Problem Set 4

CSE 531 - Computational Complexity

Winter 2024

Exercise 2.30 (slightly modified from Arora and Barak; 10pts)

A language *B* is called *unary* if $B \subseteq \{1^n : n \in \mathbb{N}\}$. Show that if there exists an **NP**-complete unary language *B*, then **P** = **NP**.

Hint. Assume for the sake of contradiction that $3SAT \leq_p B$. Then there is a polynomial time computable function $f : \{0,1\}^* \to \mathbb{N}$ with $\psi \in 3SAT \Leftrightarrow 1^{f(\psi)} \in B$ and $f(\psi) \leq n^c$ for some constant c > 0 where *n* is the number of variables in ψ . You may use this function polynomially many times in order to decide whether a given 3CNF ψ is satisfiable. Given a 3CNF ψ , if we select some variable x_i and a value $a \in \{0,1\}$, then $\psi' := \psi_{|x_i=a}$ is the 3CNF *obtained by substitution*, meaning we replace literal x_i by constant *a* and literal $\neg x_i$ by 1 - a and either shorten the clauses or throw out satisfied clauses. For example, if $\psi := (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3)$ then $\psi_{|x_1=0} = (x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3)$. Now, given a 3CNF ψ , design a polynomial time algorithm that maintains a set

$$L = \{(\boldsymbol{\psi}_1, f(\boldsymbol{\psi}_1)), \dots, (\boldsymbol{\psi}_m, f(\boldsymbol{\psi}_m))\}$$

where we have the invariant that each ψ_i is obtained by repeated substitution and $\psi \in 3SAT \Leftrightarrow \bigvee_{i=1,\dots,m} (\psi_i \in 3SAT)$.

Remark. The claim is also known as Berman's Theorem.

Exercise 3.8 (rephrased from Arora and Barak; 10pts)

For a language $B \subseteq \{0,1\}^*$, we write $B_n := \{x \in B : |x| = n\}$ as all the strings of length *n*. Suppose we pick a random language *B* in the following way: for each *n*, with probability 1/2 one has $B_n = \emptyset$ and with probability 1/2 one has $B_n = \{y_n\}$ where y_n is a uniform random string from $\{0,1\}^n$. Prove that with high probability $\mathbf{P}^B \neq \mathbf{NP}^B$.

¹Your argument will most likely be able to show that the probability of $\mathbf{P}^B \neq \mathbf{NP}^B$ is arbitrarily close to 1. Then actually that probability must be equal to 1.