Problem Set 7

CSE 531 - Computational Complexity

Winter 2024

Exercise 7.1 (from the book of Arora and Barak; 10pts)

Show that one can efficiently simulate choosing a uniform random number from 1 to N using coin tosses. That is, show that for every $N \in \mathbb{N}$ and $\delta>0$ there is a probabilistic algorithm A running in poly $\left(\log (N), \log \left(\frac{1}{\delta}\right)\right)$ with output in $\{1, \ldots, N, ?\}$ such that
(a) Conditioned on not outputting ?, A's output is uniformly distributed in $\{1, \ldots, N\}$
(b) The probability that A outputs? is at most δ.

Exercise 7.4 (Error Reduction for RP; from the book of Arora and Barak; 10pts)

Prove that for any polynomial $p(n)$ one has $\mathbf{R P}_{1-\frac{1}{p(n)}}=\mathbf{R P}_{2-p(n)}$.

