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1. Introduction

Let p be a positive measure on a measurable space (7, ), and
let / be an extended-real-valued function on 7Tx R". Under rather mild
regularity assumptions described below, the integral
Ip(w) = | Sl u()pdn) (L.1)
is “well-defined ” for every summable function #:T— R" and thus gives
an extended-real-valued functional on the Banach space L' (7, R™). Such
functionals arise in many ways, but they are especially common and
important in variational problems,
In many problems one wants to minimize something of the form 7,
(or a functional [ such that / 2 ;) over a subset of L' (7, R") defined by
certain constraints. Other constraints may be represented in /; itself by
assigning the value 4 oo to f at “forbidden™ points of Tx R", and this
is how extended-real-valued functions come to be considered. Typically
in the calculus of variations (or control theory) 7T is a region in R™ and u
is Lebesgue measure. However, there are also problems of interest where p
is an abstract probability measure (so that /,(x) is an expectation), or
where y is purely atomic (so that 7;(x) is given by a series).
It is helpful in applications to know conditions under which the
level sets
{uel (T, R)|I:(u) <o}, «real, (1.2)

are weakly compact. We shall give in Theorem 1 {§3) general conditions
which are not only sufficient for this, but also, if y is nonatomic,
necessary, The sufliciency of the conditions has already been announced
in a separate paper [12, Cor. 2B], but the necessity is shown here for the
first time,

(*) This research was supported in part under grant no, AF-AFOSR-
1202-67B at the University of Washington, Seattle,
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Our proof of the compactness theorem is based on a new result
(Theorem 2, §4) characterizing the weak **-closures of the level sets (1.2)
as subsets of the bidual space L' (T, R")** (the weak** topology being
the weak topology induced on L'(T, R")** by the space L'(T, R")* =
[2(T, R™). The argument makes much use of duality, particularly the
theory of conjugate convex functions. Fundamental theorems about
measurable multifunctions are also employed.

The compactness theorem is related to recent work of several
authors, as we explain after its statement in §3.

2. Regularity Assumptions

The integral (1.1) does not make sense without further assumptions
and conventions, since (¢, #(t)) might not even be measurable in ¢, much
less summable. Classical regularity conditions are too restrictive and
inflexible for the diversity of applications nowadays, but the following
conditions, henceforth assumed to hold, turn out to be very natural.
(For a different but closely related approach see Ioffe-Tikhomirov [4].)

(i) The measure u is totally a-finite and complete.
(il) fis T x B-measurable, where T x B is the a-field in T x R" generated
by the products of T -subsets of T and Borel subsets of R".
(iii) f(¢, ©) is lower semicontinuous as a function of usR" for each teT.

Condition (ii) implies in particular that f{¢, #(7)) is measurable in ¢
if u(¢) is measurable in ¢. (This is evident from the measurability of the
transformation f— (¢, u(¢)).) The meaning of I.(4) for a measurable
function u: T — R" is then clear (unambiguously a real number or + 0
or —oo) if f(¢, u(r)) majorizes or is majorized by a summable function
of ¢, and in the remaining case, where neither is true, we adopt the
convention that I;(u) = 4+cc. This convention and condition (iii) are
“one-sided ”, but they are motivated by applications to problems of
minimization.

In working with condition (ii), one is able to invoke the standard
useful facts about measurable functions, but it is also possible to apply
the recently developed theory of measurable multifunctions (set-valued
mappings) with great advantage. A multifunction M:7T— R" (where
M(t) is for each f€7 a subset of R", perhaps empty) is said to be
measurable if the set

M=1(C) = {teT| M) C# 0} 2.1

is measurable in T for every closed set C< R". According to an important
theorem of Castaing [1] (in a somewhat extended form for R" derived as
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Theorem 1 of [13]), if M(¢) is closed and nonempty for every ¢, this
condition is equivalent to the existence of a countable collection U of
measurable functions u#: T — R such that

M(t)=cl{u()|ueU} forevery teT. (2.2)

A theorem of Debreu [3] (again somewhat modified—see Theorem 2
of [13]) asserts on the other hand that, if M (r) is closed for every ¢ and (1)
holds, the measurability of M is equivalent to the 7 x #-measurability
of the graph set

{(t, )e Tx R*|ueM(t)}.

The theorems of Castaing and Debreu will be used several times in this
paper in connection with the following result.

LEMMA 1. Condition (1i) is equivalent under (1) and (iii) to the measura-
bility of the epigraph multifunction

F:it=F(t)= {{u, )eR"" | ft, ) L o} (2.3)

Proor. The 7 x Z-measurability of f is equivalent to that of the

function
@t u, )= flt, u)—=
and hence to that of the set
{(tu, )eTx R (1, u, %) <0},

which is the graph of the multifunction F. The conclusion is then apparent
from Debreu’s theorem, since F(¢) is closed for each r by condition (iii).

Throughout this paper we denote by k the greatest extended-real-
valued function on 7'x R® majorized by f such that k(r, v) is for each ¢
lower semicontinuous and convex in .

(The convexity of an extended-real-valued function is defined in
terms of the usual inequality by means of the obvious conventions for
manipulating +c0 and —oc and the special convention +o0—oo =
—w4ow=+w)

CoROLLARY. The function k is F x #-measurable.

PROOF. Let K be the epigraph multifunction of k:
Kit—K(t) = {(u, )eR*" " |k(t. u) € «}. (2.4)

The definition of k& says that
K(t)=clco F(t). (2.5)

This and the measurability of F£imply the measurability of K[13, Cor. 3.3]
and hence the 7 x #-measurability of k.
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It follows from the corollary that, like 7, the integral functional 7,
is well-defined. The relationship between /, and I, will occupy much of
our attention below. Note that 7, is convex by virtue of the convexity of
k(t, w)in w.

Lemma 2. If I (u)< + oo for at least one ue L' (T, R") then

inf {I.(u)|ue ' (T, R")} = inf {£; () |ue L' (T, R")}. (2.6)

PrROOF. The inequality > certainly holds. On the other hand,
suppose « is a real number such that

inf {L(w)|ue ) (T, R")} <u. (2.7)

Then there is a summable function ay: 7 — R? such that

J do (D) <4 (2.8)
3

and, for a certain u,e L (T, R"),
k(t, ug(t))<ag(t) for almost every i. (2.9)
The multifunction
Mit—>M(t)= {ueR"| fr. ) € 24 (1)} (2.10)

then has M(#) 0 for almost every ¢. Moreover, M(t) is closed by (iii),
and the graph of M is 9 x #-measurable by (ii). Debreu’s theorem
implies that M is measurable, and from Castaing’s theorem we deduce
the existence of at least one measurable function u,: T — R" such that

uy ()eM(t) for almost every i. (2.11)

Since (1) holds, there is an increasing sequence of measurable sets T, of
finite measure with union 7 such that
lu (8} €m forteT,. (2.12)
Let u, be a function in L' (T, R") such that I, (u,) < +co. If m is chosen
sufficiently large, the summable function
ﬁ“)zz(}(f) if te.:r;:r
=max {2, (1), f(t, u (1))} if t¢7T, (2.13)
satisfies, In view of (2.8),
Bt)u(di) < . (2.14)
o

Setting
u(ty=u,(t) if teT,
=u,(r) if 1¢T, (2.15)
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we have we ' (T,R"), and by (2.11)
Jl u(t)) < p(t) for almost every ¢. (2.16)

The inequality (2.14) then implies that /(1) <. Since  was an arbitrary
real number satisfying (2.7), we may conclude that equality holds in (2.6).

3. Compactness Theorem

For each te T we denote by g(t, -) the (extended-real-valued) convex
function on R" conjugate to f{¢,+) (and k(¢,+)) in the sense of Fenchel.
Thus

gt v)=sup {(u, v)— f(1, u) |uc R"*}
=sup {{uw, v>—k(1, u)|ueR"}, (3.1)

where (-, > denotes the inner product on R". Dually, for each 7 such
that (7, u)> —co for all ue R", we have [14]

k(r, u)=sup {(u, vD>—g(t,v)|veR"}. (3.2)

The function g is J x #-measurable; this can be seen from (3.1) by
applying Castaing’s theorem to the epigraph multifunction £ in
Lemma 1. The functional 1, is therefore well-defined and convex. Later,
in our proofs, we shall treat /, as an extended-real-valued convex
functional on L*(7, R"), and the duality between I, and I, will be
important. For the present, however, we merely need to observe that
g(#, ) is in particular measurable in # for each u, so that the summability
of g(t, u) as a function of ¢ can legitimately be considered.
We now state our main result.

THEOREM 1. The level sets (1.2) of I, are all weakly compact in
LN Ry

(a) g(t, v) is summable in teT for every ve R,

(b) f(t, u) is convex in ue R" for almost every teT.

Moreover, these suffictent conditions are also necessary for all the sets (1.2)
to be weakly compact, if the measure p is nonatomic and I, is a proper
Junctional (that is, I(u)> — o0 for every ue '(T, R"), and L)< +w
for at least one ue LL (T, R™).

Incidentally, if ¢ is any real-valued function on Tx R" such that
g(t, v) is convex in v and condition (a) holds, then the function /=&
defined by (3.2) satisfies conditions (ii), (iii) and (b) ,and I, is a proper
convex functional on I!(7, R, this is shown in [12, Theorem 2].

As remarked in §1, we have already proved the sufficiency in
Theorem 1 elsewhere [12, Corollary 2B], although a slightly different
argument will be given below. An earlier proof of sufficiency [11,
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Theorem 4] required that g(z, ) be essentially bounded in ¢, and that T
be of finite measure. The sufficiency could also be established using the
Dunford-Pettis criterion for weak compactness; the argument would
be an extension of one of Valadier [16, pp. 14-16]. However, the present
approach has the advantage of yielding a proof of necessity, as well as
providing (in Theorem 2 below) an exact description, in the case where
the level sets (1.2) are bounded in L'(7, R") but not weakly compact,
of the weak**-compact sets which are the weak** closures of the level
sets as subsets of L (7, R")**,

If T is a bounded region in R™ and g is Lebesgue measure, the
sufficiency in Theorem 1 could also be derived from a versatile lemma of
Olech [9], [10], but in a weaker form where the topology on L'(T, R")
is that induced by certain continuous functions on 7, rather than all the
funetions in L*(T, R"), Sufficient conditions stronger in form, but valid
in certain cases where R" is replaced by an infinite-dimensional space,
have been devised very recently by Castaing [2, Théoréme 6].

Theorem 1 can be regarded as an extension of the classical theorem of
Nagumo [8], in the sense that it furnishes (in view of the Dunford-Pettis
criterion) a sufficient condition for the functions # in a set of the
form (1.2) to be uniformly summable. (Condition (b) is superfluous for
this conclusion.) In the classical result, T'is a bounded, measurable subset
of the real line and f is of the form

ftw) = e(ul), ueR',

where ¢ is a finite, increasing function on [0, +oo) such that

lim @(i)fi=+w.

A=rag
Our condition (a) implies that g(z. ) is for almost every ¢ a finite convex
function on R", and hence that f(r,-) satisfies for almost every ¢ the
growth condition

lim f(t, Au){A =+

A—don
(see [14, §13]).

Although the necessity of (a) in Theorem 1 has not previously been
proved, the essential necessity of (b), even for the weak lower semi-
continuity of f, is well known in various cases where / is more regular
than required here. In fact, the relationship between convexity and lower
sgmicontinuity has been an important subject of investigation in the
calculus of variations ever since the discoveries of Tonelli. We cannot
go into the details here, but refer the reader instead to the papers of
loffe and Tikhomirov [4], [5], and the literature cited there.
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4. Weak**_closures of Level Sets

In the method we shall use in deriving Theorem 1, the level sets (1.2)
are regarded as subsets of the bidual L'(T, R")** and compared with
their closures in the weak** topology. (The restriction of the latter
to L' (7, R"), viewed as a subspace of L' (7, R")**, coincides of course
with the weak topology on L' (T, R").)

We make use of the fact that L' (7, R") has a natural complement in
L' (T, R*)**, Specifically, L' (7, R")** is the direct sum of the two (norm-
closed) subspaces 4 and S, where 4 is the canonical copy of L!'(T, R")
and S is the set of all continuous linear functionals w on L* (T, R") with
the following property: there exists an increasing sequence of measurable
sets T, of finite measure with union 7, such that w(v) =0 whenever v is
a function in L* (7, R") vanishing almost everywhere outside of T,, for
some m. (This can easily be seen by representing L* (7, R") as the space
of all R"-valued continuous functions on a compact Hausdorff space Tand
then applying the Lebesgue decomposition theorem to the measures in
the corresponding dual space.) The elements w,e4 and wgeS in the
decomposition w = 1w, +1wg may be termed the “absolutely continuous”
and “singular ” components of the functional we L' (T, R")**, respectively.

Using the decomposition just described (and the conventions about
+ o and —cc), we define the functional I, on L*(7, R")** by

Ip(w) = L)+ o(ws), (4.1)

where k(t,-) is as in §2 the greatest lower semicontinuous, convex
function on R" majorized by f(r, ), and

o(w) =sup {w(v)|veL*(T, R"), (v)< + o0 }. (4.2)

Assuming that I, is not identically +occ on L*(T, R™), ¢ is of course a
positively homoaeneous convex functional vanishing at 0. Then I, is
a convex functional on L'(T, R)** which reduces to [, on L} (7, R"}
(identifled henceforth with A4).

The following theorem, not stated before, explains the exact
relationship between I, and I,.

THEOREM 2. Suppose that I (u)< + oo for some ueLl'(T, R"), and
1,(v)< + oo for some ve L (T, R"). Suppose either that the measure u is
nonatomic, or that f(t, u) is convex in u for almost every t. Then for every
real o % &, where

& =inf {I,(u)|ue L' (T, R")}, (4.3)

the convex level set
{we ' (T, R®*|I,(w) < o} (4.4)

is the weak**-closure of the level set (1.2), (The set (4.4) is also
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weak®*-closed if & is real and « = %, and in this case it is the direct sum of
{ue L' (T, R | L (u) = &} (4.5)

and the convex cone consisting of the singular fumctionals weS such that
w(v) < 0 for every ve L* (T, R") satisfying I,(v) <+ o.)

The assertion in Theorem 2 that the weak**-closure of (1.2) is (4.4)
implies in particular that the weak closure of (1.2) in L'(T, R") is the
corresponding (convex) level set of I.. This is closely related to some
results of Castaing [1] concerning measurable multifunctions, as well as
to convexity theorems in the calculus of variations referred to above.

ProOF, Since /; is not identically 400 (and likewise /), we have

I,(v) =sup {Cu, vy -1, (1) | el (T, RM}
= sup {(u, v) =1 () |lue L'(T, R} > — 0 (4.6)

for every ve L* (T, R”) by [11, Theorem 2], where
Cuy vy = | (u(t), v(t))p(de) . (4.7)
T

M,

The second equality in (4.6) is seen by applying Lemma 2 to the function
Soltou) = f(t, W)= Cu, v(t)).

(The first equality in (4.6) is proved in [11] under the assumption,
satisfied here, that 7, is not identically +co on L*(T, R"). However, we
remark for purposes below that this assumption is not essential, and
all of (4.6) can actually be established by nearly the same argument as
used in Lemma 2.) We also have from [12, Theorem 1] the formula

L) =sup {w)—1,(0) | veL*(T, R")} > — 0. (4.8)

Thus I, is the conjugate of /,, which is not identically +co and is the
conjugate of I, and the convex functional /.. This implies, by the
fundamental theorem about conjugate convex functions, that I, is the
greatest weak™*-lower semicontinuous functional on I'(T, R")**
majorized on L' (7, R") by 4, and that (since [ is the restriction of I, to
L'(T, RM) I, is the greatest weakly lower semicontinuous convex func-
tional on L' (7, R") majorized by I,
It follows immediately that

inf {I,(w)|wel' (T, RY**} =inf {L(u)|ueL' (T, R")}
=8<+0 (4.9)
(equality with & holding by Lemma 2). Furthermore, for each real « # &
the level set (4.4) is the weak**-closure of the level set
{uc " (T, R | L(u) <a}, (4.10)

1§
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while (4.10) is in turn the weak closure in L' (T, R") of
{ueL'(T, R |(co I,) () €}, (4.11)

co I, denoting the greatest convex functional majorized by 7. If f(¢, u)
is convex in # for almost every 7, then of course co [, =1, =1, and we
may conclude as desired that (4.4) is for «s & the weak**-closure
of (1.2). The assertion of the theorem about the case o = & (& real) needs
no argument, since it is clear from (4.9) that in this case (4.4) is the set
of all w=1w,+1wg such that w, belongs to (4.5) and & (ws) < 0.

To complete the proof of Theorem 2, we demonstrate that if (7, u)
is not necessarily convex in u but u is nonatomic, the level set (4.11) is
for « & contained in the weak closure of the corresponding level set (1.2).
This amounts to demonstrating that the weak closure of the epigraph of
I, in L'(T, R")x R' is convex. Let F be the multifunction (2.3), and let

F = {zeINT, R Y| z()eF(1) a.e.}. (4.12)

It suffices to show that the weak closure of F contains the convex hull
co £, or equivalently, that the image of F under an arbitrary continuous
linear transformation L from L' (T, R") to a finite-dimensional space R™
is dense in the image of co F. Actually, it turns out that L(F) is convex,
so that L(F) = L(co F).

The convexity of a set of the form L(F) is a well known consequence
of the theorem of Liapunov [6], according to which the range of a
nonatomic R™-valued measure is a compact convex set. (Only the
convexity assertion is needed here. Lindenstrauss has furnished an elegant,
half-page proof of Liapunov’s theorem using the Krein-Milman theorem:
the positivity hypothesis on the component measures can be obviated by
means of the Hahn decomposition theorem.) The argument is standard,
but we repeat it here for completeness.

Let L be a continuous linear transformation from I (T, R") to R™,
and let z, and z, be elements of . We show that L(F) includes a convex
set containing L(z,) and L(z,). For each measurable subset £ of T let z,
be the function in L' (T, R"*1) defined by

22() =2, () —2, (1) if t€E

=0 if r¢E. (4.13)
Then z;+z;€ F. The set function t defined by
T(E) = L(zp) (4.14)

is countably additive from 7 to R"™ (by virtue of the linearity and
continuity of L), and it is also nonatomic. Hence by Liapunov’s theorem
the set

{L(z))+ L(z,)| EeT } < L(F) (4.15)

is convex. This set contains L(z,) (for E=0) and L(z,) (for E=T).
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5.  Proof of the Compactness Theorem

Suppose in Theorem 1 that conditions (a) and (b) hold. Then I, = J,.
[t can be assumed that /(1)< + o for some we L' (T, R"), since otherwise
the weak compactness ol the level sets (1.2) is trivial. Then Theorem 2 is
applicable. To show weak compactness it suffices to show that the
sets (1.2) are bounded, and that the function o in the definition of I,
satisfies

o(w) =0 for cvery nonzero wesS. (5.1)

Given any vel” (T, R"). we can [ind a finite subset {a,,...,a,} of R
whose convex hull contains v(7) for almost every ¢. Then

g(t.v(n)) <max {g(t,a)|i=1, ... m} (5.2)

for almost every r by virtue of the convexity ol g(z, ). The right side of
(5.2) is summable in ¢, and therefore [ (r)<+oo. Since © was an
arbitrary element of L*(7, R"), we may conclude that (5.1) holds.
Furthermore, if » belongs to a level set (1.2) and veL* (T, R"). we have

ey L+ L) so+l,(0)<+x (3.3)

by (3.1), and hence the linear functional ¢ -, ) is bounded above on (1.2},
Thus the sets (1.2) are all bounded, and the sufficiency of conditions (a)
and (b) is proved.

Suppose now that the level scts (1.2) are all weakly compact,
that [, is “proper” as described, and that g is nonatomic. We show
that (a) and (b) must hold. Since 7, (u) < + co for at least one uc L' (7, R"),
formula (4.6) is valid, as already remarked in the proof of Theorem 2.
Thus in particular

1,(0) = —inf {I,(u)|ueI}(T, R")}. (5.4)

Moreover, the infimum in (5.4) is attained, because the level sets of Iy are
weakly compact. and hence the infimum cannot be —oo, because
L(u)> —oo for every uel! (T, R"). Therefore I,(0)< 4oz, and the
hypothesis of Theorem 2 is satisfied. It follows that the sets (4.4) and (1.2)
arc the same for every rcal .

In particular, we must have I, = on L'(T, R"). To see that this
implies condition (b), consider the set F defined in (4.12) (with F given
by (2.3)). and correspondingly let

E=1{zelT, R | z()ek () a.c.) (3.5)

n

{with K given by (2.4)). Trivially K= 7F. Conversely, if ze K we have
z(8) = (ult), «(r)). where ws L} (T, R"). ac LM (T, RY), and k(z, u(t)) < (1)
for almost every ¢. Since [, (u)=1,(u) and k< f, we must have

k(f, u(t)) =f(t, u(t)) ae.
94



Thus f(t, u(t)) < a(z) for almost every ¢, so that ze F. This proves
that K = F. We observe next that, since k is 7 x #-measurable (Corollary
to Lemma 1), the multifunction K is measurable (Lemma 1 applied to k).
If & is a function in L' (T, R") such that J,(#) < + 0, we have k(z, ii (7))
measurable in ¢ and

k(t, 7(1) <f(, ()< +o0 (5.6)
for almost every #. Thus there exists a function Ze £ such that the set
I'={teT| z()¢ K (1)} (5.7)

is measurable and of measure 0. Let
K'(t)=K() if teT’
= {z(1)} if ¢¢7". (5.8)
Then K': T— R"*? is a measurable multifunction whose values K’(r) are
closed and nonempty, and consequently there exists by Castaing’s

theorem a countable collection Z of measurable functions z: T — R*¥1
such that

K'(t)=cl {z(t) | zeZ} ae. (5.9)
Since K’ agrees with K except on a set of measure 0, we have
K()=cl{z(2) | zeZ} a.e. (5.10)

In view of the fact that y is totally ¢-finite, there exists for each of the
measurable functions zeZ an increasing sequence of measurable sets
T,.(z} of finite measure with union T, such that

|z(t)] <m for every teT,(z). (5.11)

Let Z' denote the countable collection consisting of all the functions
z':T— R*™! of the form
Z’(t)=z(r) if 1eT,(z)
=Z(t) if t¢T,(2), (5.12)
where z ranges over Z, and m ranges over the positive integers. The
functions in Z’ are summable, and they have the property that
Kity=cl{z'(t) | z7€Z'} ae. (5.13)
Therefore Z'c K. But K = E, as already shown, and hence (using the
countability of Z") we have
{z'(t) | z'eZ'} < F(t) ace. (5.14)
The set F(¢) is closed by virtue of the lower semicontinuity of f(z, u)
in u, and therefore (5.13) and (5.14) imply
K(t)=F(t)ae. (5.15)

This verifies condition (b).
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Without loss of generality, we can assume henceforth for simplicity
that k =f. Our task is to show that the (nonempty. convex) set

C={vel*(T, R") | I,()< + ) (5.16)

contains all the “constant functions™. (For every veC we have
I(v)> —co by (4.6), so that g(¢, v(7)) is summable in 1) It is enough
actually to demonstrate that the strong closure of C contains all the
constant functions, for suppose the latter is true and let @ be an arbitrary
element of R", Let {a,....,a,} be a subset of R whose convex hull is a
neighborhood of a. By assumption, given any & >0 we can find functions
v;€C such that

lv,(t)—a;| < e almost everywhere (i=1....,1). (5.17)
If & is sufficiently small, g will belong to the convex hull of {r, (¢), ..., v ()}
for almost every ¢, so that
Q(I, G) = NaX g(_rz UE(I)) ' (518)
2 B

= e

The right side of (5.18) is summable as a function of 7, and therefore ae C.

Assume that 7 is a function in L* (7, R") not belonging to the strong
closure of C. We shall argue from this to a contradiction, thereby
establishing Theorem 1. Since C is convex, ¥ can be separated from C by
a continuous linear functional on L™ (T, R"). Thus the weak**-closed,
convex cone

D = {wel(T, R** | w(?) = o (1)} (5.19)
contains nonzero elements, where ¢ is given by (4.2). From [l12,

Theorem 1] we have formula (4.8), and therefore ¢ is the recession
function (*“asymptotic function ™) of ff [15]. In other words, we have

ow) = lim [I@+aw) — @]/ (5.20)
= sup [ (#+Aw) — I (@)]/4,
a0

where @ can be taken to be any element of L'(7, R")** such that
(i) < + o0. In particular, (5.20) implies that

If(E-i-Zu-‘)éff(ﬁ)—i—iw(ﬁ) (5.21)

for every weD and />0, Taking i to be an element of L' (T, R™) such
that I,(i) <a, where « is some fixed real number, and taking w to be a
nonzero element of D, we see from (5.21) that [ (iw+/iw) <« for
sufficiently small A>0. Then @+Aw belongs by Theorem 2 to the
weak**-closure of the level set (1.2), and hence to (1.2) itself, implying
wel (T, R"). Thus D is contained in L'(7, R"), and D consists (since
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I, =1 =1, on I}(T, R") of the functions weI!(T, R*) such that

J (), 50y u(d > lim [L B+ Aw) — I,()]/A (5.22)
T

A=t o
= J (LA () + 20()) — £(t, BN (@D .
A=+ T
(Here i still denotes an element of L' (T, R") such that I (it) < 4+ 0.)
If v is any function in C, we have
S w(@)+Ahet) 2 GE@)+2w (), v(0))—gt v(t)  (5.23)
by (3.1), so that the difference quotient
LG, w () + 2w () —f (&, w()]id, 2>0, (5.24)

majorizes a summable function of ¢ Furthermore, these difference
quotients ar¢ monotone increasing in A, because of the convexity of the
functions /{7, -). It follows from the Lebesgue convergence theorem that
the integral can be interchanged with the limit in (5.22). In other words,
D consists of the functions well (T, R") such that

J [h(t, w(h) — (i), YTu(de) < 0, (5.25)
)
where

h(ow) = Tim [f(, B0 +50) — £t BEA.  (5.26)

Note that A(z, «) is positively homogeneous in w.

Fix any nonzero function wyeD. Since (5.25) holds for w = w,, and
since h(t, 0) =0, there is a measurable set T, of positive measure such
that

A, 1wy (1) — Cwg(r), ()Y €0 for almost every 1T, (5.27)
g ()| # 0 for almost every re T, . (5.28)

Let T, be a measurable subset of T, of positive, finite measure on which
lwo (1)] is essentially bounded in z. Let J, be the class of subsets of T
belonging to .77, and let uy be the finite, positive, nonatomic measure
on 7, defined by

o

Ho(E) = | [wo(t)p(ds). (5.29)

JE

Let L be the mapping which assigns to each element 4 of the space
INT,, uy, RY) the function w given by

w(t)=r(t)we(t) if 1eTy,
=0 if t¢T,. (5.30)
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This mapping L is a linear isometry from I!'(Ty, o, R') onto a closed
subspace of L' (7, R™. If 1 = 0, the function w = L(A) satisfies

R, w(t)—<w(t). 5(t)) <0 ae. (5.31)

because of (5.27) and the positive homogeneity of (7, -), and hence we D,
In particular therefore, we have

L(B,)=D, (5.32

where B, is the “nonnegative ” portion of the unit ball of I} (T}, iy, RY).
Since D is weak**-closed as a subset of L' (T, R")**, the convex set L(B,),
being closed and bounded, is weakly compact in L' (T, R"). Equivalently,
B. is weakly compact in L['Ty, g, R'). But this implies that
LTy, po, RY) is finite-dimensional, contrary to the fact that p, is
positive and nonatomic.
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