Problem Set 1

CSE 531 - Computational Complexity

Winter 2024

Exercise 1.9 (slightly modified; 10pts)

Define *RAM Turing machine* to be a Turing machine *M* that has *random access memory*. We formalize this as follows: The machine has an infinite array *A* that is initialized to be all blanks. It accesses the array as follows. One of the machine's work tapes is designated as *address tape*. Also the machine has two special alphabet symbols denoted by R and W and an additional state we denote by q_{access} . Whenever the machine enters q_{access} , if its adress tape contains $\lfloor i \rfloor R$ (where $\lfloor i \rfloor$ denotes the binary representation of $i \in \mathbb{Z}_{\geq 0}$), then the value A[i] is written in the cell next to the R. If its tape contains $\lfloor i \rfloor W\sigma$ (where σ is some symbol in the machine's alphabet), then A[i] is set to the value σ .

Show that if a function $f : \{0,1\}^* \to \{0,1\}^*$ is computable within time T(n) (for some time constructable *T*) by a RAM TM, then it is computable in time $O(T(n)^3)$ by a "standard" TM \tilde{M} .

Bonus. The book by Arora & Barak claims a running time of $O(T(n)^2)$ is possible but I am not quite convinced. One bonus point if you manage!