Lecturer: Thomas Rothvoss

Problem Set 7

CSE 531 - Computational Complexity

Winter 2024

Exercise 7.1 (from the book of Arora and Barak; 10pts)

Show that one can efficiently simulate choosing a uniform random number from 1 to *N* using coin tosses. That is, show that for every $N \in \mathbb{N}$ and $\delta > 0$ there is a probabilistic algorithm *A* running in $poly(log(N), log(\frac{1}{\delta}))$ with output in $\{1, \ldots, N, ?\}$ such that

- (a) Conditioned on not outputting ?, *A*'s output is uniformly distributed in $\{1, \ldots, N\}$
- (b) The probability that A outputs ? is at most δ .

Exercise 7.4 (Error Reduction for RP; from the book of Arora and Barak; 10pts) Prove that for any polynomial p(n) one has $\mathbb{RP}_{1-\frac{1}{p(n)}} = \mathbb{RP}_{2^{-p(n)}}$.