Problem Set 1

CSE 531-Computational Complexity

Winter 2024

Exercise 1.9 (slightly modified; 10pts)

Define RAM Turing machine to be a Turing machine M that has random access memory. We formalize this as follows: The machine has an infinite array A that is initialized to be all blanks. It accesses the array as follows. One of the machine's work tapes is designated as address tape. Also the machine has two special alphabet symbols denoted by R and W and an additional state we denote by $q_{\text {access }}$. Whenever the machine enters $q_{\text {access }}$, if its adress tape contains $\lfloor i\rfloor \mathrm{R}$ (where $\lfloor i\rfloor$ denotes the binary representation of $i \in \mathbb{Z}_{\geq 0}$), then the value $A[i]$ is written in the cell next to the R . If its tape contains $\lfloor i\rfloor \mathrm{W} \sigma$ (where σ is some symbol in the machine's alphabet), then $A[i]$ is set to the value σ.

Show that if a function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is computable within time $T(n)$ (for some time constructable T) by a RAM TM, then it is computable in time $O\left(T(n)^{3}\right)$ by a "standard" TM \tilde{M}.

Bonus. The book by Arora \& Barak claims a running time of $O\left(T(n)^{2}\right)$ is possible but I am not quite convinced. One bonus point if you manage!

