Lecturer: Thomas Rothvoss

Problem Set 2

CSE 531 - Computational Complexity

Winter 2024

Exercise 1 (not in the A&B book; 10pts)

Recall that in the lecture we have proven that the function HALT given by

 $HALT(x, \alpha) := \begin{cases} 1 & \text{if } M_{\alpha} \text{ halts on input } x \\ 0 & \text{otherwise} \end{cases}$

is undecidable (meaning there is no Turing machine M computing HALT). Now consider the problem HALT_{EMPTY} where

HALT_{EMPTY}(α) := $\begin{cases}
1 & \text{if } M_{\alpha} \text{ halts on input of the empty string} \\
0 & \text{otherwise.}
\end{cases}$

Prove that $HALT_{EMPTY}$ is undecidable.

Exercise 2 (slightly modified from Ex 1.11 in A&B book; 10pts)

We say that a function $f : \{0,1\}^* \to (\{0,1\}^* \cup \{UNDEF\})$ is a *partial function* where f(x) = UNDEF means that the function is not defined on input *x*. We say that a Turing machine *M* computes the partial function *f* with

$$f(x) = \begin{cases} M(x) & \text{if } M \text{ halts on } x \\ \text{UNDEF} & \text{if } M \text{ does not halt on } x \end{cases}$$

For a set S of partial functions, we define $f_{\mathcal{S}}: \{0,1\}^* \to \{0,1\}$ by letting

 $f_{\mathcal{S}}(\alpha) := \begin{cases} 1 & \text{if the partial function computed by } M_{\alpha} \text{ is in } \mathcal{S} \\ 0 & \text{otherwise} \end{cases}$

We say that such a set S is *non-trivial* if there are Turing machines M_0 and M_1 so that the partial function computed by M_0 is not in S and the partial function computed by M_1 is in S. Prove the following:

<u>Rice's Theorem</u>. For any non-trivial set S of partial functions, there is no Turing machine computing f_S .

Hint. By possibly replacing from S by its complement (which doesn't affect the claim), we may assume that $f_0 \in S$, where $f_0 : \{0,1\}^* \to \{0,1\}^* \cup \{\text{UNDEF}\}$ is the partial function with $f_0(\alpha) =$ UNDEF for all α . Use this to show that an algorithm to compute f_S can compute the function HALT considered in the first homework problem.

Comment. One can interpret this problem as proving that testing *any* kind of output behavior of Turing machines is undecidable.