Problem Set 3

CSE 531-Computational Complexity

Winter 2024

Exercise 2.5 (slightly modified from Arora and Barak; 10pts)

Let PRIMES $:=\{\operatorname{enc}(n) \mid n \in \mathbb{N}$ is prime number $\} \sqrt{11}$ be the language of all prime numbers. Prove that PRIMES $\in \mathbf{N P}$.
Hint. You may use the following fact without a proof.
Pratt certificate. Let $n \in \mathbb{Z}_{\geq 3}$. Then n is prime if and only if there exists a number $a \in$ $\{2, \ldots, n-1\}$ so that $a^{n-1} \equiv_{n} 1$ and for every prime factor q of $n-1$ one has $a^{(n-1) / q} \not \equiv_{n}$ 1.

To certify that n is prime, certify that the condition after the "if and only if" holds where you'll need a recursive argument to certify that any q is prime too. Prove that your certificate has length that is polynomial in $|\operatorname{enc}(n)|$ and can be verified in time polynomial in $|\operatorname{enc}(n)|$.
Remark. Actually it is true that PRIMES $\in \mathbf{P}$, but that proof takes more work. From this exercise we can derive that PRIMES $\in \mathbf{N P} \cap \mathbf{c o N P}$ which already is good evidence that PRIMES is not a hard problem.

Exercise 2.17 (modified from Arora and Barak; 10pts)

Define the Exactly One 3SAT problem

$$
\text { E1-3SAT }:=\left\{\begin{array}{c|}
\psi \text { is a CNF with at most } 3 \text { literals per clause }{ }^{3} \text { that has an } \\
\text { assignment } x \text { that satisfies exactly one literal per clause }
\end{array}\right\}
$$

Prove that E1-SAT is NP-complete.
Hint. Prove 3 SAT \leq_{p} E1-3SAT. To do so, replace each occurance of a literal u_{i} in a clause C by a new variable $z_{i, C}$ and introduce new clauses and auxiliary variables ensuring that if u_{i} is TRUE, then $z_{i, C}$ is allowed to be either TRUE or FALSE, but if u_{i} is FALSE, then $z_{i, C}$ must be FALSE too.

[^0]
[^0]: ${ }^{1}$ For a number n we write enc $(n) \in\{0,1\}^{*}$ as the encoding of n as a $0 / 1$-string
 ${ }^{2}$ We write $a \equiv_{n} b$, if $a-b$ is an integer multiple of n.

