Problem Set 3

CSE 531 - Computational Complexity

Winter 2024

Exercise 2.5 (slightly modified from Arora and Barak; 10pts)

Let PRIMES := $\{enc(n) \mid n \in \mathbb{N} \text{ is prime number}\}^1$ be the language of all prime numbers. Prove that PRIMES $\in \mathbb{NP}$.

Hint. You may use the following fact without a proof.

Pratt certificate. Let $n \in \mathbb{Z}_{\geq 3}$. Then *n* is prime if and only if there exists a number $a \in \{2, ..., n-1\}$ so that $a^{n-1} \equiv_n 1$ and for every prime factor *q* of n-1 one has $a^{(n-1)/q} \not\equiv_n 1$.

To certify that *n* is prime, certify that the condition after the "if and only if" holds where you'll need a recursive argument to certify that any *q* is prime too. Prove that your certificate has length that is polynomial in |enc(n)| and can be verified in time polynomial in |enc(n)|.

Remark. Actually it is true that $PRIMES \in P$, but that proof takes more work. From this exercise we can derive that $PRIMES \in NP \cap coNP$ which already is good evidence that PRIMES is not a hard problem.

Exercise 2.17 (modified from Arora and Barak; 10pts)

Define the *Exactly One 3SAT* problem

E1-3SAT := $\left\{ \psi \mid \begin{array}{c} \psi \text{ is a CNF with at most 3 literals per clause}^3 \text{ that has an} \\ \text{assignment } x \text{ that satisfies exactly one literal per clause} \end{array} \right\}$

Prove that E1-SAT is NP-complete.

Hint. Prove $3SAT \leq_p E1-3SAT$. To do so, replace each occurance of a literal u_i in a clause *C* by a new variable $z_{i,C}$ and introduce new clauses and auxiliary variables ensuring that if u_i is TRUE, then $z_{i,C}$ is allowed to be either TRUE or FALSE, but if u_i is FALSE, then $z_{i,C}$ must be FALSE too.

²We write $a \equiv_n b$, if a - b is an integer multiple of n.

¹For a number *n* we write $enc(n) \in \{0,1\}^*$ as the encoding of *n* as a 0/1-string