CSE 531 - Computational Complexity

Winter 2024

Exercise $\mathbf{2 . 3 0}$ (slightly modified from Arora and Barak; 10pts)

A language B is called unary if $B \subseteq\left\{1^{n}: n \in \mathbb{N}\right\}$. Show that if there exists an NP-complete unary language B, then $\mathbf{P}=\mathbf{N P}$.
Hint. Assume for the sake of contradiction that 3 SAT $\leq_{p} B$. Then there is a polynomial time computable function $f:\{0,1\}^{*} \rightarrow \mathbb{N}$ with $\psi \in 3$ SAT $\Leftrightarrow 1^{f(\psi)} \in B$ and $f(\psi) \leq n^{c}$ for some constant $c>0$ where n is the number of variables in ψ. You may use this function polynomially many times in order to decide whether a given 3CNF ψ is satisfiable. Given a 3CNF ψ, if we select some variable x_{i} and a value $a \in\{0,1\}$, then $\psi^{\prime}:=\psi_{x_{i}=a}$ is the 3CNF obtained by substitution, meaning we replace literal x_{i} by constant a and literal $\neg x_{i}$ by $1-a$ and either shorten the clauses or throw out satisfied clauses. For example, if $\psi:=\left(x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{2} \vee x_{3}\right)$ then $\psi \mid x_{1}=0=\left(x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{2} \vee x_{3}\right)$. Now, given a 3CNF ψ, design a polynomial time algorithm that maintains a set

$$
L=\left\{\left(\psi_{1}, f\left(\psi_{1}\right)\right), \ldots,\left(\psi_{m}, f\left(\psi_{m}\right)\right)\right\}
$$

where we have the invariant that each ψ_{i} is obtained by repeated substitution and $\psi \in 3$ SAT \Leftrightarrow $\bigvee_{i=1, \ldots, m}\left(\psi_{i} \in 3\right.$ SAT $)$.
Remark. The claim is also known as Berman's Theorem.

Exercise 3.8 (rephrased from Arora and Barak; 10pts)

For a language $B \subseteq\{0,1\}^{*}$, we write $B_{n}:=\{x \in B:|x|=n\}$ as all the strings of length n. Suppose we pick a random language B in the following way: for each n, with probability $1 / 2$ one has $B_{n}=\emptyset$ and with probability $1 / 2$ one has $B_{n}=\left\{y_{n}\right\}$ where y_{n} is a uniform random string from $\{0,1\}^{n}$. Prove that with high probability ${ }^{1} \mathbf{P}^{B} \neq \mathbf{N P}^{B}$.

[^0]
[^0]: ${ }^{1}$ Your argument will most likely be able to show that the probability of $\mathbf{P}^{B} \neq \mathbf{N} \mathbf{P}^{B}$ is arbitrarily close to 1 . Then actually that probability must be equal to 1 .

