A Necessary Condition for the Existence of Best Approximations

B. R. KRIPKE AND R. T. ROCKAFELLAR

Offprint from

Journal of Mathematics and Mechanics Vol. 13, No. 6, November, 1964, pp. 1037–1038

A Necessary Condition for the Existence of Best Approximations

B. R. KRIPKE AND R. T. ROCKAFELLAR*

Communicated by G. Birkhoff

The purpose of this note is to prove the following theorem:

Theorem. Let B be a Banach space and X a bounded subset of B. In order that for each bounded real-valued function F on X there exist a continuous linear functional $\phi \in B^*$ such that $\Delta(\phi) = \sup\{|F(x) - \phi(x)| : x \in X\} = \inf\{\Delta(\psi) : \psi \in B^*\}$, it is necessary that 0 be in the interior of the closed, balanced, convex hull K of X relative to its linear span [K].

In the preceding paper by E. W. Cheney and A. A. Goldstein, it was proved that this condition is also sufficient to insure the existence of best approximations even when X is not bounded. We shall actually show that when the condition fails, there is a *linear* function F on [K] such that

- (a) the restriction of F to X is continuous
- (b) F can be uniformly approximated on X within any desired degree of accuracy by functionals in B^* , but
- (c) the restriction of F to X is not equal to the restriction to X of any functional in B^* .

Let ρ be the norm of B. Suppose K has no interior relative to the ρ -topology on [K]. Since K is symmetric, convex, closed, and absorbing in [K], there is a norm σ on [K] such that $K = \{x \in [K] : \sigma(x) \leq 1\}$ (Bourbaki [1, p. 95]). Since K is ρ -bounded, the new topology induced by σ on [K] is finer than the ρ -topology. Because K is ρ -complete, the σ -topology on [K] is complete, so that σ makes [K] into a Banach space (Bourbaki, [1, Chap. I, Cor. of Prop. 8]).

Let us show that [K] cannot be ρ -closed in B. In the contrary case, it would follow from the open mapping theorem that σ and ρ were equivalent norms. (Dunford and Schwartz [2, Theorem II. 2.5]). But this would contradict our hypothesis that K has no interior relative to the ρ -topology on [K].

Thus the ρ -closure L of [K] is actually larger than [K]. The inclusion map

^{*} This work was supported by grant AF-AFOSR 62-348.

 $T: [K] \to L$ is continuous from the σ -topology to the ρ -topology. Its adjoint T^* maps the ρ -dual L^* of L into the σ -dual $[K]^*$ of [K]. Let σ^* be the norm on $[K]^*$ dual to σ . $T^*(L^*)$ cannot be σ^* -closed in $[K]^*$, for if it were, it would follow that T([K]) would be ρ -closed in L (Dunford and Schwartz [2, Theorem VI. 6.4]). Thus there is an element of F in the σ^* -closure of $T^*(L^*)$ which does not belong to $T^*(L^*)$.

 $T^*(L^*)$ consists of those functionals in $[K]^*$ which are restrictions to [K] of functionals in L^* . The Hahn-Banach theorem shows that in fact $T^*(L^*)$ consists of the restrictions to [K] of functionals in B^* (Dunford and Schwartz [2, Theorem II. 3.11]). Consequently, F is a linear functional on [K] which is not the restriction to [K] of a functional in B^* . Since [K] is the linear span of $cl(conv(X \cup -X))$, the values of a ρ -continuous linear functional on [K] are completely determined by its values on X. This proves (c).

The σ^* -topology is that of uniform convergence on K. Since F lies in the σ^* -closure of $T^*(L^*)$, (b) is proved. Since F is the uniform limit on K of ρ -continuous linear functionals, (a) follows as well.

References

 N. BOURBAKI, Espaces Vectoriels Topologiques, Chaps. I and II, Hermann, Paris, 1953.
NELSON DUNFORD & JACOB T. SCHWARTZ, Linear Operators, Part I, Interscience, New York, 1958.

> University of Texas, Austin, Texas