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to the objective function. "I'hus, the problem can be represented by the
Lagrangian

w

Ko, y) - ) | L [y f{e) -+ rfd )], (2)

where the constant v - 0 1s the penalty factor. The penalty terns suggest
the Tikelihood that, if % is a local optimal solution with corresponding
multiplier vector ¥ satislying

m

VALY 4 ) v N fix) =0, (3)

=1

and if 7 1s sufficiently high, then K (v, ) will have a local minimum at .
In fact, it is easy to show that this is true if & satisfies the standard second-
order conditions sufficient for local optimality in (1). Therefore, one
might attempt to solve (1) by solving a scquence of unconstrained
problems of the following form:

determine ' minimizing K,{x, y*). 4)

Here, # could be increased (rom time to time if convergence dud not
scem fast enough. Since &% satisfies

m

0 = VK% 3 = Vi) + Y 0 + 2RV, )

i1
a simple and natural way to generate the sequence {y# s to set
PR ety =1, m (6)

llestenes did not develop this idea theoretically beyond this stage,
but Powell worked out an algorithm with a rule for when to increase r.
He actually allowed scparate penalty factors for each of the terms
J{x)% He demonstrated in Ref. 3 that, if the second-order sufficient
conditions for eptimahity were satisfied, the algorithm should converge
locally at a linear rate, without the need for having r —» -} oo, "I'he main
advantage of the algorithm lics in the latter property, since it provides
a numerical stability that is not found in the usual penalty methods,
Powell did not address the question of to what extent the exact global
minimum in (4} can be relinguished in favor of an approximate local
mintimum,

More recently, Miele ef af. (Refs. 4-7) have tried out various
modifications of this algorithm computationally. Fletcher (Refs. § 9)
has developed a related technique where the multiplier veetor v is
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adjusted continuonsly as the minimization of K (x, ¥) in & is carried out.
An earlier method along these general lines may also be found in a paper
of Arrow and Solow (Ref. 10), which treats the caleulation of saddle
points by means of solving differential equations,

Aside rom an extension which Arrow and Solow described for
their differential equation approach, no specilic algorithm related to the
method of Hestenes and Powell has been proposed for problems with
mequality constraints. However, Rockafellar (Rel. 11) has studied the
analogue of the Lagrangian K, for inequality constraints and, in the
convex case, has established some of its general computational propertics.
A saddle-point theorem for nonconvex, inequality-constrained problems
has also been proved by Arrow, Gould, and Tlowe (Ref. 12).

If the constraints f{x) — 0 are replaced by fi(x) = 0, the natural
replacement for the Laprangian K., as demanstrated in Ref. 11, is

L,y Ax) 1 (L) Z [B(ri | 2rf(0)) — ), (7}
where
0(t) - max{t, O} (8)
Of course,

() 1oefix) 0 L) i,
(a1 2o — 9] = [P Fonff) L HO i)

Note that the multipliers ¥, are not restricted to be nonnegative, despite
the inequality constraints in the problem.

It is casy to generalize the algorithmic approach of Hestenes and
Powell to the inequality case in terms of L, . 'T'he basic procedure is that,
given y* (and r 7> 0), we

determine x* minimizing L, (v, ¥*), {10)

s0 that

0 VoL (xF ahy V fy(aky - 2__‘ By r 1 2 R V£ b (1
=1
We then set
B F ) 2N = 0 for r = 1,.., m, (12}

ar, in other words,
Y e b 2P VL, ). (13)

Steps (10) and (12)-{13) make sense, of course, even if the functions are
not ditferentiable. "T'he transformation of this procedure into a locally
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convergent algorithm patterned after Powell’s, where r is increased in
a systematic way if necessary, is straightforward and will not be carried
out here. Our aim instead 1s to show using our earlier results in Ref. 11
thut, in the case where the functions f; are convex and not necessarily
differentiable, the procedure given by (10) and (12) converges globally
for arbitrary fixed r and with the minimization only approximate, at
least if some form of the Slater condition is satisfied. By relating the
procedure to Moreau’s theory of proximal mappings (Ref. 13), we are
able to demonstrate the unusual property that the sequence of multiplier
veetors 3% then converges, even though there may be more than one
possible limit, depending on the initial choice of y°.

2. Convergence Theorem

Henceforth, let X denote a convex set in a real-vector space F
(possibly infinite-dimensional), and let f,, f,,..., f,, be real-valued
convex functions on N, We shall be concerned with the following

Problem (I'):
minimize fy(x) over all ¥ ¢ X satislying fi(x) << 0 for 1= 1,.., m.

Rather than introducing (afhne) equality constraints in the model, we
suppose for notational simplicity that each such constraint is represented
by a pair of inequalitics. Equality constraints could also be treated
explicitly, if so desired, and this would nccessitate only routine and
obvious changes in the statcments of the results below. The convexity
of the functions f; implies that the Lagrangian L,.(x, y) is convex in
x e X and concave iny € R™ (Ref. |1, Theorem ).

The algorithm to be investigated is the following. It depends on the
mnitial choice of r == 0, ¥ ¢ R, and a sequence {v} with 0 <<« — 0.

Algorithm. Given y* € R™, determine 2% € X such that
Loo®, yh) <2 inf Ly, %) -+ s (14)

Then, define 3+ by (12) or, cquivalently, (13).

Let o denote the optimal value in (P), that is, the infimum subject
to the constraints, A Kuhn-Tucker vector for (') is a vector ye R.™
with the property that

E‘{{f;'(‘“] i _]'Ilv{ll(\'] Jomne| _1'n|_fm[\"” = — (]:‘]

O anain result can now be stated,
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Theorem 2.1, Suppose that (P) possesses at least one Kuhn-
Tucker vector and thae

Z \/‘-‘J.: . |- “{))

k=

Then, {v%) converges to some Kuhn Tucker vector, while {v*] satisfics
li:;t sup f(x*) <0 for ¢ 1., m, (17

Lim Sol¥¥y == o= anl(1). (18)

Assuming that the optimal value pois finite, it is well known (Ref.
14} that a Kuhn "Tucker vector does exist if the Slater condition is
satisfied: there is a point x € X such that fi{(x) -~ O for¢  1,..., 2. For
problems in which cquality constraints have been represented by pairs
of (affinc) inequalitics, this criterion is not applicable, but it may be
replaced by the modified Slater condition: there is a point xc core X
such that f(x) << 0 for 7 = 1,..., m, with strict incquality for cvery f;
which is not affine. The core of X consists of the points & such that
every ray cmanating from x meets X in at least one point besides x.
The argument given in Ref, 14, Theorem 28.2, for the sufficiency of the
modified Slater condition carries over to the infinite-dimensional case.
More generally, still assuming g to be finite, a Kuhn-Tucker vector
fails to exist ifl there is a vector € R™ such that

lim [p(hr) — O = —ec, (19)
where
pluy = ind] folal e X, fi(x) =5 ay e fulx) o0 ag,) (20)
{see Ref. 15, Corollary 29.1.2). When a Kuhn -Tucker vector exists,
it is not possible for any sequence {¥¥} in X satislying (17) to satisfy
l,j“f inf fi(xg) e (21)

The proot of T'heorem 2.1 is based on results in Ref. 11 coneerning
the conecave [unction

Under the hypothesis that a Kuhn="Tucker vector exists, g, is everywhere
finite and continvously differentiable on R and the Kuohn-"Tucker
veetors form its maximizing set (Ref. 11, after 'T'heorem 2). Furthermore,

ey max gy(m) - (1idr) w0 - ¥ |%, (23
we B
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where
S LU A | | vy iy 0,
&ly) = f'—-‘\r'ﬂ ity -0, (24)

{Rel, 11, Theorern 2); denoting by M(y) the unique w for which the
maxinum in (23) is attained, we see that Vg {y) coincides with the
gradient of ¥ > go(w) — (1jdi) 2wy | at @ = M(y), and hence,

M) v 42V e (). {25)

Proof of Theorem 2.1. I'o obtain the desired conclusion about
{xF}, it suffices, according to Theorem 4 of Ref. 15, to prove that {y*} 1s
a bounded maximizing sequence for g, . If, in addition, {y#}is convergent,
the whole theorem is established.

As shown in Ref. 11, Lenuna 2, condition (14) yields the estimate

VLG5 ) Ve () < oy (26)
Therefore, by (25) applied to 3% and by (13),
(D1 — MM < oy s 7
and, 1 particular,

Lillr? [y# 10— Mfy*)] — 0. {28)

Now, M is by definition the proximal mapping in the sense of Moreau
(Ref. 13} associated with the convex function f— —2rg, . Thus, M
is nonexpansive (Ref. 13), that is,

| M(y) — M(2) =2 |y — =| for all ¥, = (29)

The fixed points of A are precisely the points v such that Vg, (v) = 0;
in other words, they are the Kuhn-Tucker vectors for (P). Let y be
an arbitrary KKuhn-"T'ucker vector. "Then,

| M%) w | = [ MGE) — A = [ — ], (30)
by (29}, so that, by (27),
LA = MO MR - 3] = B =5 ()
[t follows from (106) that

(ot = v Sy — ] | Z TS L B's) whenever [ o=k (32)
i
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In particular, {y*} is a bounded sequence. T'he uniform continuity of g,
on bounded sets then implics that

lim [ (y*) — g (MO D] - 0, (33)
in view of (28). We observe next from (23) that
£0%) = gl M) — (L) M5 — a5
or, in other words, using (25),
L0 Vg = gl M(3%). (34)
But (23) also yields
gAM(YY) 2 go(M(y¥) — (1/4r)] M(y*) - MM - g(M(Y).  (35)
Combining (35) with (34), we have
eAM(y) 2 g (9 + 1 [ Ve o) forall ke (36)

I'rom (36), (33), and the lact that g, is bounded above [since the naxi-
mizing set for g, consisting of the Kuhn Tucker vectors for {P), is
nonempty], we are able to conclude that

lim | Vg (%) = 0.

Consequently, if ¥ is an arbitrary cluster point of the bounded sequence
{3%}, we have Vg, (¥) — 0. Since g, is concave, this means that ¥ maxi-
mizes g, and, hence, is a Kubn-Tucker vector. The inequality (32),
which holds for any Kuhn-"T'ucker vector, now implies there can be
only one such cluster point y of {y*}. Thus, { ¥*} is a maximizing sequence
for g, which converges to some Kuhn-Tucker vector for (1), and the
proof of the theorem is complete.
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The Multiplier Method of Hestenes and Powell Applied
to Convex Programming!

R. T. RockargLLar?

Communicated by M, R, estenes

Abstract. Lor nonlinear programming problems withi cquality
constraints, Iestenes and Powell have independently proposed
a dual method of selution in which squares of the constraint functions
are added as penalties to the Lagrangian, and a certain simple rule
is used for updating the Lagrange multipliers after each cycle.
Powell has essentially shown that the rate of convergence is linear
if one starts with a sufficiently high penalty factor and sufficiently
near to a local solution satisfying the usual second-order sufficient
conditions for optimality. This paper furnishes the corresponding
method for inequality-constrained problems. Global convergence
to an optimal solution is established in the convex case for an arbitrary
penalty factor and without the requirement that an exact minimum
be calculated at each cycle. Furthermore, the Lagrange multipliers
are shown to converge, even though the optimal multipliers may not
be unique.

1. Introduction

The following idea, in effect, was raised independently by Hestenes
{Refs. 1-2) and Powell (Ref. 3) at conferences in the spring of 1968.
Consider the following nonlinear programming problem:

minimize fi(x) subject to fi(x) = 0, i =1,.., m, (1)

where the functions f; : R* — R are differentiable. ‘The solutions to this
problem are not altered if terms of the form rf(x)%, { == |, are added
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