CONJUGATE CONVEX FUNCTIONS IN NONLINEAR
i PROGRAMMING

R. T. Rockafellar

Let f_, fi’ ook fm be real-vaiued functions which are convex,

but not necessarily differentiable, and consider the convex program in
which fO{x} is minimized subject to the constraints f (x) <0, 5
fm(x} <0. Real numbers 7\1, — )\m are called Lagrange multipliers

for the program if they are nonnegative and the (unconstrained) infimum
of the convex function fo + 7\1 f.l ... F ?\m fm is finite and equal to

the constrained infimum of IO.

The meaning of such Lagrange multipliers is connected with
a notion of perturbation, namely where the given program is perturbed
by subtracting constants u, from the constraint functions fi' For each

m . L i
u = (ul, B um] e R, let plu) = p(ui. i um} denote the infimum

of fo{x) subject to the constraints

LX) Sy vy £ (%) Su_. {1)
Then p(0) is the infimum in the given "unperturbed" program, Assum-
ing that p(0) is finite, one can show easily that u¥ ={\, ..., A_)is
y st : ; 1 m
a Lagrange multiplier vector if and only if

plu} 2 p(0) - ¢u, wk for every u ¢ Rm, {2)

where (.,.) denotes the ordinary inner product of two vectors in

R™. In other words, Lagrange multipliers depend only on the function
p. and they describe some sort of "linearization" of p around u = 0,

Now it happens that p is a convex functicn on Rm, and that
condition (2) can be analyzed in terms of fhe directional derivatives of
pat 0. According to the general definition of convexity for functions
whose values may be not only real numbers but + ® and - @, the con-
vexity of p means that the epigraph of p (which is the set of pairs
{u, o} such that u ¢ R™, 4 R and & > p(u}} is a convex set in R T
Condition {2} says that the graph of the affine function

hi{u}.= p{0} - ¢u, ud

is a {nonvertical} supporting hyperplane to the epigraph of p at the
point {0, p{(0)). Theorems about the existence of Lagrange multipliers
may thus be deduced from theorems about the existence of supporting
hyperpianes to convex sets, The convexity of p also implies that the
one-sided directional derivative

2'(0; uj = limfp{k u) - p(0) ]/
+ 0
exists for every u (assuming that p{0} is finite). It turns out that, in
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\general, u¥ is a Lagrange multiplier vector if and only if
1 5 LI
p'(0; u) > - Cu, wd for everyue R .

A Lagrange multiplier vector fails to exist if and only if there is
some u such that p'(0; u) = - ®. A unigque Lagrange multiplier vector
wk exists if and only if p is differentiable at 0, in which case

w* = - yp{0). Thus the Lagrange multipliers Aj, when unique, give
the rate of change of the infimum in the given program with respect
to perturbing the constraints to those in (1):

:\.:_QP_.. u= 0 i=1, ..., m,
1 :311:[

For proofs of all these facts we refer to [9, section 29].
Observe that, if we define

flu, x) = I (x) if fx)<uy, .., (x) <u_, (3)

+ @ if not,

then f is a convex function on Rm-f-n' Minimizing fo(x} subject to
f(xj<0, i=14, ..., m, is equivalent to minimizing the function (0, &
as x ranges over all of R®. On the other hand, p can be expressed
in terms of { tco:

pguj £ 'mfx flu, x). {4)
This leads to the following concept of a generalized convex

program, which is essentially contained in a recent paper of Gale 2]
m-+n

Let f be any convex function on R {not necessarily finite every-
where). In the program (P) corresponding to f, one is to minimize

f{O, x)inx e« Rm. This minimization problem is not taken in isola-

tion, however, but rather in the context of a certain specified system
of perturbations, The perturbations corresponding to (P) are to be

those in which the objective function £{0, x) is replaced by f(u, xj for |
various choices of u e R™, (In the case where f is given by (3), such]
perturbations amount to changes of constraints as in {1).3 The 1
nerturbation function for (P} is the function p defined by (4). When i
p(0) (the optimal value in (P)) is finite, the Lagrange multiplier !

vectors for ({P) are defined to be the vectors wk ¢ R satisfying (2),
while the optimal solutions to {P) are defined to be the vectors

% &£ R at which the infimum of the convex function £{0, .} is attained,
. It can be proved that the perturbation function p of a general-
ized convex program (P} is convex. Therefore all the results stated
above for Lagrange multipliers in ‘'classical’ convex programs are
also valid for Lagrange multipliers in generalized convex programs.
We shall now explain how Fenchel's theory of conjugate
convex functions [3], [4], can be used to obtain a complete and
symmetric duality theory for generalized convex programs. The
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details of this new duality theory will be published in [9].

For the moment, let p denote any convex function on R™
The closure of p is defined to be the convex function cl p whose
epigraph is the intersection of all the nonvertical closed half-spaces

in Rmﬂ containing the epigraph of p, Thus cl p is the pointwise
supremum of the collection of all affine (i. e, linear-plus-a-constant)
functions h such that h{u) < p(u) for everyu. If ¢l p = p, then p is
said to be closed., (It can be shown that, if p nowhere takes on the
value - @, (cl p)(u) = p{u) for everyu whlch is not a boundary point
of the convex set {u|p(u) <=},)

The conjugate of p is the function p¥ on R™ defined by
pr(u¥) = sup {<u, wb - p(w)).

Fenchel proved that p* is a closed convex function, and that p** = cl p.
In particular, if p is closed then p is in turn the conjugate of p* and
the relationship between p and p* is a symmetric one, The epigraph

of p* consists of the pairs (u¥, o%} ¢ Rm+1 such that the affine function

h{u} =<u, u® - o¥ satisfies h(u) < p(u) for every u, and this set of
pairs gives a dual description of p when p is closed.

We would like to point out that, in the case where p is every-
where finite and differentiable, one has

pH{u¥) = (u, gp(u)> - p{u) when yp(u) = v¥,

This fact can be used to explain the connection between duality based
on Fenchel's conjugacy and the duality theories for nonlinear pro-
gramming in which expressions like (u, yp(u)> - p{u) are important,
for instance the theory of Wolfe {10] and the theory of Dantzig,
Eisenberg and Cottle [11], We must forego explaining the connection
here, however, and refer instead to the exposition in [8] and [9],
Given a generalized convex program (P) corresponding as

above to a closed convex function {f on Rm-[-n, we define the dual

program (P%) as follows, Let £ be the conjugate of f and let

gl{x¥, u¥) = - f%(- u¥, x¥),

This g is a concave function, and (P%) is the generalized concave
program corresponding to g, Thus in (P*) one is to maximize the

function g(0, u*) in u¥ ¢ R™, The perturbations considered in (P%)
are those which repiace the objective functicn g{0, u*) by g{x*, wk)

. . N e . = . : 3
for various choices of x* ¢ R, The perturbation function in (P*) is
the concave function g on RP defined by

g{x*) = SUp, gix¥, wk),

When the optimal value q{0) in (P*) is finite, the Lagrange multiplier
vectors for (P*) are defined to be the vectors x € R™ such that



484 Rockafellar

I:' q(x¥) < q(0) - <(x, x» for every x* e R",

while the optimal solutions to (P*]) are defined to be the vectors

w¥ ¢ R™ at which the supremum of the concave function g(0, .) is
attained.

The conjugate of a concave function is defined by the same
formula as the conjugate of a convex function, except that "inf" re-
places ''sup'. It can be seen from the symmetry of the conjugacy
correspondence that

flu, x) = - g¥(- x, u),

so that (P} is in turn the dual of (P*). The duality between (P) and
(P*)} is thus symmetric,

The dual pairs of minimization and maximization probiems
which one obtains by this scheme include not only the familiar linear
programs, but in essence all the other pairs of (convex or concave)
extremum problems for which substantial duality theories are pres-
ently known. Details and examples may be found in [7], [8]and [9],

Theorems about the duality between (P) and (P%*) are based
on the following fact: the objective function g(0, .) in (P*} is the
conjugate of the concave function - p, whereas the objective function
£(0, .} in (P) is the conjugate of the convex function - q.

We shall say that (P} is normal if ¢l p agrees with p at the
origin. Normality of (P*) is defined similarly, It can be demonstrate
that generalized convex or concave programs are always normal, unl
they are quite freakish., (In other words, heuristically speaking, any
natural program can in practice be expected to be normal, ) '

Two main duality results can be stated,

Theorem 1. The following conditions are equivalent:

(a) program (P} is normal;
{b} program (P¥*) is normal;
(e¢) the infimum in {(P) and the supremum in (P*) are equal

Theorem 2. Suppose that the equivalent conditions in
Theorem | hold, Then w* is a Lagrange multiplier vector for (P) if
and only if u® is an optimal solution to (P¥). Dually, x is a Lagrange
multiplier vector for (P%} if and only if x is an optimal solution to (P).i

Existence and uniqueness theorems for optimal solutions can
be obtained via Theorem 2 {rom existence and uniqueness theorems
for Lagrange multipliers, such as those cited earlier,

Optimal solutions and Lagrange multipliers can be given
a saddle-point characterization., In fact, there is a one-to-one cor-
respondence between dual pairs of generalized convex and concave
programs and '‘regularized' concave-convex minimax problems of |
the most general type, This correspondence, also based on Fenchel's
conjugacy, is explained in [5], {8]and [9] |
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