly and derive that

then Π
P
2 ⊆ Σ

P
2 . By Theorem 5.7.(a), this then collapses the polynomial hierarchy

on the 2nd level. Let L ∈ Π
P
2 which means that there is some polynomial p and

some polynomial time Turing machine M so that

L =
{

x ∈ {0,1}∗ | ∀u ∈ {0,1}p(|x|)∃v ∈ {0,1}p(|x|) : M(x,u, v) = 1
}

Fix an input x ∈ {0,1}∗ with n := |x|. We claim that for some polynomial q one has

∀u ∈ {0,1}p(n)∃v ∈ {0,1}p(n) : M(x,u, v) = 1 (∗)

⇔ ∃q(n)-size circuit C ∀u ∈ {0,1}p(n) : M(x,u,C (x,u)) = 1 (∗∗)

If (∗∗) is true then for any u one can pick v :=C (x,u) to make (∗) true. Now sup-

pose (∗) is true. By Claim I, there is indeed a polynomial size circuit that for each

u produces a v so that M(x,u, v) = 1. Hence also (∗∗) is true. The formulation

(∗∗) shows that L ∈Σ
P
2 which gives the claim.

One can fully unconditionally prove that there are problems in PH that re-

quire at least polynomially large circuits. Though we have to admit that the proof

feels somewhat disappointing as it again relies on the counting argument from

Theorem 6.3.

Theorem 6.12 (Kannan). For all k ≥ 1, ΣP
2 ∩Π

P
2 6⊆ SIZE(nk).

For the sake of space and time, we only sketch the argument.

Proof. If NP 6⊆ P/poly then the claim is trivially true, so suppose that NP⊆ P/poly.

We use ¹ to denote the (bit wise) lexicographic ordering on circuits. Among all

circuits on n inputs, let Cn be the lexicographically minimal one so that size(Cn) ≥
nk+1 (we may assume that n is large enough so that this is possible). Define the

language L := {x ∈ {0,1}∗ : C|x|(x) = 1}. By construction L ∉ SIZE(nk ). We leave it

as an exercise to show that L can be written using a few quantifiers; in fact L ∈Σ
P
4 .

Now, by assumption NP ⊆ P/poly and so Theorem 6.11 we have PH = Σ
P
2 ∩Π

P
2

which gives the claim as L ∈Σ
P
4 ⊆ PH.

1We should agree that we imagine that a SAT formula has the same size whether it contains

the variable yi or a constant 0 or 1 instead.
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Chapter 7

Randomized computation

In this chapter we want to extend the concept of Turing machines and allow them

to use randomness.

7.1 Probabilistic Turing machines

Definition 7.1. A probabilistic Turing machine (PTM) M with k tapes is a Tur-

ing machine with two transition functions δ0,δ1 : Q ×Γ
k+1 →Q ×Γ

k × {L,S,R}k+1.

In each time step independently, the algorithm choses a random bit b ∈ {0,1}

uniformly and moves using transition function δb . The running time is the max-

imum number of steps before M halts over all random choices.

Note that we have restricted the definition to the decision version of Turing

machines, meaning that there is no output tape. On any input x ∈ {0,1}∗, the

output M(x) ∈ {0,1} is a random variable where Pr[M(x) = 1] is the probability to

accept the input and Pr[M(x) = 0] is the probability to reject the input.

We will define several complexity classes depending on the “type” of the error.

Similar to the case of NP we can rebuild a PTM so that it draws all the needed

random bits r at the beginning and then runs a deterministic Turing machine

based on the input x and the random bits r . So we define the complexity classes

using this alternative view. By a slight abuse of notation, for a language L ⊆ {0,1}∗

and x ∈ {0,1}∗ we also write

L(x) =
{

1 if x ∈ L

0 if x ∉ L

(as if L was a function).

59
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Definition 7.2. Let T : N→N and ε : N→ [0,1]. A language L is in BPTIMEε(T (n))

if there is a deterministic Turing machine M with running time O(T (n)) so that

Pr
r∈R {0,1}O(T (|x|))

[M(x,r ) = L(x)] ≥ 1−ε(|x|) ∀x ∈ {0,1}∗

We define BPTIME(T (n)) := BPTIME1/3(T (n)) and BPP :=
⋃

c>0 BPTIME(nc ).

Here BPP stands for bounded-error probabilistic polynomial time. When

we write r ∈R {0,1}m then we mean that r is a uniform random sample from

{0,1}m . Phrased differently, the bits r1, . . . ,rm are independent random bits so

that Pr[ri = 1] = Pr[ri = 0] = 1
2 for all i . Here the PTM will not need more than the

running time O(T (n)) many random bits. Also note that the constant 1/3 that we

have chosen was arbitrary — any constant less than 1/2 would have provided an

equivalent definition.

In the definition of BPP we allowed two-sided error. It will also be useful to

consider one-sided error where for example the decision of the PTM to accept an

input is always correct.

Definition 7.3. Let T : N → N and ε : N → [0,1]. A language L ⊆ {0,1}∗ is in

RTIMEε(T (n)) if there is a deterministic Turing machine M with running time

O(T (n)) so that

x ∈ A ⇒ Pr
r∈R{0,1}O(T (|x|))

[M(x,r ) = 1] ≥ 1−ε(|x|)

x ∉ A ⇒ Pr
r∈R{0,1}O(T (|x|))

[M(x,r ) = 0] = 1

We write RTIME(T (n)) := RTIME1/3(T (n)) and RP :=
⋃

c>0 RTIME(nc).

Here RP stands for randomized polynomial-time. Similarly one could have

one-sided error going into the other direction. We define coRTIME(T (n)) := {L̄ |
L ∈ RTIME(T (n))} and coRP := {L̄ | L ∈ RP}.

We can also consider zero-sided error but in order for that to make sense we

need to slightly adjust the definition of a PTM and allow that instead of terminat-

ing in time T (n) on any input and any random choice, it terminates in expected

time T (n) on any input.

Definition 7.4. Let T : N → N and ε : N → [0,1]. A language L ⊆ {0,1}∗ is in

ZPTIME(T (n)) if there is a PTM M so that for any x ∈ {0,1}∗ one has (a) M(x) =
L(x) and (b) the expected running time on input x is O(T (|x|)). We set ZPP :=
⋃

c>0 ZPTIME(nc ).
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Here ZPP stands for zero-error probabilistic polynomial-time. Note that one

could have defined ZPP in an equivalent way: the PTM M returns accept, reject

or “?” in polynomial time where accept and reject are always correct and “?” is

returned with probability at most 1/3. In that case one may require that the run-

ning time is bounded by a polynomial for any input and any choice of random

bits.

Theorem 7.5. ZPP = RP∩coRP.

Proof. By symmetry of ZPP it suffices to show the following:

Claim I. ZPP ⊆ RP.

Proof of Claim I. Let L ∈ ZPP be a language that is decided by a PTM M with

expected running time T (n). On input x ∈ {0,1}∗ run M for 3T (|x|) time units. By

Markov’s inequality, with probability at least 2/3, M has found a correct answer

which we then output. If M has not terminated, output 0. Then if x ∉ L we never

make a mistake. If x ∈ L then we only make a mistake with probability at most

1/3.

Claim II. RP∩coRP ⊆ ZPP.

Proof of Claim II. Let L ∈ RP∩coRP. Let MRP be the RP PTM for L and let McoRP

be the coRP PTM for L. Assume T (n) is a common upper bound on the running

time for both. Consider the following algorithm:

(1) REPEAT

(2) Run b1 := MRP(x)

(3) Run b0 := McoRP(x)

(4) If b0 = b1 then return b0

For symmetry reasons consider an input x with x ∈ L. Then in each iteration

b1 ∈ {0,1} with Pr[b1 = 1] ≥ 2/3. But b0 = 1 always. That means the decision will

always be correct and in each iteration we come to a decision with probability at

least 2/3. Then the expected number of iterations until termination is 3
2

.

We visualize the complexity classes. Though it is entirely possible that BPP =
P and all the classes collapse to one.



62 CHAPTER 7. RANDOMIZED COMPUTATION

P
RP coRP

BPP

ZPP

7.2 Arithmetic circuits

Randomization often helps to design easier or (polynomially) faster algorithms.

Occasionally it happens that first a randomized polynomial time algorithm is

known for a problem and then years later a (more complicated) deterministic

algorithm is discovered. This was for example the case with deciding primality.

In this section we want to give an example for a problem which is in coRP but is

not known to be in P.

Definition 7.6. An arithmetic circuit C over Z is a directed acyclic graph where

sources are labelled either with variable names x1, . . . , xn or constants 0 or 1. Non-

source nodes are labelled with one of the operations +, −, × each having fan-in

21. The graph contains a unique sink which given values x1, . . . , xn ∈N computes

the output C (x) in a natural way.

Consider the following example:

1The operation “−” does not commute. We agree that an order on the incoming edges is spec-

ified. In the pictures we will agree that the right input is to be subtracted from the left input.
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x1 x2

× × − +

− ×

−

sources

sink

arithmetic circuit C

The circuit computes the function C (x1, x2) = (x2
1 −x2

2)− (x1 −x2)(x1 +x2) = 0

for all (x1, x2) ∈ Z2. Hence the function f vanishes on the whole Z2 — but that

was not actually obvious from just “looking” at the circuit. This motivates the

following problem:

ZEROP :=
{

C |C is arithmetic circuit with C (x1, . . . , xn) = 0 ∀x1, . . . , xn ∈Z
}

Our goal is to prove that ZEROP ∈ coRP, but before that we need to introduce

some auxiliary results. A multivariate polynomial f overZwith variables x1, . . . , xn

is of the form

f (x1, . . . , xn) =
∑

a∈Zn
≥0

βa

n∏

i=1

x
ai

i

where the support {a | βa 6= 0} is finite and βa ∈ Z for all a ∈ Zn
≥0. Each term

βa
∏n

i=1 x
ai

i
is called a monomial,βa is the coefficient of the monomial and

∑n
i=1 ai

is the total degree of the monomial. The total degree of the polynomial f itself

is defined as degtot( f ) := maxa:βa 6=0 ‖a‖1, which is the maximum total degree

of any monomial. In contrast we use the term degree with symbol deg( f ) :=
maxa:βa 6=0‖a‖∞ which is the maximum degree that any single variable has. For

univariate polynomials, these quantities are the same while for arbitrary polyno-

mials with n variables one has deg( f ) ≤ degtot( f ) ≤ n ·deg( f ).

Lemma 7.7. Let C be an arithmetic circuit over Z in variables x1, . . . , xn that con-

tains at most m multiplications. Then C (x) is a polynomial in x1, . . . , xn of total

degree at most 2m .

One can easily prove this by induction because for any polynomials f , g one

has degtot( f +g ) ≤ max{degtot( f ),degtot(g )} and degtot( f ·g ) ≤ degtot( f )+degtot(g ).
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That means each multiplication can at most double the total degree. As an arith-

metic circuit computes a polynomial, the next question is: how many roots can

a polynomial have?2. First, the answer is classical for univariate polynomials.

Theorem 7.8. Let f (x) =
∑d

i=0βi xi be a univariate polynomial over a field F of

degree d > 0, then f has at most d many roots (in F).

In particular applying Theorem 7.8 with any field that contains Z (for exam-

ple F=R) this means that any polynomial with integer coefficients has at most d

many roots in Z. The Fundamental Theorem of Algebra by Gauss (1799) says that

for F = C, there are exactly d roots if roots are counted with multiplicities. Next,

we say that a polynomial f is the zero polynomial if all its coefficients are 0. From

the next result it follows in particular that this is the same as f (x) = 0 ∀x ∈ Zn .

The question is in particular whether a multivariate polynomial that is not the

zero polynomial could have arbitrarily many roots? Actually it can, see for exam-

ple f (x1, x2) = x1 which has all points (0,Z) as roots. But restricting to a combina-

torial rectangle we can bound the number of roots!

Lemma 7.9 (Schwarz-Zippel 1979). Let f (x1, . . . , xn) be a polynomial that is not

the zero polynomial and let d := degtot( f ) be the total degree. Let S ⊆ Z be a

finite set. Then

Pr
a1,...,an∈R S

[ f (a1, . . . , an) = 0] ≤
d

|S|

Note that here a1, . . . , an are chosen independently at random from S.

Proof. We prove the claim by induction over n ≥ 1. For n = 1 we know by Theo-

rem 7.8 that f has at most d roots.

Now consider f (x1, . . . , xn+1) with n ≥ 1 with d := degtot( f ). We can pull out

powers xi
n+1 from each monomial and write

f (x1, . . . , xn+1) =
ℓ∑

i=0

fi (x1, . . . , xn) ·xi
n+1

where we choose ℓ maximal so that fℓ is not the zero polynomial. Here each fi is

a polynomial in n variables with degtot( fi ) ≤ d − i .

Claim I. Fix any a1, . . . , an ∈Z so that fℓ(a1, . . . , an) 6= 0. Then Pran+1∈R S[ f (a1, . . . , an+1) =
0] ≤ ℓ

|S| .
Proof of Claim I. Fix a1, . . . , an with fℓ(a1, . . . , an) 6= 0. Consider the univariate

polynomial q defined by q(xn+1) := f (a1, . . . , an , xn+1). Then deg(q) = ℓ and by

2Where a root of f is a point x with f (x) = 0.
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assumption q is not the zero-polynomial. Then q has at most ℓ roots by Theo-

rem 7.8.

We continue with the main proof. We have

Pr
a1,...,an+1∈R S

[ f (a1, . . . , an+1) = 0]

≤ Pr
a1,...,an∈R S

[ fℓ(a1, . . . , an) = 0]

︸ ︷︷ ︸

≤degtot( fℓ)

|S| by induction

+ Pr
a1...,an+1∈R S

[ f (a1, . . . , an+1) = 0 | fℓ(a1, . . . , an) 6= 0]

︸ ︷︷ ︸

≤ ℓ
|S| by Claim I

≤
d −ℓ

|S|
+

ℓ

|S|
=

d

|S|

Now consider an arithmetic circuit C using variables x1, . . . , xn that contains

m multiplications. We know that degtot(C ) ≤ 2m (considering C also as the poly-

nomial computed at its sink) and hence setting S := {1, . . . ,22m}, for any non-zero

polynomial C we have

Pr
x∈R Sn

[C (x) = 0]
Lem 7.9
≤

degtot(C )

|S|
=

2m

22m
= 2−m

using the Schwarz-Zippel Lemma. There is only one issue: the numbers com-

puted at the nodes in the circuit can double in every multiplication, i.e. even

C (0, . . . ,0) can be as large as 22m
which would require 2m bits to represent the

numbers. There is however a trick to fix this and keep the numbers small:

Lemma 7.10. Let C be an arithmetic circuit in n variables and let a ∈ Zn and

k ∈ N. Then one can compute C (a) mod k in time polynomial in |C | and the

encoding length of both a and k.

Proof. Starting at the sources compute all values computed by nodes in C mod-

ulo k.

Note that it is possible that C (a) 6= 0 while C (a) mod k = 0. But again ran-

domization helps avoiding this.

Theorem 7.11. ZEROP ∈ coRP.

Proof. Let C be an arithmetic circuit in n variables and let m := |C | be the num-

ber of nodes in the circuit3. We will assume that m is at least some large enough

3Differently from before, now m is not just the number of multiplications but certainly m is

still an upper bound on the number of multiplications.



66 CHAPTER 7. RANDOMIZED COMPUTATION

constant — if not, just add a few redundant nodes. We use the following algo-

rithm:

(1) FOR 64m ITERATIONS DO

(2) Sample a1, . . . , an ∼ {1, . . . ,22m}

(3) Sample k ∼ {1, . . . ,24m}

(4) Compute C (a1, . . . , an) mod k. If outcome 6= 0 THEN reject

(5) Accept

First, the algorithm runs in polynomial time by Lemma 7.10. If C ∈ ZEROP then

in each iteration C (a1, . . . , an) mod k = 0 and hence the algorithm will always

accept C . It remains to prove the following which then implies that the prob-

ability that an input C ∉ ZEROP is not rejected in 64m iterations is bounded by

(1− 1
16m

)64m ≤ e−4.

Claim I. If C ∉ ZEROP, then in each iteration the probability that C is rejected in

(4) is at least 1
16m

.

Proof of Claim I. As argued earlier, with probability at least 1 − 2−m one has

C (a) 6= 0. We condition on this event to happen. As 0 ≤ ai ≤ 22m and each gate

in the circuit can at most double the value we certainly have |C (a)| ≤ (22m)2m =
22m·2m ≤ 222m

. Then |C (a)| has at most log2 |C (a)| ≤ 22m many different prime

factors. We recall the following classical fact:

Prime Number Theorem (Hadamard, de la Vallée Poisson 1896). For any ε > 0

there is a Nε ∈N so that for any N ≥ Nε one has

(1−ε) ·
N

ln(N )
≤ |{p ∈ {1, . . . , N } : p is prime}| ≤ (1+ε) ·

N

ln(N )

So assuming m is big enough, we know that there are at least 1
2 ·

24m

ln(24m )
≥ 24m

8m
many

prime numbers in {1, . . . ,24m}. Hence

Pr
k∈R {1,...,24m }

[k is prime and k not factor of C (a)] ≥
24m

8m
−22m

24m
=

1

8m
−2−2m (∗)

If the event in (∗) happens, then C (a) mod k 6= 0. Then overall the probability of

rejection in (4) is at least (1−2−m) · ( 1
8m

−2−2m) ≥ 1
16m

for m large enough.

The technique used in the algorithm is also called finger printing. More gen-

erally this refers to comparing two objects not bit-wise but rather by comparing

their hash values.
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7.3 Error reduction

A very useful property of randomized algorithms is that by repeating them one

can make the error probability exponentially small. For this we will reply on the

following fact:

Theorem 7.12 (Chernoff bound). Let X1, . . . , Xn ∈ {0,1} be independent random

variables with sum X :=
∑n

i=1 Xi and mean µ := E[X ]. Then for any ε> 0,

Pr
[∣
∣
∣

n∑

i=1

Xi −µ
∣
∣
∣≥ εµ

]

≤ 2 exp
(

−min
{ε2

4
,
ε

2

}

·µ
)

We should mention that there are dozens of reformulations of similar results

that bound the deviation of a sum of independent random variables from the

mean. Somewhat inprecisely they are all called “the Chernoff bound”.

Theorem 7.13. For any polynomial p one has

(a) BPP 1
2−

1
p(n)

= BPP= BPP2−p(n)

(b) RP1− 1
p(n)

= RP = RP2−p(n)

Proof. We only prove the technically more involved item (a). Let L ∈ BPP 1
2−

1
p(n)

,

meaning there is a randomized polynomial time algorithm M that makes a mis-

take with probability at most 1
2−

1
p(n) . For an input x ∈ {0,1}n we run the following

algorithm:

(1) REPEAT M(x) exactly N := 4p(n)3 times.

(2) Let b ∈ {0,1} be the value returned by M(x) in the majority of cases.

Return b.

For N0 and N1 be the number of times that in (1) we have M(x) = 0 and M(x) = 1,

resp. Note that N = N0+N1. For symmetry reasons we analyze the case that x ∈ L.

Then Pr[M(x) = 1] ≥ 1
2 + 1

p(n) . Then N1 is the sum of N independent random

variables and its mean is µ := E[N1] ≥ N · ( 1
2 +

1
p(n) ). We choose ε> 0 so that εµ=
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N
p(n) . Then

Pr
[

N1 ≤
N

2

]

≤ Pr
[

|N1 −µ| ≥
N

p(n)
︸ ︷︷ ︸

=εµ

]

Thm 7.12
≤ 2 exp

(

−
ε2

4
µ
)

= exp
(

−
1

4

N 2

µp(n)2

)

µ≤N
≤ exp

(

−
N

4p(n)2

)

≤ 2−p(n)

7.4 The relationship of BPP to other classes

We want to discuss some results on how BPP relates to other problems. Again,

one might conjecture that BPP = P, but here we list what can actually be proven

right now:

Theorem 7.14. BPP ⊆ P/poly.

Proof. Let L ∈ BPP. By Theorem 7.13 we know that there is a polynomial time

deterministic TM M so that Prr∈R {0,1}p(|x|) [M(x,r ) = L(x)] ≥ 1− 2−(|x|+1). Now fix

an input length n. We call a random string r bad for x ∈ {0,1}n if M(x,r ) 6= L(x)

and good otherwise. There are 2n different inputs and only a 2−(n+1)-fraction of

strings is bad for any given input. Hence there must be a string r ∗
n ∈ {0,1}p(n)

that is good for all inputs of length n. Then M(x,r ∗
n ) is a polynomial time Turing

machine with advice r ∗
n that solves L.

It should most certainly be true that BPP ⊆ NP. But even that is not known!

Hence we prove a weaker statement. Here, for two strings a,b ∈ {0,1}m we write

a ⊕b ∈ {0,1}m as their bitwise addition modulo 2. Moreover, for a set S ⊆ {0,1}m

and b ∈ {0,1}m we define S⊕b := {a⊕b | a ∈ S} as the shift of S by b modulo 2. For

the next complexity result, we need a combinatorial lemma:

Lemma 7.15. Let S ⊆ {0,1}m and 0< δ< 1.

(a) Assume |S| ≤ δ2m and k < 1
δ . Then for all u1, . . . ,uk ∈ {0,1}m one has

⋃k
i=1

(S⊕
ui ) 6= {0,1}m .
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(b) Assume |S| ≥ (1−δ)2m and k > m
log2(1/δ) . Then there are u1, . . . ,uk ∈ {0,1}m

so that
⋃k

i=1
(S ⊕ui ) = {0,1}m .

Proof. (a) is simple as |
∑k

i=1(S ⊕ui )| ≤ k · |S| < 1
δ ·δ2m = 2m . For (b), we use the

probabilistic method to argue that u1, . . . ,uk exist. Choose u1, . . . ,uk ∈R {0,1}m

uniformly at random.

Claim I. For a fixed x ∈ {0,1}m one has Pru1 ,...,uk
[x ∉

⋃k
i=1

(S ⊕ui )] < 2−m .

Proof of Claim I. We have

Pr
[

x ∉
k⋃

i=1

(S ⊕ui )
]

(∗)= Pr
r∈R {0,1}m

[x ∉ (S ⊕ r )]k (∗∗)
≤ δk < 2−m

where we use independence in (∗) and in (∗∗) we use that x ∈ (S⊕r ) ⇔ (x⊕r ) ∈ S

and x ⊕ r is still a uniform random choice from {0,1}m .

Now by the union bound and Claim I, the probability that any of the 2m many

x ∈ {0,1}m is not covered is strictly less than 2m ·2−m = 1. Hence there exists a

choice of u1, . . . ,uk that make that event true.

Now to the actual complexity result:

Theorem 7.16 (Sipser, Gács 1983). BPP ⊆Σ
P
2 ∩Π

P
2

Proof. By symmetry of BPP it suffices to prove that BPP⊆Σ
P
2 . Let L ∈BPP. Again,

by Theorem 7.13 there is a deterministic Turing machine M so that Prr∈R {0,1}p(|x|) [M(x) =
L(x)] ≥ 1−δ(|x|) for all x ∈ {0,1}∗ where we will make the choice for the error δ

later. Our goal is to design a ∃∀ type of predicate for L. Intuitively one would use

the ∃quantifier to guess one correct random string. That does not quite work, but

one can use the help of the second quantifier to make sure that M produces the

same output for exponentially many strings. We fix an input x with n := |x| and

denote the number of random bits by m := p(n). Let S := {r ∈ {0,1}m | M(x,r ) = 1}

be the random bits that let the Turing machine accept. We know that

x ∈ L ⇒|S| ≥ (1−δ)2m and x ∉ L ⇒|S| ≤ δ2m

We want to use Lemma 7.15 and we need to find a value of k so that

m

log2(1/δ)
< k <

1

δ

For example we can pick δ := 1
4m

and k := 2m. We claim that

x ∈ L ⇔∃u1, . . . ,uk ∈ {0,1}m ∀r ∈ {0,1}m
∨

i=1,...,k

(M(x,r ⊕ui ) = 1)

︸ ︷︷ ︸

(∗∗∗)
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In fact, if x ∈ L, then by Lemma 7.15.(b) there are u1, . . . ,uk so that
⋃n

i=1
(S ⊕ui ) =

{0,1}m which makes (∗∗∗) true. If x ∉ L, then by Lemma 7.15.(a), for any u1, . . . ,uk

there is an r ∗ ∉
⋃k

i=1
(S⊕ui ) that makes (∗∗∗) false. Here note that for all u1, . . . ,uk

and r one has

∨

i=1,...,k

(M(x,r ⊕ui ) = 1) ⇔ ∃i ∈ [k] : (r ⊕ui ) ∈ S ⇔ r ∈
k⋃

i=1

(S ⊕ui )



Chapter 8

Interactive proofs

In this chapter, we want to discuss interactive proofs which have applications to

cryptography and hardness of approximation. Suppose we have a language L

and instead of constructing a Turing machine deciding whether a given input x

is in L we have two parties that send each other messages. The parties are:

• The verifier: This is a probabilistic polynomial time Turing machine whose

goal is to correctly decide whether x ∈ L or not.

• The prover: The prover has unlimited computational power and the goal of

the prover is to make the verifier accept whether x ∈ L or not.

More formally, we can model the behaviour of the verifier as a polynomial

time computable function V : {0,1}∗ → {0,1}∗ where ai := V (x,r, a1 . . . , ai−1) is

the message that the verifier sends in round i , depending on the input x, ran-

dom bits r ∈ {0,1}p(|x|) and messages a1, . . . , ai−1 exchanged so far with the prover.

The prover can be modeled as an arbitrary function P : {0,1}∗ → {0,1}∗ where

ai := P (x, a1, . . . , ai−1) is the next message that the prover sends to the verifier, de-

pending on the input x and the messages exchanged so far. After some number

k of rounds the prover decides to either accept or reject.

71
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a1 = P (x)

a2 =V (x,r, a1)

a3 = P (x, a1, a2)

. . .

ak = P (x, a1, a2, . . . , ak−1)

P

P

P

V

V

V accept or reject

prover verifier

We note that the prover does not see the random bits r — and this is important.

We write outV (P,V , x) ∈ {0,1} as the decision of the verifier at the end of the pro-

tocol. Note that outV (P,V , x) is a random variable depending on the random bits

r . The way we phrased it here, the prover sends the first message but one could

also let the verifier to send the first message. As we allow an arbitrary polynomial

number of rounds, it does not actually matter here.

Definition 8.1. A language L is in IP if there exists a probabilistic polynomial

time Turing machine V so that

x ∈ L ⇒ ∃P : Pr[outV (V ,P, x) = 1] ≥
2

3

x ∉ L ⇒ ∀P : Pr[outV (V ,P, x) = 1] ≤
1

3

Here the number of rounds and the length of the messages has to be at most

polynomial in |x|.

8.1 Some facts on IP

To understand the class IP better, we give two examples.

Lemma 8.2. NP ⊆ IP.

Proof. Let L ∈ NP. Then we can write L = {x ∈ {0,1}∗ : ∃u ∈ {0,1}p(|x|) : M(x,u) = 1}

where M is a polynomial time Turing machine. On input x, the prover sends the

string u to the verifier. The verifier accepts if M(x,u) = 1.
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u
P

V accepts if M(x,u) = 1

prover verifier

Note that the protocol is correct in both cases with probability 1. Also the

verifier did not need any randomness and is deterministic.

Next, we want to discuss a problem that is not known to be in NP but which

has a clever non-trivial protocol. We say that two undirected graphs G1 = (V1,E1)

and G2 = (V2,E2) are isomorphic if there is a permutation π : V1 → V2 on the ver-

tices so that {u, v} ∈ E1 ⇔ {π(u),π(v)} ∈ E2. Note that the answer is trivially no if

the graphs have a different number of vertices, so it is often just assumed that

|V1| = |V2|.

1

2
3

4
5

1

2
3

4
5

two isomorphic graphs

Consider the language

GI :=
{

(G1,G2) |G1 and G2 are isomorphic
}

where GI stands for graph isomorphism. Then trivially GI ∈ NP while it is not

known whether GI ∈ P or at least GI ∈ coNP. Although we should mention that

there is a npolylog(n)-time algorithm due to Babai from 2015, which comes close

to settling this question. Either way, while Babai’s paper is 100+ pages long, there

is a very simple interactive protocol that can prove that two graphs are not iso-

morphic.

Theorem 8.3. GI ∈ IP.

Proof. Consider graphs1 G1,G2 and suppose that G1 = ([n],E1), G2 = ([n],E2) and

we have to design a protocol that decides whether the graphs are isomorphic.

The verifier picks a random index i ∈R {1,2} and a random permutation π : [n] →
1If one wanted to be picky, then the complement of GI also contains all bit strings that do not

represent two graphs on the same number of vertices. This can be easily checked in polynomial

time and we ignore this here.
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[n] and sends the permutated graph H = π(Gi ) = ([n],π(Ei )). Then the prover

sends an index ℓ ∈ {1,2} and the prover accepts if i = ℓ.

H =π(Gi )

ℓ ∈ {1,2}

P

V

V

Pick i ∈R {1,2}

and π : [n] → [n]

at random

accepts if i = ℓ

prover verifier

We analyze the protocol:

• Case (G1,G2) ∈ GI. If both graps are not isomorphic, then there is exactly

one index i so that π(Gi ) = H which the prover can compute and send to

make the verifier accept with probability 1.

• Case (G1,G2) ∉ GI. Assume G1 and G2 are isomorphic. When the prover

receives a graph H , it is equally likely that H is a permutation of G1 as it is

of G2
2. Hence Pr[i = ℓ] = 1/2 no matter the choice of ℓ. One can reduce the

probability to below 1/3 by repeating the protocol.

There is also an upper bound on the power of IP that one can show:

Lemma 8.4. IP ⊆ PSPACE.

We do not want to give a formal proof here, but the idea is as follows: Fix a

language L ∈ IP and let V be the corresponding verifier (which is a polynomial

time PTM). For any input x, the number of rounds k, the number of random bits

and the maximum length of messages is upper bounded by some polynomial

p(|x|). Then one can solve the problem of finding the prover P that maximizes

the probability of V to accept x in polynomial space.

2More formally one can argue that in the isomorphic case, the distribution π(G1) and the dis-

tribution of π(G2) is the same when π is a uniform random permutation.
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8.2 The sumcheck protocol

So far we only discussed that NP ⊆ IP ⊆ PSPACE. Our goal for the remainder of

this chapter is to prove that actually IP= PSPACE. This fact was a quite surprising

result at the time it was discovered.

In order to prepare for this result, we consider a problem that seems some-

what artificial but it will be enourmously helpful:

SUMCHECK=
{

(g ,K , p) | g (x1, . . . , xn) is a polynomial with
∑

b∈{0,1}n g (b) ≡p K

and p is prime with p ≥ 2n deg(g )

}

We claim that there is an efficient interactive protocol for SUMCHECK. Note that we

have the somewhat artificial condition p ≥ 2nd with d := deg(g ) for a technical

reason and it is needed for our protocol to work. In the later application we can

pick the number p arbitrarily large so this is not a restriction for us.

We first give an overview over the protocol that decides SUMCHECK. Consider

a polynomial g (x1, . . . , xn) with degree by d . Then define a univariate polynomial

h(x1) :=
∑

b′∈{0,1}n−1

g (x1,b′)

that also has a degree of at most d . Intuitively, h arises from g by summing over

the last n −1 variables but leaving x1 as an indeterminant. Ideally we would like

the prover to send the polynomial h(x1) (in form of its d + 1 coefficients which

are in Zp ) to the verifier. If the prover was truthful, the verifier could just check

whether h(0)+h(1) ≡p K . But of course the verifier might try to cheat and rather

send a different degree-d polynomial s(x1). Now we will use that the verifier

knows the whole polynomial s(x1) and not just the two values s(0) and s(1). The

verifier wants to check whether indeed s and h are the same polynomials, where

it is useful that in the non-affirmative case one has that Pra∈RZp [s(a) 6=p h(a)] ≥
1− d

p
. Hence the verifier picks a random a ∈R Zp and asks the prover to prove that

s(a) ≡p

∑

b′∈{0,1}n−1

g (a,b′)

Then this is again a SUMCHECK instance on n − 1 variables and we can recurse.

More formally, we prove the following:

Theorem 8.5. SUMCHECK ∈ IP whenether the encoding of the polynomial is cho-

sen so that (i) for any assignment a ∈ set Z n
p one can evaluate g (a) in time poly(|g |)

and (ii) deg(g )≤ |g |.



76 CHAPTER 8. INTERACTIVE PROOFS

Proof. We formally state the protocol that we already described earlier: For n = 1,

the verifier simply checks if g (0)+ g (1)≡p K . For n ≥ 2, the protocol is as follows:

SUMCHECK PROTOCOL

Input: Polynomial g of degree at most d , prime p ∈N, K ∈Zp

(1) Prover: Sends a univariate polynomial s(x1) of degree at most d

(2) Verifier: Reject if s(0)+ s(1) 6≡p K . Otherwise draw a ∈R Zp and send

it.

(3) Both: Recursively run the protocol on the SUMCHECK problem

s(a) ≡
∑

b′∈{0,1}n−1

g (a,b′)

s(x1)

a

P

V

P

Reject if s(0)+ s(1) 6≡p K

draw a ∈R Zp

prover verifier

recurse

For the analysis it will be helpful to consider the following univariate polynomial:

h(x1) :=
∑

b′∈{0,1}n−1

g (x1,b′)

Claim I. (g ,K , p) ∈ SUMCHECK⇒∃P : Pr[outV (P, v, x) = 1] = 1.

Proof of Claim I. The prover sends s := h. Then s(0)+ s(1) ≡p K . The protocol

recurses on s(a) ≡p h(a) which is true and hence succeeds by induction with

probability 1 as well.

Claim II. (g ,K , p) 6∈ SUMCHECK⇒∀P : Pr[outV (P, v, x) = 0] ≥ (1− d
p

)n .

Proof of Claim II. We prove the claim by induction over n. For n = 1, the verifier

rejects with probability 1 and the statement is true. Now suppose n ≥ 2. If the

prover sends s = h, then s(0)+ s(1) ≡p h(0)+h(1) 6≡p K and the verifier rejects

right away. So assume that the prover sends a polynomial s with s 6= h. Then

Pr[V rejects] ≥ Pr
a∈RZp

[s(a) 6≡p h(a)]

︸ ︷︷ ︸

≥1− d
p

·Pr
[ V rejects proof of

s(a) ≡p
∑

b′∈{0,1}n−1 g (a,b′)
| s(a) 6≡p h(a)

]

︸ ︷︷ ︸

≥(1− d
p )n−1 by induction

≥
(

1−
d

p

)n
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Here we use on the left that by Theorem 7.8 the non-zero polynomial s−h has at

most d roots. This is where we use that p is a prime so that Zp is a field. On the

right we use induction.

Finally we note that (1− d
p

)n ≥ exp(−2dn
p

) ≥ 1
e

using the inequality that 1− z ≥
e−2z for 0≤ z ≤ 1

2 .

8.3 #SATD ∈ IP

The next step is to demonstrate how to use SUMCHECK on generalized satisfiability

problems. Consider the language

#SATD =
{

(ϕ,K ) |ϕ is a CNF with exactly K satisfying assignments
}

Theorem 8.6. #SATD ∈ IP.

Proof. Consider a CNF ϕ with variables x1, . . . , xn and clauses C1, . . . ,Cm . For j ∈
[m], define the polynomial3

p j (X1, . . . , Xn) := 1−
∏

j :x j appears in C j

(1−X j ) ·
∏

j :x̄ j appears in C j

X j

One may check that for any a ∈ {0,1}n one has

p j (a) =
{

1 if a satisfies clause C j

0 otherwise

Hence

Pϕ(X1, . . . , Xn) :=
m∏

j=1

p j (X1, . . . , Xn) (8.1)

is a polynomial of degree at most m (and total degree at most nm) so that Pϕ(a) =
1 if and only if a satisfies ϕ. That means

∑

a∈{0,1}n Pϕ(a) denotes the number of

satisfying assignments for ϕ and so

(ϕ,K ) ∈ #SATD ⇐⇒
∑

a∈{0,1}n

Pϕ(a) = K

︸ ︷︷ ︸

(∗)

3For example if C j is x1∨ x̄2∨x3 then the corresponding polynomial is p j (X1, . . . , Xn ) = 1−(1−
x1)x2(1− x3).
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Here (∗) is almost a SUMCHECK instance, just that we need to phrase it modulo

p. But the left hand side of (∗) is in {0, . . . ,2n} and hence we compute4 a prime

number p with 2n < p ≤ 22n and run the SUMCHECK protocol on
∑

a∈{0,1}n g (a) ≡p

K . Finally note that the expression in (8.1) allows to evaluate Pϕ(a) mod p for

any a ∈Zn
p in polynomial time.

8.4 TQBF ∈ IP

Finally we want to prove that IP = PSPACE. By Lemma 8.4 we already know that

IP ⊆ PSPACE, so it suffices to prove that some PSPACE-complete problem is in

IP; naturally we choose TQBF5. We recall that a quantified boolean formula (QBF)

is of the form

Q1x1Q2x2 . . .Qn xn ϕ(x1, . . . , xn)

where Qi ∈ {∃,∀} and ϕ is an arbitrary boolean formula with variables x1, . . . , xn ∈
{0,1}. For the time being, to simplify notation, let us assume that the formula is

indeed of the form

ψ :=∃x1∀x2∃x3 . . .∀xn ϕ(x1, . . . , xn)

Then one can observe that ψ ∈ TQBF if and only if

∑

x1∈{0,1}

∏

x2∈{0,1}

∑

x3∈{0,1}

. . .
∏

xn∈{0,1}

Pϕ(x1, . . . , xn) 6= 0 (8.2)

where Pϕ is the polynomial defined in the proof of Theorem 8.6. So one might

be tempted to just run a straightforward generalization of the SUMCHECK protocol

on (8.2). But there is the problem that (8.2) may contain up to n multiplications

and each one may double the degree, possibly leading to a polynomial of degree

2n . But in (8.2), only function values Pϕ(x1, . . . , xn) with x ∈ {0,1}n matter. So we

could manipulate the polynomial Pϕ (and any of the intermediate polynomials

Qxi ∈{0,1} . . .
∏

xn∈{0,1} Pϕ(x1, . . . , xn) where Q ∈ {∃,∀}) as long as we do not change

the values on those binary points.

4By the prime number theorem, we know that a Θ( 1
n

) fraction of integers between 2n and 22n

are prime numbers. For poly(n) rounds we can pick a random integer between 2n and 22n and

then test in polynomial time if p is prime.
5This statement requires a short argument: consider any language L ∈ PSPACE and suppose

we can prove that TQBF∈ IP. As L ≤p TQBF, there is a polynomial time computable map f so that

x ∈ L ⇔ f (x) ∈ TQBF. The verifier can compute f (x) and then run the TQBF-protocol that proves

whether f (x) is in TQBF and use the answer to determine whether x ∈ L.
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LetP :=Z[x1, . . . , xn] be the vector space of all polynomials in variables x1, . . . , xn

with coefficients over Z. For each variable index i ∈ [n], we define Li : P →P as

the unique linear map so that

Li

( n∏

j=1

x
α j

j

)

= x
min{αi ,1}
i

·
∏

j 6=i

x
α j

j

for all α ∈ Zn
≥0. For example L1(4x3

1 x2 + 2x1x2 + 5x1 + 3x4
2) = 6x1x2 + 5x1 + 3x4

2 .

Intuitively speaking, the Li operator6 reduces the exponents that appear with

variable xi down to 1. Hence Li is also called a linearization operator. We note

that also

Li (p)(x1, . . . , xn) = xi ·p(x1, . . . , xi−1,1, xi+1, . . . , xn)+(1−xi )·p(x1, . . . , xi−1,0, xi+1, . . . , xn)

which we also could have used to define Li . Either way, since xa
i
= xi for all xi ∈

{0,1} and all a ∈N we know the following:

Observation 8.7. For any polynomial p(x1, . . . , xn) and any variable i ∈ [n] one

has

p(x1, . . . , xn) = (Li p)(x1, . . . , xn) ∀x1, . . . , xn ∈ {0,1}

It will also be useful to introduce two other types of functions ∀xi
,∃xi

:P →P

defined by

(∀xi
p)(x1, . . . , xn) :=

∏

b∈{0,1}

p(x1, . . . , xi−1,b, xi+1, . . . , xn)

(∃xi
p)(x1, . . . , xn) :=

∑

b∈{0,1}

p(x1 . . . , xi−1,b, xi+1, . . . , xn)

Then we can rewrite (8.2) into the equivalent condition

∃x1 L1∀x2 L1L2∃x3 L1L2L3 . . .∀xnL1L2 . . .LnPϕ(x1, . . . , xn) 6= 0 (8.3)

Note that the description length of (8.3) blew up at most quadratically compared

to (8.2) while all intermediate polynomials will have degree at most polynomial

in |ϕ|. Now we are read for the final result of this chapter.

Theorem 8.8 (Lund, Fortnow, Karloff, Nisan 1990). IP = PSPACE.

6There does not seem to be a generally accepted definition of what an “operator” is but the

term is typically used for any linear map that maps elements in a vector space (such as P) into

that same vector space.
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Proof. Consider a TQBF instance ψ with inner CNF ϕ consisting of m clauses.

Then as discussed above, there is a polynomial time computable sequence O1, . . . ,OT

so that ψ ∈ TQBF if and only if

O1O2 . . .OT Pϕ(x1, . . . , xn) 6= 0 (8.4)

where (i) T ≤ O(n2), (ii) each Ot is of the form Li , ∃xxi
or ∀xi

for some i , (iii)

each of the polynomials Ot Ot+1 . . .OT Pϕ(x1, . . . , xn) as a degree upper bounded

by d ≤O(m). One can also prove that the number that the left hand side of (8.4)

represents is upper bounded by 22O(n)
which corresponds to at most O(n) squar-

ing operations. If the left hand side of (8.4) is not 0, then analogous to the argu-

ment in Theorem 7.11, there is a prime number p ≤ 2O(n) and a K ∈ {1, . . . , p −1}

so that

O1O2 . . .OT Pϕ(x1, . . . , xn) ≡p K (8.5)

The prover then tries to convince the verifier that (8.5) holds. Before the start of

the main protocol, the prover sends (p,K ) and the verifier checks that p is indeed

a prime.

The main protocol itself will again be defined in a recursive way. As often

with recursive arguments, the intermediate problem is different and somewhat

more complicated than the global problem that it aims to solve. So the actual

intermediate task for the prover is the following:

Given a polynomial Pϕ(x1, . . . , xn), a partition [n] = S∪̇F of the vari-

ables into set variables S and free variables F , a sequence of opera-

tions O1, . . . ,OT ′ of the form Ot ∈ {∃xi
,∀xi

,Li } that eliminate each free

variable exactly once, a prime p, K ′ ∈Zp and values ai ∈Zp for all set

variables i ∈ S. Prove that

O1 O2 . . . ,OT ′Pϕ((xi )i∈F , (ai )i∈S)
︸ ︷︷ ︸

=:h

≡p K ′

Then the protocol splits off the first operation O1 and proceeds as follows:

• Case O1 = ∃xi
. In this case, h(xi ) is a polynomial of degree at most d de-

pending on xi .

1. Prover: send polynomial s(xi ) (which truthfully would be h(xi ))

2. Verifier: If s(0)+ s(1) 6≡p K ′ then reject. Otherwise pick ai ∈R Zp , and

ask prover to prove s(a) ≡p h(a)

• Case O1 =∀xi
. Again, h(xi ) is a polynomial of degree at most d depending

on xi .
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1. Prover: send polynomial s(xi ) (which truthfully would be h(xi ))

2. Verifier: If s(0) · s(1) 6≡p K ′ then reject. Otherwise pick ai ∈R Zp , and

ask prover to prove s(a) ≡p h(a)

• Case O1 = Li . In this case we have i ∈ S, i.e. the variable xi in h has already

been set to ai . Consider the polynomial

h′(xi ) :=O2 . . . ,OT ′Pϕ((x j ) j∈F∪{i }, (a j ) j∈S\{i })

obtained by “freeing” the i th variable.

1. Prover: send polynomial s(xi ) (which truthfully would be h′(xi ))

2. Verifier: If ai · s(1)+ (1− ai ) · s(0) 6≡p K ′ then reject. Otherwise pick

a′
i
∈R Zp , and ask prover to prove s(a′

i
) ≡p h′(a′

i
)

If ψ ∈ TQBF, then we can check that the truthful choice will make the veri-

fier accept with probability 1. Now assume ψ ∉ TQBF. Then one can prove that

Pr[verifier accepts] ≤ (1− d
p

)T ′
by induction over the number of operations T ′.

The analysis for the first 2 cases is similar to Theorem 8.5, so we only discuss the

last case where O1 = Li . If the prover indeed sends s = h′ then

ai · s(1)+ (1−ai ) · s(0) ≡p ai ·h′(1)+ (1−ai ) ·h′(0) ≡p (Li h′)(ai ) 6≡p K ′

and the verifier rejects7 Otherwise, s −h′ is a non-zero polynomial with at most

d roots and Pr[s(a′
i
) 6≡p h(a′

i
)] ≥ 1− d

p
. We condition on this event and recurse;

running the protocol on the instance with T ′−1 operations, the verifier will reject

with probability at least (1− d
p

)T ′−1. That concludes the claim.

We note that the protocol in Theorem 8.8 has one-sided error. That implies

that we could have strengthened the definition of IP to require that x ∈ L ⇒∃P :

Pr[outV (V ,P, x) = 1] = 1 without changing the class IP.

7We provide an example. Consider the protocol to prove that ∃x1 L1x3
1 ≡p 1 (which indeed is

true).

asked to prove ∃x1 L1x3
1 ≡p 1

asked to prove (L1x3
1 )(a1) ≡p s(a1)

s(x1) [supposed to

be h(x1) := L1(x3
1)]

a1

s′(x1) [supposed to

be h′(x1) := x3
1]

P

V

P

V

P

Check
∑

b1∈{0,1} s(b1) ≡p 1

draw a1 ∈R Zp

Check a1s′(1)+ (1−a1)s′(0) ≡ s(a1)

draw a′
1 ∈R Zp

Check that (a′
1)3 ≡p s′(a′

1)

prover verifier

.
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Chapter 9

The PCP Theorem

9.1 Introduction

The interactive proof class IP that we defined in Chapter 8 characterizes precisely

PSPACE. It would be nice if we had an interactive proof-type characterization of

the much weaker class NP that is more relevant for us.

Definition 9.1. A (r (n), q(n))-PCP verifier is a deterministic polynomial-time Tur-

ing machine V π(x,u) that receives random bits u ∈R {0,1}r (|x|) and non-adaptive

access to q(|x|) bits of a proof string π ∈ {0,1}∗. More precisely, the Turing ma-

chine can write indices i1, . . . , iq(n) (n := |x|) on a special tape and then receive

the bits πi1 , . . . ,πiq (n) but it can make such a query only once. We say that a

(r (n), q(n))-PCP verifier V π decides a language L ⊆ {0,1}∗ if

x ∈ L ⇒ ∃π : Pr
u∈R {0,1}r (n)

[V π(x,u) accepts] = 1

x ∉ L ⇒ ∀π : Pr
u∈R {0,1}r (n)

[V π(x,u) accepts] ≤
1

2

Then PCP(r (n), q(n)) is the set of languages L that can be decided by a (O(r (n)),O(q(n)))-

PCP verifier.

Here PCP stands for probabilistically checkable proof.

proof π:

V π(x,u)
q(n) queries

V π(x,u)

83
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Since randomness is limited to r (n) bits, we can limit the length of the proof

string to 2r (n)q(n) as this is the maximum number of bits that may have a positive

probability of being read. But as we are using a random access model based on

indices, the proof may indeed have such a length. We can check a few simple

inclusions:

Theorem 9.2. One has

(a) PCP(0,0) = P

(b) PCP(0,poly(n)) = NP

(c) PCP(logn,1) ⊆ NP

Proof. For (a). Without access to a proof and without randomness, V π is just a

deterministic poly-time TM. For (b). In this case, there is no randomness and a

proof of polynomial length; this equals NP. For (c). Let V π(x,u) be a (r (n), q(n))=
(O(logn),O(1))-PCP verifier for L. A non-deterministic TM can guess the proof

π ∈ {0,1}∗ where |π| ≤ 2r (n) ·q(n) ≤ poly(n). Then one can deterministically com-

pute the value Pru∈R {0,1}r (n) [V π(x,u)] by enumerating all 2r (n) = poly(n) choices

for the random bits u.

One of the deepest results in complexity theory is as follows:

Theorem 9.3 (PCP Theorem — Arora, Feige, Goldwasser, Lund, Lovász, Motwani,

Safra, Sudan, Szegedy 19921). PCP(logn,1)= NP.

The reader should appreciate at this point that it is mindblowing how just

checking a constant number of bits could suffice for NP-hard problems. This

has dramatic consequences for the approximatility of NP-hard problems as we

discuss later in Section 9.8. The proof of Theorem 9.3 is beyond the scope of

this lecture2. In order to demonstrate the techniques prove the following weaker

result:

Theorem 9.4 (Weak PCP Theorem). PCP(poly(n),1)⊇ NP.

1Really this is a combination of several works and we cite the set of authors that received the

2001 Gödel prize.
2Chapter 22 in the textbook gives a complete proof of the PCP Theorem following the more

recent work of Dinur that uses a gap-amplification argument. However the iterative nature of

that argument makes it also harder to understand how exactly a proof looks like that is checkable

by querying O(1) bits.
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While the proof length in this result is exponential, the number of bits that are

read is still O(1). We will now work towards a proof of Theorem 9.4 and develop

a few tools on the way.

9.2 Quadratic equations

It suffices to prove that for some NP-hard language L one has L ∈ PCP(poly(n),1).

One could work with 3SAT as usually, but it will actually be more convenient to

use a different NP-hard problem. We consider the problem of quadratic equa-

tions modulo 2.

QUADEQ :=
{

(A1, . . . , Am ,b1, . . . ,bm) | ∃u ∈ {0,1}n : 〈Ai ,uuT 〉 ≡2 bi∀i = 1, . . . ,m
}

An example instance is as follows

u2
1 +u2u3 +u1u4 ≡2 1

u1u3 +u2u4 ≡2 0

u1u4 +u2
2 +u2u4 ≡2 1

Theorem 9.5. QUADEQ is NP-complete.

Proof. It is clear that QUADEQ ∈ NP, so we only show NP-hardness. Recall that

given a circuit C : {0,1}n → {0,1} with gates ∨,∧,¬ it is NP-hard to decide whether

there is a x ∈ {0,1}n so that C (x) = 1. Now introduce a variable ui for each wire

(including the input wires). Then any variable that is not on an input wire, is

defined in terms of two other variables. And indeed we can transform each such

definition into a quadratic equation:

∨
u1 u2

u3

u3 := u1 ∨u2 =⇒ (1−u1)(1−u2)+u3 ≡2 1

∧
u1 u2

u3

u3 := u1 ∧u2 =⇒ u1u2 +u3 ≡2 0

¬
u1

u2

u2 := ū1 =⇒ u1 +u2 ≡2 1
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Linear terms such as ui can be replaced by u2
i

which is equivalent in Z2. Then

there is an x ∈ {0,1}n with C (x) = 1 if and only if the system constructed above

plus the equation u2
m ≡2 1 has a feasible solution where um is the variable for the

output wire.

We can now give an otherview of the PCP(poly(n),1) verifier for QUADEQ. The

expected proof that certifies that u is satisfiable will be the function tables for the

two linear functions f : {0,1}n → {0,1} and g : {0,1}n×n → {0,1} with

f (x) = 〈u, x〉 mod 2 and g (X ) = 〈uuT , X 〉 mod 2

Note that the total length of the function tables is 2n +2n2
. Given an instance for

QUADEQ, the PCP verifier V π will have 3 components:

• Linearity test. By reading O(1)-bits, test whether the functions f and g are

at least nearly linear.

• Consistency test. By reading O(1)-bits, test whether the functions f and g

are of the form f (x) ≡2 〈u, x〉 and g (X ) ≡2 〈uuT , X 〉 for a common vector u.

• Satisfiability test. Check whether the encoded assignment u satisfies the

QUADEQ instance.

We will fill in the details in the upcoming sections.

9.3 Fourier analysis

In this section we want to make an detour to study functions of the form f :

{±1}n →R. For two functions f , g : {±1}n →R we define an inner product

〈 f , g 〉 := E
x∈R {±1}

[ f (x) ·g (x)] =
1

2n

∑

x∈{±1}n

f (x) ·g (x)

that is sometimes called the expectation inner product. For a set S ⊆ [n], consider

the special function

χS : {±1}n → {±1} with χS(x) :=
∏

i∈S

xi

We will call χS a character. We denote S∆T := (S \ T )∪ (T \ S) as the symmetric

difference of sets S,T ⊆ [n].
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Lemma 9.6. For S,T ⊆ [n] one has

〈χS ,χT 〉 =
{

1 if S = T

0 otherwise

Proof. We write

〈χS ,χT 〉 = E
x∈R {±1}n

[χS (x)·χT (x)] = E
x∈R {±1}n

[χS∆T (x)] =
∏

i∈S∆T

E
xi ∈R {±1}

[xi ]

︸ ︷︷ ︸

=0

=
{

0 if |S∆T | > 0

1 if |S∆T | = 0

Here we use that χS (x) ·χT (x) = χS∆T (x). We also use that for independent ran-

dom variables X and Y one has E[X Y ] = E[X ]E[Y ].

We note that the set { f | f : {±1}n → R} is a vector space of dimension 2n and

Lemma 9.6 says that the family of 2n many functions {χS}S⊆[n] is pairwise orthog-

onal and even orthonormal. Hence {χS }S⊆[n] must be an orthonormal basis for

that vector space. It then makes sense to consider the coordinates that an ele-

ment f : {±1}n →R has with respect to that basis:

Definition 9.7. For f : {±1}n → R we denote the S-th Fourier coefficient as f̂S :=
〈 f ,χS〉 = Ex∈R {±1}n [ f (x)χS (x)].

By orthonormality we know the following:

Lemma 9.8. For every function f : {±1}n →R one has f (x) =
∑

S⊆[n] f̂SχS(x) for all

x ∈ {±1}n .

The following can be obtained by applying Lemma 9.8 and using the orthonor-

mality of the characters.

Lemma 9.9. For any f , g : {±1}n →R one has

1. 〈 f , g 〉 =
∑

S⊆[n] f̂S · ĝS

2. Parsival’s identity: 〈 f , f 〉 =
∑

S⊆[n] f̂ 2
S

For two vectors x, y ∈ {±1}n we write x ⊙ y ∈ {±1}n as the vector with entries

(x ⊙ y)i := xi · yi . Then χS(x ⊙ y) =χS (x) ·χS (y) for all x, y ∈ {±1}n . One may think

of this property as an analogue to linearity (we will get back to that later). We can

prove that the only functions f that satisfy f (x⊙ y) = f (x) · f (y) for all x, y are the

character functions and moreover, if f (x ⊙ y) = f (x) · f (y) holds for most pairs

(x, y), then f must be close to one particular such character function. Here the

Fourier view will be invaluable.
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Theorem 9.10. Let f : {±1}n → {±1} be a function so that

Pr
x,y∈R {±1}n

[ f (x ⊙ y) = f (x) f (y)] ≥
1

2
+ε (9.1)

with 0≤ ε≤ 1
2 . Then there is a set S ⊆ [n] so that f̂S ≥ 2ε.

Proof. We write

2ε =
(1

2
+ε

)

−
(1

2
−ε

)

(9.1)
≤ E

x,y∈R {±1}n
[ f (x ⊙ y) · f (x) · f (y)]

Lem 9.8= E
x,y∈R {±1}n

[( ∑

S⊆[n]

f̂SχS (x ⊙ y)
)( ∑

T⊆[n]

f̂TχT (x)
)( ∑

R⊆[n]

f̂RχR (y)
)]

χS (x⊙y)=χS (x)χS (y)
=

∑

S,T,R⊆[n]

f̂S f̂R f̂T E
x,y∈R {±1}n

[

χS (x) ·χS (y) ·χT (x) ·χR (y)
]

indep.=
∑

S,T,R⊆[n]

f̂S f̂T f̂R E
x∈R {±1}n

[

χS(x)χT (x)
]

︸ ︷︷ ︸

=1 if S=T,=0 o.w.

E
y∈R {±1}n

[χS (y)χR (y)]

︸ ︷︷ ︸

=1 if S=R,=0 o.w.

=
∑

S⊆[n]

f̂ 3
S

≤ max
S⊆[n]

{ f̂S} ·
∑

S⊆[n]

f̂ 2
S

︸ ︷︷ ︸

=〈 f , f 〉=1

≤ max
S⊆[n]

{ f̂S}

9.4 Linearity testing

Recall that a function f : {0,1}n → {0,1} is linear over Z2 if f (x ⊕ y) ≡2 f (x)+ f (y)

where (x ⊕ y) ∈ {0,1}n is the vector with (x ⊕ y)i ≡2 xi + yi . Note that we cannot

actually expect to test whether f is linear with only O(1) many queries because

linearity of f may fail just due to a single entry out of 2n many entries. So we

define a relaxed notion:

Definition 9.11. Let 0 ≤ δ< 1
2

. We say that f : {0,1}n → {0,1} is δ-close to a linear

function if there exists a linear function g : {0,1}n → {0,1} with

Pr
x∈R {±1}n

[ f (x) = g (x)] ≥ 1−δ
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Theorem 9.12 (Linearity test). Let f : {0,1}n → {0,1} be a function with

Pr
x,y∈R {0,1}n

[ f (x ⊕ y) ≡2 f (x)+ f (y)] ≥ 1−δ

for 0 ≤ δ< 1
2 . Then f is δ-close to a linear function.

Proof. We have already proven this! Note that f (x⊕y) ≡2 f (x)+ f (y) is equivalent

to (−1) f (x⊕y) = (−1) f (x) ·(−1) f (y). Apply Theorem 9.1 choosing ε so that 1
2 +ε= 1−

δ. Then for some S ⊆ [n] there is a function (−1)
∑

i∈S xi so that Ex∈R {0,1}n [(−1) f (x)(−1)
∑

i∈S xi ] ≥
2ε which means that Prx∈R {0,1}n [ f (x) ≡2

∑

i∈S xi ] ≥ 1
2 + ε = 1 − δ. Then g (x) :=

∑

i∈S xi mod 2 is the linear function that is δ-close to f .

Theorem 9.13 (Local decodability). Let f : {0,1}n → {0,1} be a function that is δ-

close to the linear function g : {0,1}n → {0,1}. Then for each x ∈ {0,1}n one has

Pr
y∈R {0,1}n

[g (x) ≡2 f (y)+ f (x ⊕ y)] ≥ 1−2δ

Proof. Fix x. For y ∈R {0,1}n , both of the points y and x ⊕ y are uniform samples

from {0,1}n . Hence by assumption and the union bound

Pr[ f (y) ≡2 g (y) and f (y ⊕x) ≡2 g (x ⊕ y)
︸ ︷︷ ︸

(∗)

] ≥ 1−2δ

If the event in (∗) happens then indeed

g (x)
g linear
≡2 g (y ⊕x)+ g (y) ≡2 f (y ⊕x)+ f (y)

We want to comment on a connection to coding theory at this point. Consider

the map

WH : {0,1}n → {0,1}2n

with WH(u) := (〈u, x〉 mod 2)x∈{0,1}n

which is also called the Walsh Hadamard code. That means every vector u ∈
{0,1}n is mapped to the function table of the linear map x 7→ 〈u, x〉 mod 2. This

code has a few nice properties. First, it is an error correcting code, which means

that the code words WH(u) are far from each other:

Lemma 9.14 (Random subset principle). For u, v ∈ {0,1}n with u 6= v , the code-

words WH(u) and WH(v) differ in half the coordinates.
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Proof. Fix an index i with ui 6= vi . Now pick x ∈R {0,1}n at random by first draw-

ing all the bits x1, . . . , xi−1, xi+1, . . . , xn ∈R {0,1} and only in the second phase draw-

ing xi . Then conditioning on any outcome from the first phase we have

Pr
xi∈R {0,1}

[〈u, x〉 ≡2 〈v, x〉] = Pr
xi ∈R {0,1}

[

xi ≡2

∑

j 6=i

(v j −u j )x j

]

=
1

2

as exactly one of the outcomes xi ∈ {0,1} makes the event true.

Note that the lemma means one could corrupt up to a quarter of the bits in

WH(u) adversarily and one could still reconstruct u itself. Along the lines of The-

orem 9.13 we know that for every i and every x one has WH(u)x + WH(u)x⊕ei
≡2

〈u, x〉 + 〈u, x ⊕ei 〉 ≡2 ui . This means the code is locally decodable as we can re-

construct every bit in u by inspecting O(1) positions in the codeword and this is

still possible if a < 1
4 fraction of the codeword is corrupted.

9.5 Consistency test

Now we discuss the second building block of the PCP verifier which is the consis-

tency test.

Definition 9.15. We call a pair of functions f : {0,1}n → {0,1} and g : {0,1}n2 →
{0,1} consistent if there exists a vector u ∈ {0,1}n so that f (x) ≡2 〈u, x〉 and g (X ) ≡2

〈uuT , X 〉.

The next step will be to show that one can test consistency by evaluating O(1)

many random positions in f and g .

CONSISTENCY TEST

Input: Access to functions f : {0,1}n → {0,1}, g : {0,1}n×n → {0,1}.

(1) Pick independent random x, y, a,b ∈R {0,1}n and B ∈R {0,1}n×n .

(2) Accept if

( f (a)+ f (a+x)) · ( f (b)+ f (y +b)) ≡2 g (B)+ g (B +x yT ) (9.2)

Note that whenever f and g are linear, the test can be simplified to pick x, y ∈
{0,1}n at random and accepting if

f (x) · f (y) ≡2 g (x yT )

But the more complicated version will also work if f and g are merely δ-close to

linear functions. To be more precise, if f is close to a linear function f̃ and g is δ-

close to a linear function g̃ , then by Theorem 9.13 we know that with probability

1−O(δ), (9.2) is equivalent to f̃ (x) · f̃ (y) ≡2 g̃ (x yT ).
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Theorem 9.16 (Consistency test). The following holds:

(a) If f and g are consistent, then they pass the consistency test with probabil-

ity 1.

(b) If f and g are δ-close to linear functions and those linear functions are

not consistent, then they pass the consistency test with probability at most

3/4+O(δ).

Proof. For (a). If indeed f and g are consistent, then f (x) ≡2 〈u, x〉 and g (X ) ≡2

〈uuT , X 〉. Then for any x, y ∈ {0,1}n one has g (x yT ) ≡2 〈uuT , x yT 〉 ≡2 〈u, x〉 ·
〈u, y〉 ≡2 f (x) · f (y).

For (b). To keep the notation simple, we prove the statement for δ= 0, that means

we assume that f and g are actually linear. Then f (x) ≡2 〈u, x〉 and g (X ) ≡2

〈W , X 〉 for some u ∈ {0,1}n and W ∈ {0,1}n×n . Assuming that f and g are not

consistent we have W 6= uuT . It suffices to show the following:

Claim. If W 6= uuT , then Prx,y∈R {0,1}n [〈W , x yT 〉 6≡2 〈u, x〉〈u, y〉] ≥ 1
4 .

Proof of Claim. We imagine to first pick x at random and then in a second phase

y . In the first phase we have Prx∈R {0,1}n [xT W 6≡2 xT (uuT )] ≥ 1
2 by the random sub-

set principle from Lemma 9.14 (in fact, even applied to a single column where W

and uuT are different). Now condition on this event and fix x. Then in the sec-

ond phase Pry∈R {0,1}n [xT W y 6≡2 xT (uuT )y] ≥ 1
2 (since xT W 6≡2 xT (uuT )). If this

event also happens, then

〈W , x yT 〉 ≡2 xT W y 6≡2 xT (uuT )y ≡2 〈uuT , y yT 〉

9.6 The satisfiability test

So far we can test whether the proofs f and g are (nearly) linear functions that are

consistent and encode an assignment u. Now we come to the actual test whether

the encoded assignment u satisfies the QUADEQ instance.

SATISFIABILITY TEST

Input: A QUADEQ instance A1, . . . , Am ∈ {0,1}n×n , b1, . . . ,bm ∈ Z2. Access to

function g : {0,1}n×n → {0,1}.

(1) Pick a random subset I ⊆ {1, . . . ,m} and a random B ∈ {0,1}n×n .

(2) Accept if g (B +
∑

i∈I Ai )+ g (B) ≡2
∑

i∈I bi

As before, if g happens to be linear then the test simplifies to g (
∑

i∈I Ai ) ≡2
∑

i∈I bi .



92 CHAPTER 9. THE PCP THEOREM

Theorem 9.17 (Satisfiability test). The following holds:

(a) If g (X ) ≡2 〈X ,uuT 〉 and u is satisfying, then the satisfiability test accepts

with probability 1.

(b) If g is δ-close to a linear function g̃ with g̃ (X ) = 〈uuT , X 〉 and u is not satis-

fying, then the satisfiability test accepts with probability at most 1
2 +O(δ).

Proof. (a) is simple, so consider (b). Again, to keep the notation clean we prove

the case with δ = 0, that means g (X ) ≡2 〈uuT , X 〉 for some u ∈ {0,1}n that does

not satisfy the system of quadratic equations. Then there is at least one index i ∈
[m] so that 〈Ai ,uuT 〉 6≡2 bi . Then by the random subset principle, for a uniform

random subset I ⊆ [m] we have Pr[
∑

i∈I 〈Ai ,uuT 〉 6≡2
∑

i∈I bi ] = 1
2 .

9.7 Proof of the weak PCP Theorem

Now we can put everything together.

Theorem (Weak PCP Theorem — restated). PCP(poly(n),1)⊇ NP.

Proof. We use the following PCP verifier where O(1) refers to a large enough con-

stant.

PCP VERIFIER

Input: A QUADEQ instance A1, . . . , Am ∈ {0,1}n×n , b1, . . . ,bm ∈ Z2. Access to

functions f : {0,1}n → {0,1} and g : {0,1}n×n → {0,1}.

(1) Run the Linearity Test O(1) times on both f and g

(2) Run the Consistency Test O(1) times

(3) Run the Satisfiability Test O(1) times

(4) If any test fails, reject. Otherwise accept.

Note that these tests are non-adaptive. If there is a satisfying assignment u, then

all tests will pass with probability 1. Now suppose otherwise. If for some small

constant δ, the functions f and g are not δ-close to linear functions then we

reject in (1) with high probability by Theorem 9.12. So suppose indeed f is δ-

close to f̃ and g is δ-close to g̃ . If f̃ and g̃ are not consistent then we will reject

with high probability in (2) by Theorem 9.16. So suppose that there is a u ∈ {0,1}n

with f (x) ≡2 〈u, x〉 and g (X ) ≡2 〈uuT , X 〉 while u does not satisfy the quadratic

equations. Then we reject in (4) with high probability by Theorem 9.17.
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9.8 Hardness of approximation

We also want to explain why the PCP Theorem is so important. Let us go back

to the 3SAT problem and consider a CNF ϕ with m clauses and n variables. In-

stead of just considering satisfiability, let us define the value val(ϕ) ∈ {0, . . . ,m} as

the maximum number of clauses satisfied by any assignment. In other words

ϕ ∈ 3SAT ⇔ val(ϕ) = m. We are interested in how well one can approximate

val(ϕ) in polynomial time. Let 0 < α ≤ 1. We say that an an algorithm is an α-

approximation algorithm for 3SAT, if on any input ϕ, it finds an assignment a in

polynomial time so that a satisfies at least α ·val(ϕ) many clauses. Similarly we

can define approximation algorithms for any other maximization problem.

Actually one can always find a satisfying assignment that satisfies 7
8 m many

clauses (just take a random assignment). On the other hand, the Cook-Levin The-

orem says that for any language L ∈ NP there is a polynomial time computable

function f that produces a 3-CNF formula so that

x ∈ L ⇒ val( f (x)) = m

x ∉ L ⇒ val( f (x)) ≤ m −1

But the Cook-Levin Theorem really does not give a stronger guaranteee — maybe

in the produced 3SAT formula one can really satisfy all but one clause. So this

does not give any useful lower bound on hardness of approximation for 3SAT.

In particular, until the discovery of the PCP theorem it was absolutely plau-

sible that for any ε > 0 there is an algorithm that finds an assignment satisfying

(1−ε)val(ϕ) many clauses in time ng (ε) where g (ε) is some function depending

only on the accuracy ε. Such an algorithm is also called a PTAS (polynomial time

approximation scheme). PTAS-type algorithms were known for a range of prob-

lems such as Knapsack (with one or constantly many constraints) — so why not

for 3SAT. But the PCP Theorem provides a stronger reduction than Cook-Levin

where a gap is created:

Theorem 9.18. There is a universal constant ε > 0 so that for any L ∈ NP there

is a polynomial time computable function f that produces a 3-CNF with m =
poly(|x|) clauses so that

x ∈ L ⇒ val( f (x)) = m

x ∉ L ⇒ val( f (x)) ≤ (1−ε)m
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x ∈ L

x 6∈ L

f

val( f (x))

= m

val( f (x))

≤ (1−ε)m

instances of L 3SAT instances

gap

Proof. By the PCP Theorem (Theorem 9.3) there is a PCP verifier using r (n) ≤
CL log(|x|) random bits that reads qL bits from the proof where the definition

allows that CL and qL depend on the language L. But for any NP-complete lan-

guage L′ we know that there is a polynomial time computable function g with

x ∈ L ⇔ g (x) ∈ L′. So we could have instead used the PCP verifier for the other

language L′ applied to instance g (x). This tells us that qL ≤ q for some universal

constant q .

Now back to the main argument. We fix an input x with n := |x| for language L.

Let V π(x,u) be the PCP verifier for L. For each fixed u, we can think of V π(x,u) as

a function depending on q many bits of the proof π. As we have shown in Claim

I of Theorem 2.10 (combined with the reduction in Lemma 2.12), there is a 3SAT

formula ϕu with exactly D ≤ q2q clauses so that V π(x,u) = ϕu(π) for all π. Let

ϕ :=
∧

u∈{0,1}r (n) ϕu be the AND of all those constant size CNFs. By construction, ϕ

has m := D2r (n) many clauses. We claim the following:

x ∈ L ⇒ val(ϕ) = m

x ∉ L ⇒ val(ϕ) ≤ m
(

1−
1

2D

)

The first case is clear since for x ∈ L, there is a proof π so that V π(x,u) = 1=ϕu(π)

for all u. So consider the case x ∉ L. Fix any proof π. Then for at least half of the

choices of u ∈ {0,1}r (n) one has V π(x,u) = 0. For each of those u’s, at least one of

the clauses in ϕu are not satisfied by π. That means at most m − 1
2 2r (n) = m − m

2D

clauses in ϕ are satisfied.

One can rephrases this as follows:

Corollary 9.19. Assuming P 6= NP, there is a universal constant ε> 0 so that there

is no polynomial time (1−ε)-approximation for 3SAT.

Results as above in Cor 9.19 are called hardness of approximation. Using more

advanced arguments one can prove that if P 6= NP, then there is no polynomial

time ( 7
8 + ε) for 3SAT for any constant ε > 0. In other words, there is no poly-

nomial time algorithm that (in the worst case) beats the trivial approximation
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algorithm. Hardness of approximation is a vast field and the obtained inapprox-

imability ratios are highly problem dependent. For example, assuming P 6= NP,

one can prove that there is no n1−ε-approximation for INDSET. That means even

though the decision versions of 3SAT and INDSET are equally hard, in terms of

approximability, the problems behave very differently.
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Chapter 10

Circuit lower bounds

We want to continue in the spirit of Chapter 6 and discuss lower bounds on

the size of circuits. Certainly this topic has been a failure of complexity the-

ory. We cannot even prove that any function f : {0,1}n → {0,1} belonging to an

NP-problem requires circuits of size ω(n) and in order to prove that P 6= NP one

would need lower bounds of the form nω(1). In this chapter we want prove lower

bounds for monotone circuits and then discuss why lower bounds on general

circuits seem to be so difficult to obtain.

10.1 Lower bounds for monotone circuits

Consider the function CLIQUEk,n := {0,1}(n
2) → {0,1} where CLIQUEk,n(x) = 1 if the

graph G := ([n], {{i , j } | xi j = 1}) contains a clique of size k. By a slight abuse of

notation we will also write CLIQUEn,k (G). We recall that a clique in an undirected

graph G = (V ,E ) is a subset S ⊆ [n] so that for all distinct i , j ∈ S one has {i , j } ∈ E .

By Theorem 2.13 we know that the uniform variant of CLIQUEk,n is NP-hard and

certainly we expect that any circuit for CLIQUEk,n must have super polynomial

size – just that we cannot prove that at this moment. Recall that for a general

circuit we allow gates ∨,∧,¬ with fan-in 1 and 2, resp. We can also see that the

function CLIQUEk,n is monotone as adding edges to a graph cannot destroy an

existing k-clique. In general we define:

Definition 10.1. A function f : {0,1}n → {0,1} is called monotone if for all x, y ∈
{0,1}n one has x ≤ y ⇒ f (x) ≤ f (y).

Here we write x ≤ y for vectors x, y ∈ {0,1}n if coordinate-wise xi ≤ yi for all

i = 1, . . . ,n. Any monotone function f can be written in the form

f (x) =
∨

y∈{0,1}n : f (y)=1

( ∧

i∈[n]:yi =1

xi

)

97
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In other words, f can be computed with a monotone circuit which is a circuit

that only contains ∨ and ∧ gates. Note that in monotone circuit, all the func-

tions computed at non-output gates are monotone as well. But is it true that

for a monotone function there is also a minimum size circuit that happens to

be monotone? Or maybe a polynomial blowup suffices to make any circuit for a

monotone function also monotone? The answer is “no” in both cases, but these

questions were open before the work that we present here. For the remainder of

this chapter we will prove that (for a suitable choice of k := k(n)), any monotone

circuit for CLIQUEk,n must have exponential size.

10.1.1 Two distributions over inputs

Depending on parameters 1 ≤ k ≤ n, we will define two distributions Y and N

over graphs and then prove that any small monotone circuit will not be able to

correctly decide CLIQUEk,n(Y) and CLIQUEk,n(N ).

Definition 10.2. The distribution Y over n-vertex graphs is as follows: Pick a

uniform set K ⊆ [n] with |K | = k and output the graph G that has a clique on K

but no other edges.

|K | = k

graph sampled from Y

Definition 10.3. The distribution N over n-vertex graphs is as follows: Pick a

function c : [n] → [k −1] at random and insert an edge {u, v} if c(u) 6= c(v).
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graph sampled from N

b

b
b

b
b

b

b
b

b
b

b

b
b

b
b

b

b
b

b
b

c−1(1)

c−1(2)

. . .

c−1(k −1)

Intuitively, the distribution Y gives a graph with a minimal number of edges

so that always CLIQUEk,n (Y) = 1 and the distribution N gives a graph with an

approximately maximal number of edges so that that CLIQUEk,n(N ) = 0. We note

that with high probability, graphs drawn according to N have a lot of cliques of

size k −1.

10.1.2 Two combinatorial lemmas

We need a combinatorial lemma that says that in a large enough set system one

can find many sets that have the same pairwise intersection.

Lemma 10.4 (Sunflower Lemma — Erdős, Rado 1960). Let F ⊆ 2X be family of

sets over a groundset X so that |S| ≤ ℓ for all S ∈F and |F | > (p −1)ℓℓ! for some

p ∈ N. Then there are sets Z1, . . . , Zp ∈ F and Z ⊆ X so that Zi ∩ Z j = Z for all

i 6= j .

b

bb Z

Z1

Z2

. . .

Zp

b
bb

b

b

b

b b
b

Proof. We prove the claim by induction over ℓ. For ℓ= 1, all sets are disjoint and

the condition |F | > p −1 clearly suffices. Now suppose ℓ > 1. Let M ⊆F be an
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inclusion-wise maximal set of disjoint sets. If |M| ≥ p then we are done (with

Z :=;). So suppose |M| < p. The union U :=
⋃

S∈MS of elements in M has size

|U | ≤ (p −1)ℓ and by maximality, each set in F contains at least one element in

U . Hence by averaging, there is an element u ∈U that is in at least |F |
|U | ≥

(p−1)ℓℓ!
(p−1)ℓ =

(p −1)ℓ−1(ℓ−1)! many sets. Let F ′ := {S \ {u} : S ∈F and u ∈ S} be those sets after

deleting the element u. Note that sets in F ′ have cardinality at most ℓ− 1. By

induction we can find a sunflower Z1, . . . , Zp ∈ F ′ and Z1 ∪ {u}, . . . , Zp ∪ {u} is a

sunflower for the original set system F .

The birthday paradox usually refers to the fact that if one has significantly more

than
p

365 random people in room, then likely some of them will have the same

birthday. We can also get a reverse bound. Recall that a function c : A → B is

injective if for all distinct i , j ∈ A one has c(i ) 6= c( j ). For I ⊆ A we also denote

c|I : I → B as the restriction to I .

Lemma 10.5 (Birthday bound). Let 1 ≤ ℓ ≤ k. Then a random function c : [ℓ] →
[k] is injective with probability at least 1− ℓ2

2k
. Moreover, for any subset I ⊆ [ℓ]

one also has Pr[c injective | c|I injective] ≥ 1− ℓ2

2k
.

Proof. Let X be the random variable that gives the number of collisions (i.e. the

number of pairs {i , j } with c(i ) = c( j )). Then using linearity of expectation

E[X ] =
ℓ∑

i=1

ℓ∑

j=i+1

Pr[c(i ) = c( j )]
︸ ︷︷ ︸

=1/k

≤
ℓ2

2k

Note that Pr[X ≥ 1] ≤ E[X ] by Markov inequality which gives the first claim. The

moreover part follows along the same lines just that for i , j ∈ I one has Pr[c(i ) =
c( j )] = 0 since we condition on not having a collision in I .

10.1.3 Approximating CLIQUE by Clique Indicators

For a graph G = ([n],E ) and set set S ⊆ [n] we define define the clique indicator

CS(G)=
{

1 if S is a clique in G

0 otherwise

Note that CLIQUEk,n(G) =
∑

S⊆[n]:|S|=k CS which is a natural way to write CLIQUEk,n

as a monotone circuit. Assuming for the sake of contradiction that there is a

monotone circuit for CLIQUEk,n of (not too large) size s, we can approximate all

the intermediate functions computed by the circuit with clique indicators — at

least on instances drawn from Y and N .
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Theorem 10.6 (Razborov, Andreev, Alon, Boppana 1985). For 1 ≤ k ≤ n1/4 with k

large enough, there is no monotone circuit of size 2
p

k for CLIQUEk,n .

Proof. We fix large enough parameters k and n with k ≤ n1/4 and consider a

monotone circuit H of size s < 2
p

k . We will actually prove the stronger state-

ment that H will not be able to correctly distinguish the two distributionsY and

N , i.e. we will prove that

Pr
G∈RY

[H(G) 6= CLIQUEk,n (G)]+ Pr
G∈RN

[H(G) 6= CLIQUEk,n(G)] ≥ 0.8

For a large constant D, we define ℓ :=
p

k
D

, p := D
p

k log(n) and m := (p−1)ℓℓ!.

Then ℓ·p ≤ n1/7 for k large enough and so m ≤ nℓ/7 ≤ n
p

k . We say that a function

f : {0,1}(n
2) → {0,1} is an (m,ℓ)-function if there are sets S1, . . . ,Sm ⊆ [n] with |Si | ≤

ℓ so that1

f (G)=
m∨

i=1

CSi
(G)

Our goal is prove that all functions computed at the s many gates of the circuit H

can be well approximated by (m,ℓ)-functions which then in particular applies to

the output H itself. When combining two (m,ℓ)-functions we will have the issue

that the resulting function has either too many sets or their size exceeds ℓ. We

first develop tools to approximate such functions again with (m,ℓ)-functions.

Claim I. Given an (m2,ℓ)-function h =
∨m2

i=1
CZi

, there is an (m,ℓ) function h̃ so

that (i) for every graph G one has h̃(G)≥ h(G) and (ii) PrG∈RN [h̃(G) > h(g )]≤ 1
10s

.

Proof of Claim I. Suppose h is defined by more than m different sets, otherwise

there is nothing to prove. By the Sunflower Lemma (Lemma 10.4) there are in-

dices i1, . . . , ip so that Zi1 , . . . , Zip have the common intersection of Z . Replace

Zi1 , . . . , Zip in the definition with Z and denote the outcome h′. We will first an-

alyze h′ — the desired function h̃ follows by repeating the argument at most

m2 times. For any graph G , if any of the sets Zi j
are a clique, then also Z is a

clique and so h′(G) ≥ h(G) holds. For (ii) it suffices to prove that PrG∈RN [∀ j ∈ [p] :

Zi j
not is clique | Z is clique] ≤ 1

10m2s
. Recall that a sample from N is generated

using a uniform random function c : [n] → [k −1]. We condition on the even that

1We allow dublicate sets so that we can get exactly m sets instead of at most m many.
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Z is a clique, i.e. c|Z is injective. Then

Pr
[

∀ j ∈ [p] : c|Zi j
not injective | c|Z injective

]

(∗)=
p∏

j=1

Pr
[

c|Zi j
not injective | c|Z injective

]

Lem 10.5
≤

( ℓ2

k −1

)p
≤ 2−p = n−D

p
k ≤

1

10m2s

here we use in (∗) that Zi1 \ Z , . . . , Zip \ Z are disjoint so that the events are inde-

pendent.

Claim II. Let m′ ≤ m2. Given a (m′,∞)-function h =
∨m′

i=1
CZi

, there is an

(m′,ℓ)-function h̃ so that (i) for every graph G one has h̃(G)≤ h(G) and (ii) PrG∈Y [h̃(G)<
h(G)] ≤ 1

10s
.

Proof of Claim II. Let h̃ be the function obtained by dropping all sets Z with

|Z | > ℓ. Then trivially h̃(G) ≤ h(G) for every graph which gives (i). For (ii), recall

that a graph G ∈R Y contains a single randomly placed k-clique. So it suffices

to prove that for any fixed set Z with |Z | > ℓ, it is extremely unlikely that Z is a

clique. And indeed,

Pr
G∈RY

[CZ (G)= 1] = Pr
|K |=k

[Z ⊆ K ] ≤
k

n
·

k −1

n −1
· . . . ·

k − (ℓ−1)

n − (ℓ−1)

≤
( k

n

)ℓ k≤n1/4

≤ n−0.75ℓ ≤
1

10m2s

Next, we will prove that if f and g are two (m,ℓ)-functions then we can ap-

proximate f ∨ g and f ∧ g again with (m,ℓ)-functions. For this purpose we will

introduce two operations f ⊔ g and f ⊓ g .

Operation f ⊔ g . Consider two (m,ℓ)-functions f =
⋃m

i=1
CSi

and g =
⋃m

j=1
CT j

. Consider h := (
∨m

i=1
CSi

) ∨ (
∨m

j=1
CT j

) which is a (2m,ℓ)-

function. Then apply Claim I to h and return the obtained (m,ℓ)-

function.

Now we define the second operation:

Operation f ⊓ g . Consider two (m,ℓ)-functions f =
⋃m

i=1
CSi

and g =
⋃m

j=1
CT j

. Define the (m2,2ℓ)-function h :=
∨

i , j∈[m] CSi∪T j
. First ap-

ply Claim II to approximate h with a (m2,ℓ)-function h′. Then apply

Claim I to approximate h′ by a (m,ℓ)-function h′′ which we return.
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We summarize the properties of these two functions.

Claim III. Let f and g be two (m,ℓ)-functions. Then for both combinations (h, h̃) =
( f ∨ g , f ⊔ g ) and (h, h̃) = ( f ∧ g , f ⊓ g ) one has

Pr
G∈RY

[h̃(G) 6= h(G)] ≤
1

10s
and Pr

G∈RN
[h̃(G) 6= h(G)] ≤

1

10s

Now we can prove the main statement. Consider the functions f1, . . . , fs com-

puted at the gates of the circuit H in topological order, i.e. each fi depends only

on f1, . . . , fi−1 and fs = H . We construct a sequence f̃1, . . . , f̃s of (m,ℓ)-functions

where each f̃i is an approximation to f̃i . For an input gate i that corresponds

to variable x{u,v} we set f̃i := fi := C{u,v} (which trivially is an (m,ℓ)-function).

Now consider a non-input gate i and suppose it is a ∨ gate depending on gates

i1, i2, i.e. fi = fi1 ∨ fi2 . Then we set f̃i := f̃i1 ⊔ f̃i2 ; similar if fi = fi1 ∧ fi2 then

we set f̃i := f̃i1 ⊓ f̃i2. Then by Claim III, the error that we make in each step is

at most 1
10s

for each of the distributions Y and N and so Pr[ f̃s(G) 6= fs (G)] ≤ 1
10

if either G ∈R Y or G ∈R N . Then the following shows that it is impossible that

H = CLIQUEk,n .

Claim IV. For any (m,ℓ)-function f one has either PrG∈RY [ f (G) = 0] ≥ 0.99 or

PrG∈RN [ f (G) = 1]≥ 0.99.

Proof of Claim IV. Write f =
⋃m′

i=1
CZi

with m′ ≤ m. If m′ = 0 then f (G) = 0 for all

graphs G . Otherwise, we know that |Z1| ≤ ℓ and then PrG∈N [Z1 is clique in G] ≥
1− ℓ2

k−1
≥ 0.99 if D is large enough.

We leave it as an exercise to the reader to prove that there is indeed a non-

monotone circuit H of size poly(n) so that H(G) = 1 for all G drawn from Y while

H(G) = 0 for all G ∈R N .

10.2 Natural proofs

We also want to provide some evidence as to why it might be difficult to prove

general circuit lower bounds.

10.2.1 Introduction

As in Chapter 6, we use size( f ) to denote the minimum number of gates of a cir-

cuit that computes a function f : {0,1}n → {0,1}. Now consider an explicit func-

tion f : {0,1}n → {0,1} — for example f could be the function CLIQUE — and let us

speculate how a circuit lower bound proof for f could work. A natural approach

would be to come up with a simple proxy µ that approximately measures circuit
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complexity, i.e. for any function g : {0,1}n → {0,1} it assigns a value µ(g ) where

a large value of µ(g ) means that g has a high circuit complexity. Such a proxy is

also called a formal complexity measure. The issue is that one can prove that such

a formal complexity measure (with some additional natural properties) cannot

exist, assuming a well established cryptographic conjecture!

Theorem 10.7. Consider a formal complexity measure µ that for all large enough

n satisfies:

(a) Small for input functions: µ(xi ) ≤ 1 and µ(x̄i ) ≤ 1

(b) Small growth: µ( f ∧g )≤µ( f )+µ(g ), µ( f ∨g )≤µ( f )+µ(g ), µ( f̄ ) ≤µ( f )+1.

(c) Largeness: There is a function f : {0,1}n → {0,1} with µ( f ) ≥ nω(1)

(d) Constructiveness: Given the function table of a function g : {0,1}n → {0,1}

one can compute µ(g ) in time 2O(n).

Assuming Conjecture 5, such a complexity measure µ does not exist.

We have not yet introduced Conjecture 5, but we will get to that. Note that

any µ satisfying (a)+ (b) gives a lower bound of size( f ) ≥ µ( f ) for all functions

f . Moreover, setting µ( f ) := size( f ) satisfies (a)+ (b)+ (c)2, just that (d) would

violate Conjecture 5.

10.2.2 Pseudo-random functions

Our result is going to be conditional on the existence of pseudorandom functions

which we will formalize now. As in Section 3.2 we write Ag for an oracle Turing

machine that has oracle access to a function g : {0,1}∗ → {0,1}. We abbreviate

Fn := { f | f : {0,1}n → {0,1}} as all boolean functions on n variables.

Definition 10.8. A function δ : N→ [0,1] is called neglibile if for all c > 0 there is

an n0 ∈N so that δ(n) < n−c for all n ≥ n0.

In other words, a function is negligible if it is super-polynomially small, i.e.

δ(n) ≤ n−ω(1). Then we will rely on the following conjecture:

Conjecture 5 (Existence of subexponentially-secure pseudorandom functions).

There is a universal constant ε > 0 and a family of functions { fs }s∈{0,1}∗ where3

fs : {0,1}|s| → {0,1} so that

2Note that provably a random function f satisfies (c).
3The textbook defines pseudo random functions to be in the form fs : {0,1}|s| → {0,1}|s|, i.e. the

output length equals the input length. In our application we only need a single bit and so we can

use a simpler (and weaker) definition.
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1. There is a polynomial time Turing machine that on input of (s, x) with strings

s ∈ {0,1}∗ and x ∈ {0,1}|s|, computes fs (x) in polynomial time.

2. For any probabilistic 2nε
-time oracle Turing machine A, the quantity

δ(n) :=
∣
∣
∣ Pr

s∈R {0,1}n
[A fs (1n) = 1]− Pr

g∈RFn

[Ag (1n) = 1]
∣
∣
∣

is negligible.

In other words, if we consider a Turing machine A that has only subexponen-

tial running time, then A cannot distinguish between a true random function g

generated with 2n random bits and a function fs that is generated with only n ran-

dom bits (in the form of s ∈R {0,1}n). It is known that one could construct such a

family { fs }s∈{0,1}∗ of pseudorandom functions from a one way function, which is a

polynomial time computable function f : {0,1}∗ → {0,1}∗ for which collisions are

computationally difficult to find.

We also want to emphasize that there is no information-theoretic problem to

design a distinguisher breaking Conj 5. The algorithm A may depend on the fam-

ily { fs }s∈{0,1}∗ and for input length n, there are only 2n pseudorandom functions

while the number of actual random functions is |Fn | = 22n
. If running time does

not matter, then after checking O(n) random inputs we know with high proba-

bility whether the function represented by the oracle is of the form fs or purely

random.

We have not covered pseudo random generators in this course and we want

to give the reader some intuition why they are useful. Also we want to put Conj 5

into context with concepts that we already know. The next theorem is not needed

in the context of natural proofs and can be skipped if desired.

Theorem 10.9. Conj 5 ⇒ BPP ⊆ DTIME(2(logn)O(1)
).

Proof. Let L ∈ BPP. Consider a probabilistic Turing machine M with running

time at most nc for some constant c ≥ 1 and fix the constant 0 < ε< 1 from Conj 5.

Let x be an input and set n := |x|.
We choose a parameter k ∈N so that nc ≪ 2kε

, for example k := (2c log(n))1/ε

will work. Then we draw s ∈R {0,1}k uniformly at random. Note that one can

interpret fs as vector with 2k many pseudo random bits. In particular 2k > nc so

this is more than enough random bits for the algorithm M . Since M has running

time nc < 2kε
we may conclude from Conj 5 that

∣
∣
∣ Pr

s∈R {0,1}k
[M fs (x) = 1]− Pr

r∈R {0,1}nc
[M r (x) = 1]

∣
∣
∣≤

1

nω(1)
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That means M fs is again a BPP-type algorithm (with marginally worse success

probability) but M fs uses only k = (2c log(n))1/ε many random bits. We can make

that algorithm deterministic by trying out all 2k possibilities.

10.2.3 Non-existence of natural proofs

We will now describe the argument by Razborov and Rudich that natural proofs

do not exist. For this, we will not directly prove Theorem 10.7 using formal com-

plexity measures but we use a “binary” variant. Recall that a predicate P on

boolean functions assigns a valueP( f ) ∈ {0,1} to all boolean functions f : {0,1}n →
{0,1}.

Definition 10.10. A predicate P on boolean functions is called a natural proof

predicate with parameter T (n) if for all n large enough the following holds:

• Usefulness. P(g ) = 0 for all g : {0,1}n → {0,1} with size(g ) ≤ T (n).

• Largeness. One has Pr[P(g ) = 1] ≥ 1
n

for a uniform random function g :

{0,1}n → {0,1}.

• Constructiveness. With access to the function table of g one can compute

P(g ) in time 2O(n).

Theorem 10.11 (Razborov, Rudich 1994). Assuming Conjecture 5, there is a con-

stant c > 0 so that there is no natural proof predicateP with parameter T (n)= nc .

Proof. Consider a family of pseudo-random functions { fs}s∈{0,1}∗ according to

Conj 5 that is safe against a 2nε
-time adversary. Draw s ∈R {0,1}n at random and

draw a uniform random function f : {0,1}n → {0,1}. Fix a choice of h ∈ { fs , f }. We

will build an algorithm that given access to h decides whether h = fs or h = f .

Set m := nε/2 and consider the function g : {0,1}m → {0,1} with g (x) := h(x0n−m ).

Assume for the sake of contradiction that there is a natural proof predicate with

T (n) = nc . Then the value P(g ) can be computed in time 2O(m) = 2O(nε/2). We will

prove that P is the algorithm that contradicts Conj 5.

Claim I (Pseudo random case). If g = fs , then P(h) = 0.

Proof of Claim I. By assumption, the function fs can be computed in time poly(n)

and so the restriction h can be computed by a circuit of size poly(n) which is of

the form mc for some (large) constant c > 0. Hence P(h) = 0 by the usefulness

assumption.

Claim II. (Uniform random case). If g = f , then Pr[P(h) = 1] ≥ 1
m

.

Proof of Claim II. In this case also the restriction h is a uniform random function

and so the claim follows by the Largeness part of Def 10.10.
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Note that this argument rules out natural proofs with parameter nc where c is

some large constant depending on the constant ε in the pseudorandom assump-

tion and on the exponent in the running time needed to evaluate the functions

fs . If one wanted to make the stronger assumption that for any δ > 0, there are

pseudorandom families that are safe against 2n1−δ
-time adversaries and that can

be computed in time O(n1+δ), then presumably one can rule out natural proofs

with parameter n1+γ, for any constant γ> 0.

10.2.4 Non-existence of formal complexity measures

Finally, we will prove that also formal complexity measure, satisfying the prop-

erties listed in Theorem 10.7 do not exist, assuming Conj 5. Here the main tech-

nical difference is that in the setting Theorem 10.7 we are only guaranteed the

existence of a single hard function while Theorem 10.11 requires that a substan-

tial fraction of random functions are hard.

Theorem 10.7. Assume n is large enough and fix the exponent c > 0 as in Theo-

rem 10.11. Fix the formal complexity measure µ and let f : {0,1}n → {0,1} be a

function so that µ( f ) ≥ 8nc . Let g : {0,1}n → {0,1} be a uniform random function.

We use ⊕ as the exclusive or. Then

f = ( f ⊕ g )⊕ g = (( f ⊕ g )∧ g )∨ (( f ⊕ g )∧ ḡ )

and so

µ( f ) ≤µ( f ⊕ g )+µ(g )+µ( f ⊕ g )+µ(ḡ )

But each of those function f ⊕ g , g , f ⊕ g , ḡ is again a uniform random function

and at least one of them needs to have a µ-value of at least
µ( f )

4 ≥ 2nc . Overall we

can conclude that Prg [µ(g ) ≥ 2nc] ≥ 1
4

where g is a uniform random function. So

we define the predicate P by letting

P(h) :=
{

1 if µ(h)≥ 2nc

0 otherwise

As for any boolean function we have µ(h) ≤ size(h), the claim then follows by

Theorem 10.11.
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